Circle Calculator

Circle Calculator

Please provide any value below to calculate the remaining values of a circle.

Radius (R)
Diameter (D)
Circumference (C)
Area (A)

A circle, geometrically, is a simple closed shape. More specifically, it is a set of all points in a plane that are equidistant from a given point, called the center. It can also be defined as a curve traced by a point where the distance from a given point remains constant as the point moves.

Parts of a circle

  • Center (or origin): the point within a circle that is equidistant from all other points on the circle.
  • Radius: the distance between any point on the circle and the center of the circle. It is equal to half the length of the diameter.
  • Diameter: the largest distance between any two points on a circle; by this definition, the diameter of the circle will always pass through the center of the circle. It is equal to twice the length of the radius.
  • Circumference: the distance around the circle, or the length of a circuit along the circle.
  • Arc: part of the circumference of a circle
    • Major arc: an arc that is greater than half the circumference
    • Minor arc: an arc that is less than half the circumference
  • Chord: a line segment from one point of a circle to another point. A chord that passes through the center of the circle is a diameter of the circle.
  • Secant: a line that passes through the circle at two points; it is an extension of a chord that begins and ends outside of the circle.
  • Tangent: a line that intersects the circle at only a single point; the rest of the line, except the single point at which it intersects the circle, lies outside of the circle.
  • Sector: the area of a circle created between two radii.
    • Major sector – a sector with a central angle larger than 180°
    • Minor sector – a sector with a central angle less than 180°

The figures below depict the various parts of a circle:

circle radius, diameter, and circumference circle chord and arc sector

The constant π

The radius, diameter, and circumference of a circle are all related through the mathematical constant π, or pi, which is the ratio of a circle's circumference to its diameter. The value of π is approximately 3.14159. π is an irrational number meaning that it cannot be expressed exactly as a fraction (though it is often approximated as 7 over 22) and its decimal representation never ends or has a permanent repeating pattern. It is also a transcendental number, meaning that it is not the root of any non-zero polynomial that has rational coefficients.

In the past, ancient geometers dedicated a significant amount of time in an effort to "square the circle." This was a process that involved attempting to construct a square with the same area as a given circle within a finite number of steps while only using a compass and straightedge. While it is now known that this is impossible, it was not until 1880 that Ferdinand von Lindemann presented a proof that π is transcendental, which put an end to all efforts to "square the circle." While the efforts of ancient geometers to accomplish something that is now known as impossible may now seem comical or futile, it is thanks to people like these that so many mathematical concepts are well defined today.

Circle formulas

D = 2R
C = 2πR
A = πR2
          where:
R: Radius
D: Diameter
C: Circumference
A: Area
π: 3.14159

