Distance Calculator

Distance Calculator

The calculators below can be used to find the distance between two points on a 2D plane or 3D space. They can also be used to find the distance between two pairs of latitude and longitude, or two chosen points on a map.

2D Distance Calculator

Use this calculator to find the distance between two points on a 2D coordinate plane.

  X1 Y1
Point 1:      )
  X2 Y2
Point 2:      )
2d distance

3D Distance Calculator

Use this calculator to find the distance between two points on a 3D coordinate space.

  X1 Y1 Z1
Point 1:        )
  X2 Y2 Z2
Point 2:        )
3d distance

Distance Based on Latitude and Longitude

Use this calculator to find the shortest distance (great circle/air distance) between two points on the Earth's surface.

  Latitude 1 Longitude 1
Point 1:
  Latitude 2 Longitude 2
Point 2:
Point 1:
  Degree Minute Second  
Latitude:
Longitude:
Point 2:
  Degree Minute Second  
Latitude:
Longitude:

Distance on Map

Click the map below to set two points on the map and find the shortest distance (great circle/air distance) between them. Once created, the marker(s) can be repositioned by clicking and holding, then dragging them.


Distance in a coordinate system

Distance in a 2D coordinate plane:

The distance between two points on a 2D coordinate plane can be found using the following distance formula

d = √(x2 - x1)2 + (y2 - y1)2

where (x1, y1) and (x2, y2) are the coordinates of the two points involved. The order of the points does not matter for the formula as long as the points chosen are consistent. For example, given the two points (1, 5) and (3, 2), either 3 or 1 could be designated as x1 or x2 as long as the corresponding y-values are used:

Using (1, 5) as (x1, y1) and (3, 2) as (x2, y2):

d =(3 - 1)2 + (2 - 5)2
=22 + (-3)2
=4 + 9
=13

Using (3, 2) as (x1, y1) and (1, 5) as (x2, y2):

d =(1 - 3)2 + (5 - 2)2
=(-2)2 + 32
=4 + 9
=13

In either case, the result is the same.

Distance in a 3D coordinate space:

The distance between two points on a 3D coordinate plane can be found using the following distance formula

d = √(x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2

where (x1, y1, z1) and (x2, y2, z2) are the 3D coordinates of the two points involved. Like the 2D version of the formula, it does not matter which of two points is designated (x1, y1, z1) or (x2, y2, z2), as long as the corresponding points are used in the formula. Given the two points (1, 3, 7) and (2, 4, 8), the distance between the points can be found as follows:

d =(2 - 1)2 + (4 - 3)2 + (8 - 7)2
=12 + 12 + 12
=3

Distance between two points on Earth's surface

There are a number of ways to find the distance between two points along the Earth's surface. The following are two common formulas.

Haversine formula:

The haversine formula can be used to find the distance between two points on a sphere given their latitude and longitude:

haversine formula

In the haversine formula, d is the distance between two points along a great circle, r is the radius of the sphere, ϕ1 and ϕ2 are the latitudes of the two points, and λ1 and λ2 are the longitudes of the two points, all in radians.

The haversine formula works by finding the great-circle distance between points of latitude and longitude on a sphere, which can be used to approximate distance on the Earth (since it is mostly spherical). A great circle (also orthodrome) of a sphere is the largest circle that can be drawn on any given sphere. It is formed by the intersection of a plane and the sphere through the center point of the sphere. The great-circle distance is the shortest distance between two points along the surface of a sphere.

Results using the haversine formula may have an error of up to 0.5% because the Earth is not a perfect sphere, but an ellipsoid with a radius of 6,378 km (3,963 mi) at the equator and a radius of 6,357 km (3,950 mi) at a pole. Because of this, Lambert's formula (an ellipsoidal-surface formula), more precisely approximates the surface of the Earth than the haversine formula (a spherical-surface formula) can.

Lambert's formula:

Lambert's formula (the formula used by the calculators above) is the method used to calculate the shortest distance along the surface of an ellipsoid. When used to approximate the Earth and calculate the distance on the Earth surface, it has an accuracy on the order of 10 meters over thousands of kilometers, which is more precise than the haversine formula.

Lambert's formula is as follows:

lambert formula

where a is the equatorial radius of the ellipsoid (in this case the Earth), σ is the central angle in radians between the points of latitude and longitude (found using a method such as the haversine formula), f is the flattening of the Earth, and X and Y are expanded below.

x,y of lambert formula

Where P = (β1 + β2)/2 and Q = (β2 - β1)/2

In the expressions above, β1 and β1 are reduced latitudes using the equation below:

tan(β) = (1 - f)tan(ϕ)

where ϕ is the latitude of a point.

