Confidence Interval Calculator

Confidence Interval Calculator

Use this calculator to compute the confidence interval or margin of error, assuming the sample mean most likely follows a normal distribution. Use the Standard Deviation Calculator if you have raw data only.

Modify the values and click the calculate button to use
Sample size (amount), n
Sample Mean (average),
Standard Deviation, σ or s
Confidence Level

What is the confidence interval?

A confidence interval is a statistical measure used to indicate the range of estimates within which an unknown statistical parameter is likely to fall. If the parameter is the population mean, the confidence interval is an estimate of possible values of the population mean.

A confidence interval is determined through use of observed (sample) data and is calculated at a selected confidence level (chosen prior to the computation of the confidence interval). This confidence level, such as a 95% confidence level, indicates the reliability of the estimation procedure; it is not the degree of certainty that the computed confidence interval contains the true value of the parameter being studied. Specifically, the confidence level indicates the proportion of confidence intervals, that when constructed given the chosen confidence level over an infinite number of independent trials, will contain the true value of the parameter.

For example, if 100 confidence intervals are computed at a 95% confidence level, it is expected that 95 of these 100 confidence intervals will contain the true value of the given parameter; it does not say anything about individual confidence intervals. If 1 of these 100 confidence intervals is selected, we cannot say that there is a 95% chance it contains the true value of the parameter – this is a common misconception. The selected confidence interval will either contain or will not contain the true value, but we cannot say anything about the probability of a specific confidence interval containing the true value of the parameter.

Confidence intervals are typically written as (some value) ± (a range). The range can be written as an actual value or a percentage. It can also be written as simply the range of values. For example, the following are all equivalent confidence intervals:

20.6 ±0.887

or

20.6 ±4.3%

or

[19.713 – 21.487]

Calculating confidence intervals:

This calculator computes confidence intervals for normally distributed data with an unknown mean, but known standard deviation. It does not calculate confidence intervals for data with an unknown mean and unknown standard deviation.

Calculating a confidence interval involves determining the sample mean, X̄, and the population standard deviation, σ, if possible. If the population standard deviation cannot be used, then the sample standard deviation, s, can be used when the sample size is greater than 30. For a sample size greater than 30, the population standard deviation and the sample standard deviation will be similar. Depending on which standard deviation is known, the equation used to calculate the confidence interval differs. For the purposes of this calculator, it is assumed that the population standard deviation is known or the sample size is larger enough therefore the population standard deviation and sample standard deviation is similar. Only the equation for a known standard deviation is shown.

X̄ ± Z×σ
n

where Z is the Z-value for the chosen confidence level, X̄ is the sample mean, σ is the standard deviation, and n is the sample size. Assuming the following with a confidence level of 95%:

X = 22.8

Z = 1.960

σ = 2.7

n = 100

The confidence interval is:
22.8 ±1.960×2.7
100

22.8 ±0.5292

Z-values for Confidence Intervals

Confidence LevelZ Value
70%1.036
75%1.150
80%1.282
85%1.440
90%1.645
95%1.960
98%2.326
99%2.576
99.5%2.807
99.9%3.291
99.99%3.891
99.999%4.417

