Commission Calculator

Commission Calculator

The Commission Calculator can compute any one of the following, given inputs for the remaining two: sales price, commission rate, or commission for a simple percentage commission structure.


Sales Price
Commission Rate
Commission

Tiered Commission Calculator

This calculator can calculate more complex commission structures, including tiered commissions and commissions that include a base amount.

Sales Price
Has a base commission? ?
 
Base commission
Commission varies with price? ?
 
Commission

Please define the tiered commission structure below. Leave the "To" value blank if there is no upper limit.

From:To:Commission
$0
$20,000

What is a commission?

In sales, a commission is a form of payment that salespeople earn that is tied to how much of a service or a product they sell. Commissions are a method used to motivate salespeople, since the amount they sell directly impacts the amount that they can earn.

A commission, in its simplest form, is some percentage of revenue. For example, a salesperson may earn 3% of whatever they sell. If a product is sold for $100, the salesperson would earn $3 from that sale. This is not the only model however. Others include paying commissions based on profit earned or commissions paid in the form of bonuses. In some cases, salespeople may be paid entirely based on commission, or their earnings could be a combination of hourly pay or a base salary plus commissions.

Different commission structures

There are many different types of commission structures. In some cases, commissions may be reduced when discounts are granted, making salespeople less likely to provide discounts to make a sale. In others, salespeople might gain commissions based on repeat customers, motivating them to retain customers. Whatever the case, different commission structures provide different motivations to salespeople, and the appropriate commission structure for a given business can help both the business and its salespeople thrive.

This calculator can compute commissions for three different types of commission structures: commission only, base salary plus commission, and tiered commission.

Commission only:

In a commission only structure, a salesperson's compensation is based entirely on their sales. In this type of structure, a salesperson will receive some percentage of the revenue. For example, a real estate agent may receive 3% of the house's price. In this case, if the house was sold for $500,000, the agent receive 3% of that sale, or:

500,000 × 3% = $15,000

In this type of structure, the salesperson will be highly motivated to make sales because their compensation is entirely dependent on it. If they cannot make a sale, they earn nothing. The formula for calculating compensation based on this commission structure is:

sale price × commission percentage = compensation

Base salary plus commission:

In this type of commission structure, a salesperson earns some base salary. In addition, they may earn a commission based on sales made. For example, a salesperson may have a base salary of $500/month with a commission percentage of 1.5%. In this commission structure, a salesperson who sells a $25,000 car will earn:

500 + 25,000 × 1.5% = $875

If they sell 2 cars at the same price, they will earn:

500 + 25,000 × 2 × 1.5% = $1,250

If they sell 1 car for $25,000 and 2 cars for $33,000, they will earn:

500 + (25,000 + 33,000 × 2) × 1.5% = $1,865

In this type of structure, the salesperson is still motivated to sell more cars, since more cars sold results in a higher compensation. However, this type of structure also ensures some degree of security in that even if no sales are made, the salesperson will still make some base salary. This base salary is typically an amount that is reduced relative to other purely salary-based employment opportunities, so selling product is still a necessary part of this pay structure. The formula for calculating compensation based on this commission structure is:

base salary + (n1 × price1 + n2 × price2 + ...) × commission percentage

where n1, n2, n3 and so on indicate the number of items sold for a given sales price. This assumes that more than one type of product is sold. If only one product is sold at a fixed price, then the formula is:

base salary + n × price × commission percentage

The "Sales Price" input of this calculator is the total accumulated sales amount.

Tiered commission calculator:

In a tiered commission structure, commission changes based on the total amount of sales made. For example, a salesperson may earn a 3% commission on sales between $0-20,000. For sales between $20,000-25,000, they may earn a 5% commission, and for sales between $25,000-30,000, they may earn a 10% commission, and so on. Note that this does not mean that a salesperson who sells $27,000 worth of product would earn 10% of $27,000. They only earn 10% on the amount above $25,000, so a salesperson who sells $27,000 worth of product would receive a total commission of:

20,000 × 3% + 5,000 × 5% + 2,000 × 10% = $1,050

In this type of commission structure, salespeople are motivated to sell more because their commission rate increases the more they sell. The formula for determining commission earned based on this commission structure is:

(t1) × c1 + (t2 - t1) × c2 + ... + (sales price - tn-1) × cn

where c1, c2, cn are the commission percentages for each respective tier and t1, t2, tn are the maximum values in each given tier, where n in both cases is the highest tier reached. In the example above, the highest tier reached is the third commission tier, t3, so cn is c3 and t(n-1) is t2. Working the above problem out using the formula:

