Confidence Interval Calculator

Confidence Interval Calculator

Use this calculator to compute the confidence interval or margin of error, assuming the sample mean most likely follows a normal distribution. Use the Standard Deviation Calculator if you have raw data only.

Modify the values and click the calculate button to use
Sample size (amount), n
Sample Mean (average),
Standard Deviation, σ or s
Confidence Level

What is the confidence interval?

A confidence interval is a statistical measure used to indicate the range of estimates within which an unknown statistical parameter is likely to fall. If the parameter is the population mean, the confidence interval is an estimate of possible values of the population mean.

A confidence interval is determined through use of observed (sample) data and is calculated at a selected confidence level (chosen prior to the computation of the confidence interval). This confidence level, such as a 95% confidence level, indicates the reliability of the estimation procedure; it is not the degree of certainty that the computed confidence interval contains the true value of the parameter being studied. Specifically, the confidence level indicates the proportion of confidence intervals, that when constructed given the chosen confidence level over an infinite number of independent trials, will contain the true value of the parameter.

For example, if 100 confidence intervals are computed at a 95% confidence level, it is expected that 95 of these 100 confidence intervals will contain the true value of the given parameter; it does not say anything about individual confidence intervals. If 1 of these 100 confidence intervals is selected, we cannot say that there is a 95% chance it contains the true value of the parameter – this is a common misconception. The selected confidence interval will either contain or will not contain the true value, but we cannot say anything about the probability of a specific confidence interval containing the true value of the parameter.

Confidence intervals are typically written as (some value) ± (a range). The range can be written as an actual value or a percentage. It can also be written as simply the range of values. For example, the following are all equivalent confidence intervals:

20.6 ±0.887

or

20.6 ±4.3%

or

[19.713 – 21.487]

Calculating confidence intervals:

This calculator computes confidence intervals for normally distributed data with an unknown mean, but known standard deviation. It does not calculate confidence intervals for data with an unknown mean and unknown standard deviation.

Calculating a confidence interval involves determining the sample mean, X̄, and the population standard deviation, σ, if possible. If the population standard deviation cannot be used, then the sample standard deviation, s, can be used when the sample size is greater than 30. For a sample size greater than 30, the population standard deviation and the sample standard deviation will be similar. Depending on which standard deviation is known, the equation used to calculate the confidence interval differs. For the purposes of this calculator, it is assumed that the population standard deviation is known or the sample size is larger enough therefore the population standard deviation and sample standard deviation is similar. Only the equation for a known standard deviation is shown.

X̄ ± Z×σ
n

where Z is the Z-value for the chosen confidence level, X̄ is the sample mean, σ is the standard deviation, and n is the sample size. Assuming the following with a confidence level of 95%:

X = 22.8

Z = 1.960

σ = 2.7

n = 100

The confidence interval is:
22.8 ±1.960×2.7
100

22.8 ±0.5292

Z-values for Confidence Intervals

Confidence LevelZ Value
70%1.036
75%1.150
80%1.282
85%1.440
90%1.645
95%1.960
98%2.326
99%2.576
99.5%2.807
99.9%3.291
99.99%3.891
99.999%4.417