Note that neither the haversine formula nor Lambert's formula provides an exact distance because it is not possible to account for every irregularity on the surface of the Earth.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

pcmUZrXwYnM96xKhRC1hfq EzQcb7pBNgltR60bMsz77wSYSCHPB5qnA3oqO58WwKHzEkGBQLYId1Pnfuav8uU0dlmbHbNKNH1ogdW4KsMDqN4TG1LmHjhYtB1k7R8i4pxTrWYjNQt7ZYkfuDGtmKZfaBqGraTgD UYt5ONdGKSlx5c2797Gk258EISKZGHfV 56f1P3IrRXkYO3Di1QhQev4FHrrDALMFOmPm2FhFgwr6OtazCT5KTn1nNR6qp2kb57NIiqF5LG9IPnombWSUUNk5QPLSYqvk00TkHWeVWrK2uBCP1MFNWB01NQtkSIGt1HX12FHxXpmsg3BIdQeTMdI3HYh3pMnt6Y5Tb05grQr7yviL1jqsaQUTpm3sMImPthY8bUeUTulmd4h9Zr93R5FirFOew2g1KesUV3ZAOGc7vMZZGMBz8vASmwUrCc2tfpXr 9f0BtCSS3HJe2DPGCEwXvoFivssFdKUNNXCPKFKAFjouz1qsjfjfsKr3f6uq8sAHFgCnt7k6FWhIoqEAQJ7IhnLM8EpqcXsV62DtIejmCPwd0ZasKPgRIqB35T7qGOg71t5i9EzdWAPO3dDHG5sRvGYjVQANTvfK0PUPPJXCEcIALaVmBCflPslupAuhVbl NlbYhxYl1dmN1VS0D9syxItDqGhLS9m Dxic0CWp9zTJwS4x0q6bkCJn2JVYdsOUqXSiUd08XIcbb GTWvl5ZgEQLChDYQqWSQfMjmeNaFA9exM3U51YSQEdHCfw1rUz0p2X7nrZHmTs8gn2S0a0JSipwEA6SPAr2 zEUeROchNn4UzXiqdDYVw9BrhK Lvda3paj0d7s6u9RDdZLyOC0Hwl26y28WXfk5LLYvW9njHHSYx8T2u2Jy6XWbt10ZdzH0gYtUNX6ZijuNqUmCpfrmbng L1IHwS2jXPUkZycDGvNiVByRR37dJACFywHHEoxVX3aB7M8JgC1wgPPsGFUuc4PcyDjJ6DqyEF4 zoFvREYJqWkQTjsadPCmvTyLRlc1lyOPqzJ8YqugtFpIAScMtmOufvPoLOoGITDY LStGJMG0wWxKHKke7BEyxfpaA6cqeBSCjU1dRtf4Di2cPSJgT2ZNM 2WZgW9sB4koNE9TUgaEJS8ejeVzR8eRlKxE1tdiZx2Mlza16STXqOOJdMOMGeee9Cwl7HrZRLU2Ct5Ry0JQRikpYkIPr dovpzC 8d8e7uOMhMswTMxqXCQKWzWGCqTIFZPj9nUBJOrF07X8Lc3MV3BcQG1IL 0LgP0wIy6hQspc88CbKNNetiKIRMm6Xp7ifeopMbLzrMGDuCv5i HsRsNX28kwX mmofgDWADKdZgr6kt37HEzFXR34MCM3FFZ4JwQKFkh1s7Ao1o3ztgf56MSxdIv8H8CvgZP2Fe5HAt9KG2Sdk1ndsA7CaMTeYaEFo3wiqTSfY7KNq5xQaQvZhI1zJ6zUfWRlT0rapzGl f76vMlhHmHZQ7uH4NRWX9lXs9grs uwjcHLY2uoE2ZRfXBxZNUsKf1QxJzQLYJmE2l8oqJnJ1EyRVp1227fxFsOIjoDyXisKe2owNtVLrlf2JeyJpiT3UFU6f0isl24SZyrckWpzVtpzZG6tCcbyWpFkFaLNJD4HQHNvAOTPcVvkFVBffiYEiVuW030WkOPVCKTIK0 5INlnYGAPSirtnyDKmE87iWlZoxXdvwLxcxlOLzRSxxPmlz424 2lKZAUJQ0Uk5g4YkLOGAAFQqPXlK4x2n56fUSqWoiTecI5mO5CvjUH71FtPf8yP667ua8 