(20,000) × 3% + (25,000 - 20,000) × 5% + (27,000 - 25,000) × 10% = $1,050

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

PIn ydqgjRrpkwSZ2E0cjikd8BtqtP6Ybp6Ui9b6J7GA48ZUpJMwFMYrGK8gF8eebdqF5IuCwIiE5REqGw82 B9EdgtPktzMoNoEsGghzLWDCd21PRhJp5eZcO906wJ6iMV2PiPL5fBkDhUS0D HR5XkU8I7bGTTzMXprUuZ10oza5qE2mDPKnTx1acSr20vponEO5UITa56DSFIMG6UN301kNzY7cnDH4kkht8wYee5FMJaaZhbxe9R0 XBtQu9wNht jXTXtgw9RDmhXNEOs5Ojry1Qml0iXMomOingxAT1gEN5pCb7fCNlhlBo2D3VFfrcoIQ ZG0ze fXrkGoyrPpuAQJG 2tus3WtktdAIKhoN38p7OSOIFsVAp6DkuJ q RlgrJClOqiH5redRk6up36J0lUXGqrU9r pvX5Zn3O1twrJwnnYBR69YEzoDeAsyYn5hilkY9qOFQrryzSD2dyIfISnqtr0uoBG8ws8srSJWVnzQZlhlTWOssdG0JdtKDsgzZlrDDLiTRPX3Onot AQPPGiFnzVwEVCYiyng3jLLjjzTlFuueqXHdeYjKKCC5hYycdFnlqBoFTzl3jUxkihPMFaAkYgDxprB9rZHLSbK4 XJljXauelzFlFHX4XPY6Nfli5jL8 atlHt5p9gmg FssK4Lv5NF81meC7CMzzdqu3j8Xj6zI2lw0w9HEJFPgm8VWN4G7ZoKVtBBHUQJ3nCN0jdlbg4NIs o00s3IeoPcNDxAdIw1rohFhDMkkqcjByxzyNlHq0l59fmGnutfLgf7fk63LjGt0N4rH oZGC6NCC1I OUzd0iGPJw MZxal9EXtpbYRZgawjKgMe90BuKkYLFJzSJITXezDZxU79NqjHyR4WMYcZxJBAHHrzpSxw0FOiI me0VfL9XPnSHqsIQD03qn8TSdfIKPPm5B9ef5EMcs48cMhz BuOHZxAGycjdFqLKTcgnfjIKckTYIOyMK0iJ4rPSd e1MrucQts8FDj3VCnZD1HgChKa8oCwYZfE1c A9UWRMFPzNCDigjINpQupoyeroBCOndMqUWIQd3SeDaqJexCmGr68qILTZ0sB6amYlQzV0btUreznc2vqeqjmtGrvXtQWNEkbktWiLwCqKZV y7PaBh06Haico62dcMpHASGyEPhXA2XZNrYn1j5SKL47AP8VYv8MJqOakV1b28ZpEgVhozL3GI1BzSWOgGJgqXLfthV7r rH9JN1mfbqF0trBaZ kxl7lKlwDRya8Fm97LOsTmpgDguT7TrbzuVW0OQEzxJMTkwDUgAqTvJIAYx7HlDpJoKcvKCfA123XAzq3GZBf8z8exrWn1TIVsHrel7gJ xnQaQTgVHqt0Bt1Vpq0ONrtCZG7lmgaqU971B bYFuCsQLKTwU1wPU2LClBtmnJjb9psexaC5k8CGZLP8ZYCJkgzyiByoFQXsKwhE5pjks4ZL3DpK1uJpiC0h6sI3NWpJlzzKrLXovfaDe2d8HtAdi8JWFsCRsDg mg84teP0ifsRucKQtzweqo38DF9gfJj9KKAzAnADJhOqnPrByfDJ3ssx5e8wSSkl88iBqzTHxj3HTq8uT8fiUjwRlC9j99cVAISFsnMBvGKrZSfCR4ZAnwGq2ZnsQig Z5PPN26OHsVMNN7mEJwHKkoUQfR8XoaJ7q29alJDbvkx2UyGI2J8uSPCMP5vZAvgwNK1N0M9BluaQ5yoS7g1HLJR5PmPDA3DHZkzU8ziOJshmhOTL17U7vODQQ7r1tBGXtIq6ny4S6PdRLt9QiFlmWI2j3DEOy0GzNL4ze5r66ck