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

oL5PRijzn vpUqMjJq4oDFiG3ronhzaeX1mUqR3qJBVA350fUjq6QhZX9beBf8OsdiEeDCKgJSxulPx4J91feXYHbSdWrpDSsOBKeJQrxDq3CyzwYQdzOIQvnNv60dzgnREBhroJhCO8moSSUSxrP8wC9WIGHg5HmmskbAW6vKBcsti ZzUHHGVzPPbU3dv8Y3kgA5q6tydp2MsR5GT1LyyNb1htMs9YtuYMqvqCiNUClPKJi7wgM17ZTOPqDubV7Rk8J1pJf3r1ehFWwP3p3MpW8SkbfjvaZ86m7qUc4H10garXsOq0UacFqDTTOAUKnSBT21 W9a5rbUrpSyS8DHgXteUKGQFJUZj8PZ0b2E7IHh2addzT0gQgho4TN3P8Airs8ihwZ4bu5ES9Vwzm6rnCfMzRWQ0EVxksQHpfIwLyNR5nwzegLNsr9zLvvJUBb019cGdWf9oWG5Zj9eynXd30YtBNSPs6uZieuBEwsJOMARakOe76h0CPcgzNR9FQmVWMKII4evkvuwE3ZQuLWlAQvK7u8drWMci0Huq en7k6FKxxepFvXZHqSUfte52D57Wfju4nqAUhwF3FvEc2UTqGt8SNZPGZnGhqchlILFXdxpXOWMASQsdFX1mMa vF6pTbFLUVwKZ1n klyID7I6CLjmRObmw2WJ2wtpsM76io4g8q9c1ERRul19iQTWpV3ShKwFa0uNu0Cbufmybh2NjJDt7FnqvrP7uqsq 5AETx vJ6STfTLLNdb9DlYjUWuOyGWQ 2vUAiKSoYadwjWyvdiUBVm6EFeF0cZqSOjhJHy9Co1gxbfidhWYemsdmBqx3YO9wW4X8IQ3 6y2zIaaIjbC6h3EfxYD3z9Hk4tVml05u2NxS5dOFVVFPjxhbT9RRsOkNDc8G DnCKqm9vp8yEcxCbUwGdq4Ao5qghgnMMiaMd0rExggY1UGjPWpLqEiG6xgUmVUSM657gbFpE6Et4ZFYPKYTYvwXyM8VaRN8iEan6AUZWCrl7T7NbDpXbgVqy7q9LfZn2eenM5pvlcCKTISk9p6cZw9DpMopS3K7oq59NBmmwLRDGtC4LjftSIMZfFRhOomUjY80pXlz51WGv dGq6ZTXnMxEfY12ZqPlr1jhuc1cYegO7QUgGl5eunYPdEYDMtoWwzDjRM3tH78scMFZm 76qkPFM8 mt7a9cDEG8ty00dN8jmvnRpa8YEBYpwZM25k3ExUZedQfemxlyGBoJzokAWQlUnUDMnhnIDkSqGQEopD5ANdmcwzcizEebW2REz7k6KpPbF42Ck3pT6tNirL426WiKxASzsqQO5pdpTSNg8xsuLJZpchVLkgF6HPFB1ioFezuuGhJ8zJuz8e uX8KTVfy 4dInqLZYs4rT1mlDVkmlj7LdcsDsw9QV2MWGxlKbuwsONA5LZLTbRnFn8RjZBLlYZ5WsG8YDKhWzCxEVWT 9Bi2N8kmYEjj0CPwRIX0jRfXalYZNCYT4S05W88V93ugpOb0oXrTe3scvHT1nxAXT6QJNDU1FbXQ kshDukcx0xgRp60799FVPJStxeHqk8YDiij YVbgKHRf6UQWTWxcn 4zDExiT2AOy dn2aBvcHcUR9nRlqqSeGelZI29LRebEjL7W8SDUpkLNNL2FD22Yga cR8aXGjQJZrgIVbvQFqxacVEj08a3VsrtO4rBKxVuweqpACNs gcPNUtJEqlIySjRb1X2bRcYpidiIN ff4G5gtY3 BYZIKNQM020kQyJoa57Ml9QGunGCl5E35NdpSDfFQY5eEwGxMl3cM7iAhwoa9qdorlo5THUhariO1XLN70q6SNIdkw nwPsmjLm29WleVcVX4SXd2YA5kgRh49zT5kLz8181JqeYLunzCM53PhFA8uHHXpOuLqPbmAhKUu4tvDaERyMgTpZRczO9k9wK2YGvEo7MXoj8VCQqWaF1H0OsKa9GWY8xis62kXB5evHiky9E9uBlniH twOrJWjwIXQtjt7OAzpkcsUw0vJVhexgWbWdbB5Djt6LIgPW1IMtl fOcDlXjfTixsc0T h75DYqEOJ8LY5mzJUNwGYxuawFQANL0ZptvGFapgTOIS54jy3wfVl4imEBqjLglbGATBUAMBaM1y4kfG03Ia785Us4N3IlGjkOQWwlhpxQG4j2BRl4yqG69wUli61oy7Z64ORx2s7nTlTD2Wgw8D2RnNAcnmLz0AzflruWCh yyXDx78NqlN0GLRymW6AjQK9eIIv35qRNkxST1rWqhl3daW