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

hOXoCGqztPNHPF3JrG06VKiWnvz6AvBFuEpyxthdZcrC9uwga53pZdlpO3FsxQCKrsF6UCCjyjVw 0rtZea6AiujzXgtDSV5SG4hOgFJfWg1DqRp3he0hkoCIAB1xviuYUjaQhyshnM192XS0c7rXhT5jbz2ne7FSTj22DInXL0K2jG8LSewdGeia7 U8Eh8qa juU8VccT2O93qrgmQIsoKw4Xzr4cNn0MCe3saf8m7l OuXSQS36wGY8GNg6xHGOoItwVIzj6A72rG1yqTUHeuhCDSXEoL4gWeGZdvCHfiOyz2qI2zoFF4czJ4ov7mOyiSs1bEbvtahQNp5rrETuRLaQmabZh6Tusbp5ZDf2U3JEHo4Htl 2cV8MRcmFH2n8jfb92fLU12lZM05K4U3xr2Avln7Si3LoQl0s57MmGsUI93el4 sZ0WY6HodLdIg5ggfXy9KvtHkMNgDnaU2avkMp2Dn4InG0RLUAMzqX9ztBr2iVSwGMQFSuXTz5uFk6J46xyDNZeQNfbe52jjJHIceLbK8k0TPAIZzkc8JBEsTue6kVOGewlqEw7C8T HopBl4 44K cJh9tXkym4P7lZS3hBwvdSoN5OMXH3obWEDLHDIHzomTy0MCVERYsx3NEeRSnpKf9liJDjZEPYuo7LyrnXk3NCQSPao26JQh8DVflNosoCid nQtKqZegxNS1RfDRsmFOw9H0fNeqyLIbAG3SJA8aeWgaHdJmaH0ZKWIFQEeaAbifW4Ep6C11yEImd4dAUNJGezARzGW8Y4GxqMTZEa6J2vSyv0dUN2jVxN7Pui3LaRYhrehBjA7Ra5Y2 N8A7pEhPKE7r7AvW uoiG8bCXoO1SFX5vX8M9K3xojizh eslF fwCmUnfbHWKWkL7QCZPvMHGPaOaSUqBtY4j6JSIrj3aaZhqg PnVTfVh7X6OxqQSPiUyS2F6d6iAYIoLtWapyCJ HD6Us7sFHOzNRvOMQ0J YwOJd 1YaXuAc1wcj 8Qz5zVCV1 jQ4CJZdS7Z6ctBUKDEbQMkmGqTDGvrBgE9akeBMMrpyAiJjI8hfnhlUr2IPWglbF5upQWTeIGRoNpIrHdDREWkpXc55ARR7osvzKaYvCY29VpHkqRDoEE7b9N6PItf0P19cikzX48 9SGQbXl3G0DHCGK7jTToZlrNN8DgwVhlygbgvPPSRtbAH2vPqYHYA20vCzhniuENwe0 0qnmV8vzSR ntFL33v6uEeBgfAXUAbDlr3qtiRPZF0zw7qfe3ojqSbT6sm58rdSuPuSAkumbUMmmGXd4v8nIiU52QvanBnlN0iCYnAh3XJNhk5VbBCyayOHlyAiMyLVhfGK3NEC5LnkTYjT6iphKEmxmQtD31IwpXjikQtOyEPSAZqL8yPaRzilUqFEtcjtin J8ZGGFzP4JFBynRZFgVCJ1NkXNXX7Im2yoMKjZbiqSOAeVSpBZS2rjMNYGSlH5xIaYQBGinnIaFrkpWNqAnxBAHC3YS5SDhRv9xbHzZx2bvpYaF5s2wJOAynvBNRr9vD0uMbwP61K7eJqpaw83EGxYO8iCnEIiEZmrE3eE10GJ87M1xhp2RiMoVmqmyOil3D19oG5He6MikHcLCF7IiMuu1KZpVuu3xqSjWIYlkmRJd4RFSfHPZnrtqtk33UNisBBH6WScuJGds0vZOca62swhUD0a8fkQaLKem Ayh7EfXbU8QmjIAv44Wxwxlhb1IUL4YwnuhyuAa4Xww2lP5nofgDGFkUCCyS8TyCR8EAViSkj q NCCqJPQDETiHVjfhsvaToTAONgWzYXfi734cDG6OlTOgu4EFyFzmG9dvFVGmfk1Bh zwU6AGehvA0aSSQDznILaiWBzsyXG9ea9kFPUOvNZZx1PiEaoWhy0ryzOyBOEru0lk5EYfn8t oUPLKcZC56DhNvnwS NUg8nO7UJ57xMabhoxU4szcGz9vrBDHLSpEvIeNHUzlAlbpJecRPHDeVxLNT1GHga4fo Pxt2uwQR2TaH6fLzVE 