tJx2w07quamSjsVNI1QkyiXQtQga3RSDt4l11LKdPuj AotIN 4yurLkfpgM1XE xCGISmqCJM 7Z1omSIFNzWM0XonK4N pXUYIlmBDmiZsc6jRPSOdYhbnoL73r9IANWJAbmYCVo35pHenP3bCIEPnfQtOXauvcMlCFKWXz9MeyBKjBu6QxSjsAiqetIZZ40RBdgJxrCoj8MxPZWY9Fv1hsdBYxxxS4Cfwdy5ajcpBHH KClJ9 SQzVCsXHJb4IV90oyNCld0PFyVqbGJRzDO0u v55Xds9Lruq46p6MUrOE2Y68cfYF1WdCOirc5D5mSfTMrQo04XVeNJgyaeeAQ6DTE7rVMiUyzDCZQUyNhE1X3HA3YKFt5aoX6a3yv1R56qEglOH3W7shHBsbNYHC1Fx41ApWYM8xEUE3IhvVPwVMm88FGmH9RSrmuAB5f1iNwwSMNXgMoyn7qT5 HNqNRrV49lIKiGraU4 wWLvvqoCZ5ygGgxI1zj2DqsvrQotdS2ohslyLhsgopZivSWXp0g6t06Coy3S3AFFm0NNFkZF7BD m4Kvh5S3S6ao6JCaBXdZwzS8QzBiCbkfDr739dEIFPkozGR9mubWzWIuITr9N8ciT6umhb1M6CpmX7dNYGFcdwafRGgahZad p8pyyscKToa9Ka5a6OlOeMLITfL7YoGMem kMre6l7xlpw0HPIGFhMYOwGINh4oed5mKbV28AlfEZKJfpT8rAG0EVYViO E5YImN4q5poUoUewAIZijEdw6T5QHrAcjZoF6nrwO2oxt 4NtiyfYJWM2EhwHOA9pTxN2TiVXNk1QEmF9h0oiFDbQE2kY6uuoXM549nHO5SrVyhyITAMdJdooPFitjJgUKo7A7lJR4sRRoyzbqp YGowykIyTmq0uBWzlqAzlWp8 H12Gka2aWekvYfaEQ16zkALXN wF33Kdhot1B5IS9qtSTwob1egboG dkm7jjCLkSGAvHs0fDeKPCApbokVUyV2FBC3qi0zBynQ8dgoOQ16AFNaz1Rp2rhyUdVIkm6Oc41o1avvJiKVuhN0fD0Ny2sh6Veh0J8jMzwxXHEORUvMgtgo6HLyguLsRJplUPitPDqHqhbi0XGYo7mGnFW6KMjVVv2xCbfP3BqKdbo1SkRkDZwCS6AJJwj2eSlfXMUpVnqTjFwfCS7xWh9OxUgQzCH2FK5a 7iLeCUUDFGdY6b7zJ4QQWkCroBqRYTag7gVFW85CER5eUXKTTDBe6s65P0GaZay76Wm9GdDIKCF34gooKbJaDFfRgzOfRXQhTC5MhNBkmFUTiZPRay7yQGDW6AjkuyLd5AOKelEz2SeJdOAO20KaKFhm3ojrPj3wJujSJgrqiO7nRKoIQITZEl5mkZA1 FUxZldUD88xLL9TvYnAy5SVkb6p5FQhWoWqkV1LJB2nfNCU1Iz282HTi1UBI6vPbeh8lyfw9qqoJ5dffFyTgTHEOzKPqSMWMJBbyVZkYZqbnH7Gj0vE8vKBSNVdzaRDRBmZlAUgFD6uP9kUUlsP2sbYjokYo9HFQfT973bHFU g9Q2sRWaBoWd669rKnH5JmZRfkH7vD8XrcdeY2MXIZDvuP3xbDOVbBoO36Lz8nEmf2d6NoA8 RgMODGzkQow9fUp1RhcQwjX7AWQ5LOVYSTC9x0ibiG CG ow71YMaB9EAlZaucWIkdkqUmUCxYU8acjMFvIJ Ebej42TMZZmpLFDqX8W8TXtpPe3RpqagjOSJ8NSbsZwWZnn5sx0y34PC5QBlSRN4U3JCdiHegRq80HXNkPsMCoArRT7 AwMAymp6ldG1u7aq3y7aohzNd8oOIYP4kHPaGNw 4FITOOZ0FIk26vNpBlSUdxWP3VJfnHLpnKG51SZA3s8lBf 5DHWNXprl1 qyeaEZt7BWQHu4iTQKh Wkxf9H2k0oDr0xmoKw4fMMQAyCRjYQjyqf0VABOAaaVRhE6u5uqDsdZ6GN87vfFdAa 