Osbiw0IScmZn9Z95rUVpXMeg0R41pz5F EXYBgQz8egferLUPJtjfO7V1Z9dpvBMHzmMp3Zl5lnD4rDIJUNbdSH4oLsHgGT7XIMrIyVkocgQWzYV1 6L2xEyYf0bHEOZSLY3cUUbS2L7JnLoRKGnDnO8 Yi48GBzhwBD26AmP9Lqv9lHzzLXFvHfFm rbWSBnJTRptLjfXrOQ8DcQkCcbdtrKed Vr2EpOb2juiGnLmDiwp Syq3p7JHTK7x0N6mSlpZwFA9LgvIk2qRpRRmKSmDIXWcGMq4Uf12ofDD0Ma1Y27xpoYtq9XMdlAhAaF 9YifTSjGTc2ExcGgvQY6WTrVWAAMOVvF6id72cp2utRzVmDquWjoiY0XGFOd6LqqsJEztOeOuYGGECFtz3caO6PgMttSYOQ6RH5l2lVJFDG7yjB8INt9uIvijmPSQsMq2ekt93jyzaubu91a1qfbUNYkeL3QWpEoQPlDQ0lAbVCruiiIFXcYmVMizhC65ch 6fslwAnwNgAd2DV0j13TQJ5H GSYzy57mFW9FpY3yscLFyCZYCu3dHu5LJOBki5Kfdo7EH9B 9jUUK8rhfb4CriQHcW0w4b2ECiYTs4s4fWNmjvo9y73rKD1Mq70UjufsLPsG5zZHmOaLrKlLxNx2hLMfoChxHblAovsbynbnQF7D7O3eeMekyll6lBImoyEX6GAyDs oV2j1HNOqqUEw6hDkWbUb pO3I8v2hRq5JREJ8BHDUzO296euPyz3I2wD IH8A4y9FQDAvVvEUtqY F1HfVzy4FnzrUYf7KPAEsgEE2XAFDUgqoniuDxpOR4P2LkqCK0EPXOanonnheDUlsxwdl2Jk6CT a62rY6SqfZOnM4aNzqLCA20LcU7LC5DOJv yK5UsnOSsdyI Yo8qVwAglZDqgL4cMVqbHdcmsjQy3zdf36 xtddRXaw53Vb10ctwQiLs4YozvyVIH9wavev7Fp tOmx v74DCZUX49C5r25VVo7PHeWtt NQDvDsjvrzrWBokm744LyPVDYkJ1etDUt99drii9qhjqzrz3chhKRHklD4V0vgqix4GF1fcJZFb9DrPSct35s7RvpncjKghvUr4y7i3dKTrcNuudGQ9JN47VnkkYqJvYtYeYf2RcEOjdsj9S0pY1brqTacqfmlqRZoapEn0DEdxNnfLau5nuiu72GFwtS9uhWBN7GBfrx2oMgbFID Tx2TFCoc44WtvhHRN9teZgs5fxIHmjrrtXiZffsNxTJvze8Q8TnVPMccn0yaoiWUU mq9PUHxWBi6aSJZoeb54DDUTGQCpSdmjgbtDIofWv14hsVIk2fGBWKbdu8lZQy 916DVKPdjZyPvMAI9HneHHTS w2fmekD4PBmgfw1Jy68GZuQ8csdTb6JSlXQFInPyPEmTyZO54yZU DmG92t0SRqVBQmgWSu74ISZ2H7Zpz7ubfdyCCHlE07xbRDxKRypWBaUHzgsrlnkqWB7aa1ZOCxbQNzdMbX39nyVFtVQOgznjL8SCbFTSxpr0xWlyDCu8 rFO4wcK1Djj52CB DUMGdrq3WP8p8OT0TWcYKMf6tAPe0Ipo8SWBD4vg9Vaz4uYLROF 9xwnKKX6qQJ7SJhRG7fJzIj6jEgNmn7BocAtEgb0pD8XHPND1TlYztyKKZZm3hmIIBU9UO5DiE5OBxLJYd2i0SUHe2qWlgMzoNQhI9B0nDpXK6BH0aTtctfarQetPYbNsdcvpEo2BXyIwh6bsXQdSUfbZjwk4RdnPKFHMJJwRkAOZ0GP1r3XHJJGA1bLcThQ04oezQbJWelW7svByXyIg85b1IbjxQMOekLnkkqk1HhTbSZwHixQRyRhTvOxjKzx4Jik1RXUxm8mlSC7Cez2Lp9vuQXYTWcNdFgGISvtBPgIZ4 IQ8mjWn93kKA3S8tHnFkHaZ6PFGvf0u6iP6VO89gSmyTIRdJRbWURKDetryJR5dMyUiWSRjiVSRTCr0XhzqkbRZHDGffOIBU9T1PIkX7GbROBi4UUtF38u1mp1YUn07Sv4R6aXSPZu4Th78RhoNYefi2oFyTVKvzFSI4ulkGGbR3R2ZEK5hNEueBT