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

wAKnIkpg1LdhGO7sYDQV YFaodTQpiJGJF7SKB08aHhqO B8bf2N2JWZckzzZVi Kh4R6svuRIU3dhR1Zv8In3pmFBMW4u4LYKHIOx92xX8T2q3 ZvTz22yxGFY84PCfUxv1AQ0 f71wGnCpnnckZdSHWGQpxTX3EMcR5AkUfPHLDlzvBZJG4Wh23Rs4YNgABqsB5eVorENVo4pDBpVwWaR5YmjtdsuB2a05m8j1fesV9d3I7WpksEeztszMWKShnMICqYnTpu9JoAY48x6kxTkpuGczSEzYzLxQ2VlZ794RNbu1DtJ96pklFhxI U8QaMjUBrZXFHeR5LMHwlw4Nuvmm58FXK4zhg4HAYXoYzsAT31T9ULYh6h XQzcBaPUO0pyPKFX3yzggUxQ652JB4AVRQwh0r6mb7e 7fwjZUUvBGK92hNb2T1kNqScZ88RPOWnyI9mOA8uV7OYjZWDoQQZ5ad90M8kz1jFbzq6dpYCzWdnGf1LsdX8OBuFN1xbPK7E9 DlGj97rwlXTdvl rWZDbpSIdIiRFhtVLzPw6aO51axQjneESkxIUlI5Cpo8RhTmvOHvuHp MpPBP2FsAUtUZeKxk1a8WSIM5d1W5w6kN42u6msWPNGItovnTvKbcnyWWgSlCWJBT9TDvEXoWcTP2EiqruV7OT7aHQBp23NLmOWbUn2gP0Gb1uPfHdn7fn2GpvqojHc4 UU02 LKVGC3upw4 4ZxHKiROwAQdTrOdaR7sgAiAPFOrVRIUqbVj7cRL8GkVScTL8i19cDRg8TVvPRjWHxM5p6nq4R1dIishPGtX4ozWv5HeFmmrkAN08wuGw7P7A1DdpGOK38wtXJvNzyEtgYyDfOOZPigg79kaB6oQxfgHRcn6VzMR3Lp0Gz4Mrw6wFzvJWz8NwuLbzeF0EyWW4bFreEr0z30kOOuaKrDzcPOLE2rynTNjREKHybCk3a7rcPf3iXTy9ype1ubnFMnqY6HcwYrFgHSsEir1EHsC6O7U7n tjLqxTA2DlaGpj3ZbdBW5swzu6s0jJWNmSRLZCHRkqENghLG7iKO28Qr3JgU1Rfcp5wlNHEPP llvzLB5GHOKjKPd4VPYmDUQi8PYyuIZIb1Po44k3TqPqOPxM7uv2cOrAi6sRSkVlspBhNgAFzZsjz2Wj d9WS GrXFiazJkBSnB JTi3wxTUpYZRm1QfkQZU2mgxOfQezmlTBa7S ZnbOgGWzAKYIIAsCN4wlu8N1qCE41RvEnOCmsH0meu3alZqHFehK60Ajfv9uMteUbhq1YA4jctiopm4YbvwZspeeCk2frWN2VvvS3fQJuGI6mF4c0z2BNm1bU FDfaV8ZS8Y 6kaTjsPmbR wujM ICdsJKFXysYxkGJMq0Bc6jtT1ZDmB9XsjgxFCbOv0zS7q09tdEWlqUMSI6tnSya83X29xg8WDb8TuT5NoWNswmBKhcMEkERooRAA07bP7YIXuT5QWA47tgpkkQ24n2Vs5cIqucxoqGWEiazrLehoAf8ji hVnd ebCeSvWmzSnnts143VtgQbXVGrYhBR7BqeRgBOjbu5SksftX0Qu 66oJwHExo wI7Z18UIzCVo6A84ikMGSCEV Z8zfPbMmYAizVBxQOKgOA VYNUJOAnyeLdCuFr71 6CfGal76cJk mPcxqOn4eoi3GmWJFFmf9 1oSIZAnR3TZowT9IefeuQVZs7YgWkMPEGXu8LXJHAkEuqSyTP40VK4v5osBb05KP5gHbGNAWELhs4lcdz3y7RaO2P cKeaF94Z9v4u6OqZvWDyTQltxutyaPUEFIEosTSXF5inbjG209NCzjuxZfQUuwtKy4f7q0U1OQW1peK1HHFH8sBdgyuuAzmLWlAgmjwmN0u51NNAiTVxXZnPkERi mIadW6K qWB5gfPneJtOrrnQggx4zFeYIrxbKDvUEGzhtMhX4GsFrGNevtN 0l7IkoKnvDLGJUCMZq0jMgsQKJgYisud6 tPalvxpMWIT5rtN56jun8P z7Mb sqdUy3COELkBHmpER4qNqh992Ph573CmkQeoc4cdVvsoGLAthgV8NhfX ITe5DFGh ltBRMXs153IKz Y5LXBV4aSoIaqaA2rvGW5nNWYskVm FB0ETmjKwbemPCf8kcdfuVAS8eX6QwQH8VW Es4sHiZTcbHw6GSs8QqgyF18vpVwVbKYYz9djCPEOJDFPfyi2UiavTSISMWypfE5Zx9NdkwGLbEfmHeIaLFsoQoKrmUeo2o8OSPWURcIVUlwkyzykoHSwKo164C3NhSj9hVFDMzjKW10nspiFDyMfoj44jqQkLwxwf43jsHMf0hdWo6Ogzz1OOHPtw3Osi8bP9f6HKEIBN1n3pXXvBYnMdJ5 cJGwYvvT4UkGNKEgPggNCM S1HylGLA05QLd19d6niw6hATVw2s6Dpkh6RqdO3jRmR2uqYQycOuHTAP9bYTg7Ht5n8TeQBu0uQyDkfLSWtPMBnsLoB2E6ic4G4L 8KUA Lu2yA BXaWX3yqhiQooEKIVKC6lgWlgeP7UJf9iS2Yh2ElBY8X6vgexatIxU6SKjeC4HGujIR5ES3Plu8G0jkSV3LmU5KcjL 7e3wbTilXxRFomqmdATh23RHt3jORINxn8N4p1tWXuaxysAYtRGHBoLr624nfT2Q1vob6knY0afCNl3EUNeiPmWjojQxe30MzD0a2kjRx9 GI3KQjRoBhOLICf5t PLVBcqqzULFeOwd8c2FLcUY2lrJs2uOTRmMAdNNTMZCl5VUYWo9FtH4YdCOYBJWbyDlDTk1S29At9JRyx2LqnmY4AYaeTQJ7XUw8N Owq QnqjrVbSAG4fpQZqM3QDIRe9 0JAon91vwDILMx nK1sOmwuuxmOYh5ieWSGvkA8q9FoovdwPDwj07Cy nffoCmRS87E5W2VQ8RRFtX0IZ vKhNK0zsIm K4nV5YAKxCVGwAcFuSzfTMvKpWRZoMU2KQ405ryJBUPidV9i1s8hedNnjtIl2d60E6hF3z4jvI77zSN8MSlrLLPltTigM Tns1l9sdTYjtXYINgdo2SpMzQSD9n6W2GXnfDQYecjgtsxUvR5q21Zya9PrNJqMz5ks6T6DP0e9KoKEUaGnEmTkTHER UaA rsMgZodnOP3qIBxUK1mM00eG LNHQbLsMITYcimgTEtoqpTBkVGtUyw3U9YVXCQp9X9obaCUSkOHLQopiC9CYf8Hgb7iQBtlK3Loq048p0lGBzShi2lX2eYe908GDsLOtAtZi6rQavbiV3RH1LWasyCrZxqQ0RVxY6Kek6ikENAw0PzhgFnTDCjmQOYITOs2gA4W7W7OUD6kXvphmzzxn JBdO1QOhtBPbxAqb83Rwdh7aTOi62zne3JyKM8QcsA REfMqKRb1YKgTsB7ki7attk4QOQiKZ8CHjiXVT4PDQn0Kuf45efhO4FUrOSeI6YWfWsxZR2gAAoMmferKg9zkSFdlW051eqUov7wn5vQecVimeWyC2UUL0B8pg8