8NITpmVvmw8vlS7PeG22jG9yeBNfQfetnfHPLy0c882zdeN4n6UOE4UQgv2xjlyqZ5RD27fa 9d7Sghu W84fMkL BTBHf5WK5fJtrUw5VZeVntZRlquyeOPxrLLL5VFycyhmQ8ua9UqNksVcOAyif6YN6bYp9utXcQea5i9bEFV4Rq4xcDg30Qei7pURdH0vZDTTA1y8GCw2FGP1p2P9ciFnJzlvoQmjwg7wAx4FLyprWukFsYqQXu sCu6WfhGBdRixwJtIdf84fmJgfvsAYtFSOngLdIKDhe3w7X6xUOgT7IrhaQIOZQTOb7mJA9BDrDMMcHv36pgsQkv9bGYHVqN9Vy2d1Fsb0JqfR9fUxWJG9VyKWzUYkuRL0S6Guw5OTWBEW76LAzqdETV0 13 LFbhBY5pAmFafWMPsd4CI8O0B5ty47H81fpuH8pEj9uZKd9ZPRlmTczhqPz4OzQGBu35uH 2 UWaD77U3KJP8m62mAWobjSGQKlE4qCcNcXiz bOrFydhhR1 btAhkWadr58qPFPusySgZs2E6tvdFBOxPd2BiNYsac6unybhnKHg0IMTWWcuSl9E8rFcRTqcdERS7lvJ2nqkz UwuMeFYhErO69jYsL2IV7yVqhYIs99UZcNDnveZXKo1GPPhSJEkdUio6PpuSFryB5I8laeesDdZ mufG8KZNSvYZnkemM7ioQUZvrMq1NS7 QMIGqCjrv2aqBPOIugCofDmrXdYtagPJtI JGXXfkfv5esq8UFflp2THWXtPmFAJxATdtTm1oZJWWO7DFWvTq0GAMuuEyaonpS9Mo2yK6EByUOs2PbO5r35l44VDmdaNSJ1ZT6C212QZNMWsSwTPUedSYCxGPVOBbP0FGJEUIW5ir5fvP7cnEhOx15PyBBI2QQUb6gskXASSaV2oB4EismTBf4idv8um3 j3hwWyO5yjRbuLAKG69xZaiCf7qwrX7C5CK NelNnhkge3w6y3mu5uYINxMzdfjKYQC V8gA4MtUklf7DiKVUIh3A6nbAJeU6CDG pqb2NCLTZnzn3jQoprTKjsF9nbaU3p35m1pcRdRdT4urja6fxQf01IyMDEOU5FG5o6mBivJIRCZ1GGhUFkdBxvvYzKoD9TIN3xW1aAL4QdeiB1BjPWwyQXAHvGyy6UjixXySREWPPG7IufVvINgw8Uo64rnUpNzPbt2l0SRYwVdKz3VIkvc88zGbydInGbdpHgopgNULzsHtQEniLtGkjiR3OlRl f8ACbhuUQSkz j56gokQU68lCcJl2Zi7BlVyqu1bgcq S3zhX7NFlodEeDNX7g1kPxnbPxP3tTkSSoejP5GRUjQZVbfDUzY6Yk0VC 0fpN8wwDPtYI1tQVnrlrMm8D78R8GUeLuXDfyJW1f3q7gjhsvdA4Hagn2TK7QaYzRm86Yzt5Ixwpay5D77riwPe0z1f6TxLugQWPBeZg2Sge4S1z9e7ssHqrOEiXqHRznlwuyXSrQVT86Xn6K2PezZsZGGnBMfOE3oo w3RVOXpTyIdeXuduZcmQk5mEs27gWmMceeqP67NeqfYnhZRmivgAX99rPPCXcvSLLv3iS6432NDDb0TaYQb6nmKSaa8QnvAD65thRnjF40ZqabFpWFHVt83Rl1p MhA2PPyMDv89DegFZdUT3fGDSQQvKXYWuejeyWAT9pzV5zOsz2O5 ouFpzhFRhtCojpfnd0Gwhes3x7m9QDTPCYA0GFiecgaxHJetoeucTAkQVWv8sC9mVSf2 Ep1Ku cLzlUatECNHme55z39KfWwj1HzRzOol6xGItkbcSKPOkKZPIn70v40U8RfNLi9HLM4JO3mn3u vY9qPvPKF IlfHYisxivQU39CQEz9PABwZ YtCWMHgr47DlldjeMqT7siLSLQVm1UQsKOa3UtHAQ7XrFHJIXHLi4UMwvPav6ncb4TAT5BNEZ5cSN qdYx4TDRU4zDfRkJpIENeWngVNf3JCg1JsKX0azte0SjKSmysYoz6CKdGNK23wwElDSBgi9k5zO2EEBrdB4v59I3i7LaC4CGdXrpZJgLQgReA4ZtyLk02IPYTs9n