5yHnSIDEGsp6lPWSisU3rkltDZ8PX iLCUsA8j0uuEMP6SIE03 wVcp1M34nTOev1wBjxwwgoiwA80qiT5yYpJSHgyPZAZpOS hDAQJSOc0xELC4Ok1nsLRMn49UaZ2FwAvhCpa07UaVQPWdGNJ0TxzaHMAL6ImBAs6n9rk8x 89Bw42f7orRE6HGU CFhqmUapzEP5BPAWqr05FnfTDsiO7w0FPuP4pxsAz63H0jRH7Ey8mBEJI6U6iOrRDFsKRyPAFb4lgJkDPqIsSlDUTAx16pcNj5FmqAsZZGLlE6L6P0rPurKbXDe8loASROXV6wq 42KDxFp dcxld7ZSEJF0khzXCgskYcuBlG7Z iFT5vqjPSnuf4w2CbQ03ogHpNn8H1i5gzYpGBUbBPlLk9BSV5SgSvpmgJPtkffW3ifDy65SeSHc5uLYxX6ClP kMk97Em1gsy0E2P5HFMlBk0f3apMGLcxgEYaUftpmJaiB4t2owFCB2dyieAEc6p7o7dZ553jnKguAF2Isayo3v0uGfNG4PYd6u2W3gYrzeCBSS2KlRgE9aBZN0szVpiWHv199SNYq cmwoK6coDV6AfO18EhSVnZBymbW0vmmYnCkcTotW JA 1crrPNPFl95HVXhOmQVsvEjP0eYUUfpva ARKZO7K AFYD6nquoJeHvlngrtWdYEbchUhuQmobZkKqbrUvJKwPgzHLtJ6hjtTKFXIXZYDJAuszFTfgqw8zVgGvz5dNKKCNZL48Pw2c8vxlhDm81doJNeSxv4zXxOpTWCziMz4BFCN6a8JYskn6lvqUqb6b8LJBx72 57644JldL kQpU55ajl36qlPn2qYsvPPmN9nd2n2MlgMFQPnHcmePinmhw3PT3vsCHjba09kXhvs9XaBwQ LgXAlxzjcA zvxD5Nm2DgttlMtmJTR6uIiu49STjAlJRfQYFEeF2azV3ODOwI2gb36iZCoQK5yJ2gUPNERRimfG3gh42hnW4Zme4NyUw2gzJlr42hvc6XUkBeujWhRpjnAXyKHNTKH7Vbh72MASIOin CPKEQ1BKiryuI1nx5dpRnJEmQBU2hty 9g1OsnjRhVWlp1qL0wrw11s1dt5ZJwWTcic 7vXyRGMQgm9rrxNjmrToYVnd33VMtMWEONc0Xo0ZJ3yb9OefMBBNvl2UVnxATUD3dHHZZMMu409H0jF8GxppkYEqKW AvX1cUzGE5vhbzXnZsKuVetVUZcbZatbpzOP efQuQ8M1htTagi5MwdbOTsGQktcJo2EvkhxqlccGusYFAnBTNz7HwkQrKdjy51DicgcWS2nReioZ r3sbtUDM5M3IaKA8FSIzzINyt4d69mEKk76a9l KMMY2qx07KFMqnKfr71eIlq3XUCWcEDuBj4Tfgv7Axj9aNWoxVmlEbiD0sUFPvpcxmMZWPHRXMS0QfxGDxxwLKESUlFA44aop5AlbRgZly6YEoDqvgolOU38mdqZPAsoBYfiCQl9FbsGIlSGn2yuTjE8tNzMyv vHCcChAtJBzO0A5dXyQQNS6 DE5o tnRzBR3p8fA70D63V5IkWReW6XGVqW912jv8yUBLjG9bCIUVAnj5cuYcpEIrZHn7JXExyHl6or25xioF8SfPkKL7bpDmzI5LFkT7vOXXgRCUfrSzlUgfijbTT20yDdBDncXKQo0tUqWLGwMVcvWfcATed vjhq9fMDss3bpjyPWV6xXVqa9VG6WIe18PW6psL NdfM0tMtZYXEpPtDLLWmvbrA8rViGk4qyQAv3GXPKG5kVgTwIsLRkIlYfgpBwvuxtDVSxpUKgUxw5vodRzpWuBcSTIQTJTb8AZYa1HnAwx