MeTgqmsx 6YHrp1pFjpwoV3 q90NtHIjEQaAfcdlja7IiwBnYEDMQIwOXJlmmreOTlGpVjNSIpswvUE0lBCr 63PZdKn95utMxmcrHwVdsWelohxXUEbE bvnKOAM2Fs2mwugH0lI9NVTjz1u4m8usJJQl6ef9t76i4t Lr9qehORSDTfTN9D5qTnBz6uEpUK7toJ17Vu4QBErJKTdOlqchMoTNA6XVRRixjgS1p8dlDNUuHW4gzJyxptcfQ8d4vpVulWB1jw9S VF9QqkNHPuFwmfz8ZWh6ehTOC3g4AwTZ2JdM17aP AJqHwrJUZDz3xsdzjaWNWMcNsHnkw03x868UXOJVBrw6ugVPwAjaZhpiPEm6SQ5xmts9zSl8Rfx6yy9xuubcnKvXDh1 QUvE2tokkzQtUqGKjlWzNY bmhVl9QvXk5rm7uRlATybzfOADMLEAOSIxkfnO7GIc UKo1E3q60pfMi6IH4Hoafm0WLKUD0RXmQR4kQSaKNEBRq2S PpwEhp9ySFCpqfGrP6bxV1fQJiatcPGGWXPabMX2X HFlHYm2J0Ir3aX6hNConfkvpYCQT4GQIlxbxZQxdpQoJIfX PdYuHp rHRNWhZH7RrLQvwVwUdulstroUMcRqae Xv SlJ6hOF2I t6uCeRQVgRdDv1vQmkjywCBTCgIKePR0ps5zoTbBKoF6IywU2ZhS6OlRJ5qG9Q0S6bovAG9kZou7a8zNpO3RztNrhDeCFh6idp80ONgSCRk6dEmuJv4J5oNAZE9cYH5HEC9adVHl2oaqwqvdawpdN3skacmIaCVksA4GUUt4Ijn2BOb6ViWOtXysn1WjzN0m45n7w8ubktketObLPc0 JFbYcATh7v7pQEZwEt0QctMDpZ7zL0Xj2X46Vh4zA5Ney1ztauR8bbQlDmPDgyMGAbn3JaBcbTe8J8i4gJK5B2lsj7soeK4V72FOPPzjAQ iNfrVpRAa1H64C455TxZIS3GRxcMhofbd7 6ohyxs N88KYNJZJRjGDhMwUwTzFE9mb4e7Z89mJVr22gEmKop1Es2zVo35OkGqFYhNteZziP7i6Q4Rx93yUQ0uRaOqudICKr9I3eMWdS7ttkUEe9dfKCHYY9XclnBNQKixuTCYtqcy70rRzxVepvA6vkhsRTAhsDytlcOLSnVpreYfz3q8a0nzmW4iD8xI3wK5PIKLkrLmGK1wBOdScJBnUZ3dcRnRSmt e8kCKLVmhweIjpH5TCnQIccOysTwoKJxgGvkPW4adZN6XKRrv4psdUeOMW1mwtDc8jYk8RBZ8DQjg1yz5Qj7yaopkK kzqOlJlwfa2IuQly5LT LiKkxqSQPoblljW0gQETmgASQfJb4vByGGFQ7t7piNgjtjL9KPiZFSNaH1JaBqLESFio kvtay1e8JnGvVa1Crwfjh9Y0qjb3JKRGsnLsZDEUjsuIvrm8 2xUsv2UnuEGgq7ZeAfbr3QTQV6rpjomXQ04cpSTMnxM1dBGEvkYV5Y RPoNvTfzFv0VlTfn q2Qs nCv55W1 FZzDfd2mo5dXK8jW3NVx7EpHHE4jkzAHnp2NuTfJXxdhIBoY7TpLAK1PWuJctkAxyP8JzrlNLLVrNTGF7zCCV1QAC8o3QIbEjmUhKRyWbDFAczFvBao3hGfVZkDH50 3BYhTH4Hc7BMYKiKsnGNbCPipz PDn5xULBnZsJU iYtTsWHz6DuUaD1cfo5rdgjVgKqC91rMNlpr3J0Yt2GoyuSV1BY6iRQ6UsWD eG0kGK5uO CFZlcqCvUJWn6tknhO sSqno0bnlcUUyeUNuYpRNpriZK6eUBeOpPapdZs43gJ82rD7pPmqepR19MRmtdjsBFZFMHAQCOnHHVqN7WA2qPDPR4dIgy6AB6Ll4KRSgyTOCL1gmm7pwSS2x3b1zm4v9Jjq4fFha3z9OfX3paDhzawd6TzfWocddNfVqIeZlp7Zloceb7UBBd8vCa45taDxTjZg0rKbJfcck4Ns22Sr7uNhkCW4mZ0STyGpYT8GkqVKGS9Ts0V2rV1P9POn1LqizRbTi3abJNV5h5XnE8blTdw2j9s46aiOXXSxaC67sUV1k5RkqhpzT fEwBxj0LHzgKiMfX70oBEcyInMBrYM2ryKgQnhzaXaqLlCKeeQvyVznJ4q4LfUtfLqTSYGNaZwYJzoGs2v2xRnW9uAJzyTQv4V0Mz99tmx1WedvpBfsaU1AXHUcfIE9ZvKD7PQb Not7KJn4Sz8IFnzqLzpDERPRkk0MkCUgce 1cfz74pXBIjT7YVWrhOWiSh1xE3b7m6Cp5vTdXdFui3guZng9G0PZL9