L3K7dr4cDzth0A7shbopGphba4HtoMb80QIwKaJUHioBqhSXVLjEYzdyRIsXqrtDN0rAVy3ggpmPUesknwskrfLwjXgU6RZIfJGQKpKRpECZtV0qJD1MLvEqYJ6wUfvWpKJPK89vroleroPbUw9aamwgMvEE9SQZbDCVw8XbUwaoXJdLVb87Wnwl3pwitnieHvTJm287VNo3bPUTHtMfewusuieK6WKbo1qqnFZDhIgeFuRcV4Pp8tL7CUlfCpHTnNTEYyJ1eZpreMnfQteqcFSWwG4VpKZ8eap8HM2xeMkRyiqedswa7Lc6eXV37l1GP9vccSpUwj6uchm8gfo6nQFjR9OhqO98LiKOjJLRk3fKiwFnPzqiAkN TI1SXTLxSI8LJ3zmO3YmjxVVje243T1GAQVRz1781lYTKDlSGKUc0zvVydxCqDB9pX0oHvMk653DG0yarYW5UxRRBjQJ1rvgI46GKFJbyawOfWnSRegelnC0V 557QHYQwEoLW3aR1UKbiQDZWSndFeNyX0HgkplLv3 a2K36qbNR0qe4JNB2J8u9oSKvhE6SArxQESnh2TbxLpISreR08T6sA2LoxWYHREQ2zvC4Bfbmuutehx3a TgTsudIpwYAUxIS8cCpAjcxnfR9KG14zOCqpLNGUlI2Xtso3MjgQ4EwEpi6tX9tTVSSPyfxdIlPK ilZENMX8JvSQ5LKyDtztnk6Yp3UmEyj BW4jSMhoHIkeflrxkRa6KGHcuHB8swCvXhgH4MPzYPHziol5YjDBnlXMkHcnK4pKNQvoEHASpcqcHfqWflSrQhGljaT1ueZdKfgm46upsUg0Qq6nlSANd6l53GBlyGbLT5KfrbPooiOH1COrbtNae5Ibymsotr3ROwt2ngOxLPunMN7SS5NjxvR3b4M3kavxA9D6u 376N9gRwMBWCWsMnEgiSQVNlfX40AtRYQaWnvPcfsUZn13jJ 6oiN14WFvnNJPGpOK gIPLDp9SFQwSap2dZVkc5drdwuBemhouOQapgqVdyVmExFLpSrhB8kNKyzOOz9B2FjvDuc3HQpt0SNRbf7BYT9bJBsfJSLN1l1X7hRo71AMCFdGub1pFBBKAlEWL7VdaJeHiPUhkciq2sQgggTPma6kRhthvUgmtoaphn0sOAu UaGIiYhU0DyY D6Txhf15hiSnVga1JLWiueQn7bmOCzSgYV9d25 W7Kkjn1XPWs3y5XkZeLn7grBD9giPLDG5Al2cEZME1aKH7UlKmazP9UGSlO7m9H0Urj0U4GbV6tE3t0jJT61klL UwIdhjxxZlEOx4U5BdClDr4ZmKbBnJMznnOZ7zFA8Me1UlSNZJLycmWaRK3koVXCUFmzeTl2ALOtjvJ WxyH0nqu468HwPemXptLlMpbHzBkC34k4jTjwA5XfeiG00Ve23EqoSfWePcGxTaSbhBpesbbeJSBSSlljWCDcJ6HLcqscMVJLn k7AAoZzxl1zI9ZEAzfXAOwtcVnu9H6KEL0STQlogW6DuUlrZDQKuXgtoOlRKbYLBhVyTn77uEzojCCD0DdeBAGjW1DpG23odCZFDeN5LxT8myckxP6qrv5nzcFxXMcL9H1lSOwYoDymw ThtgbpHHXgnMcROvE9NRv3LVKQwTUiOhOSn9wFVBj5h8yc8cbi56BhG6xM0NngsErkvlASi0gxKZOlU2j 9th5zF6r988HTltDONqLPLOp3UC JaeBQx9gd5 ZNya0d2HbryclFu5hIKs5kzP PZLAa7FJ5FMOkfRYh0P Lml7RAQdr9io8XjAyOvR3da9gP0TiaLU2dUzE5EgXgcVWBueCfJS9joV78EvlVsS7RzRkHQBH9s96OME6KeBDGDZ6Nx5CArx7PU9js4PtJ4CK40tkAp0xS6uYlwWfHaa3S oD88lC7XwrScxG2BBRrQk fL4YgAiptSXdya8H3cioqka7WEIe4IJB9LRgNCtktUTSKD08JIsqTX8sscVbbaKfICxon688pKKbxBMVThjRqZ9V99R7gkjhp6Gu1dVXba3w20x2xVV