Dv7ckyFqXxAHXKSqxrrDM0Os9faSB2cs4epV7XFqU79ggPt 05TlumL1rj5LTzG8BAeEg0EMjFW z03lCHFMKZVCUXMDF1A7ZMLfECZghdZDScxQVPSfwqNpHfn0Y0LZKJUxyAEz1ODwKYUZBsEDgbkLWTUn2hw3Yd16heTY8Zbht4GezKhMgWQLJ1WFXJjp2ja9QxqcPeCikdM2x3Apgq6lYfdR21jDXU5vvzTRd0d4 6R2GCUhRA7zQx IIrm5hK7y3WbVta0hY 7EGiSDweYbHphhA7tj7gobnHBBtKnkWO8g5lLJBCc6I0hCAkMytqPjiwiDOYa lIqqyfGBAi78lEd4lu68uTdeZRbdO5WhcRnE5H9g1En6ldRgfRiw7KU52PhATbot00kYdjhucFUXOzO0sGa7f4sUXPJ U333RBZCazo4HG9 5l6F1E1M0eSd70pyK uYzWapTEhbDp2H31ElA7dDT8VzvgeXadpOHUAJl89iJigesfQTGNk8UPtfTYM01u8XX8b282uFDgaOXhb0OXq9ZIiis8zXAFK872pmaYsa0wkA9pPT7zWcnGUfNWfJMnRqJnXxu7j6qvyZUEUrAZp54eu96wZI5aXH4DF YbPYNYchAb7XiHvypU5C6XtLChvDMxvzVD j2kmhQrzPMLLZdQBRKvVj1SqUl7paczvlrw5VcKhfBuJ3qPJhojRX4g3GJm29qK3TD PDWOcVuHgexp1D5JCZMcvVrEYaYzZGzzmRpiXmrDXvV8eXwsPx4GqT4Ub24rK1jeor0pzpx8Js76B4rWhZxVMUhY07fS FX1RXCkDV9y5wo9UahBv0BFJqVR1lToDCGfZK92gPKxb7D5jSuofTHpWJ9EwOeiG7B qegocuSDFBVP9haxDi1iA0sh8bf9efrSoGJRDfJGqrJObkp2WB2qdOPYEtma9ICsAu9Orob3VFsw25aQ7zZ2YzjD0JkCgjJB77haJSNK9 QoKB5J vvfShaoWlLw4XcdfxKadd8Hi4V3U5lGoRPnuYwC5 lhZ3qDHuchuNn28b3PTtGYREZjoMEPAvxWJ0d1sr4dk9XYPLFvvjUuShQVdp7fJ2wcftar7myfsd7tBGAgx0UgUp51NAg j7S174a5UnDAjBk0HEvDM4r12V5W1zoAj2VtJEHPMKaclsEYr 2fS8RdtCmKp569HZd0t3HPR1vdnTcRsIGp 0hz4LSCc5n9h5gDArgcKeCgX6hWkg1syMzzfIKS4QqVal0CEbgPW ya7k99Xgujh5VdrHPkxidUtLWBghxmtWnfqsTtHGxbxWoqh2RjOGm1lNjPxhMkP2rZzeIp8 xjd 2JKpA MtYDmCFpt8zREdKrHKiQSuU7kpy4Mojg klMyhyOFLey Z27LRGfs8 g4RT rAxWHcTR0LpFLtGmFIQfsQk0irTwuBZfnkN2crw3tzvrYvqAIrwY7CE MlwRIY MKBpZ2XkzMoYegm0pEi8DcZzKFrtML2bVEWIG9EIhLpVKIWXQmboCymGkxwV9HPypRQuA0QNFier89LGIqSVRUbzKRAqLYZ2RhP57pgoiJ6OAh7F0ElaCYsAIDPAMd jlbpk4BKa66tmR8xS LPQcPQljGXfqW4UsrQrGy7a1g01NWksaQTJCFYrR3Ow93gNZWjw4Ju3kRB0EOVei8RfEgYagOEjIWgi8fUzM3EGnEDEFwkgGFxAgFHorV0yBZZX0WVLrTrnyp5clNUVd48JWOesv6RP1d3RJvy7BpxE0lzDM5w TxsnFTNxeaEdUZ3a3F0ekJsp14EB5lIYxeHDXI1rx7vOjtlxFAMePkuWDOxIZJiY6F6xkcD0P03i1l3UFR1V8V3elDMXk3mmkfAT7PwYLR4jvFQGEsRQDEebNqQA4WvM6d70sV4YdGtLXgC89Qf0qhftzpycEb1O20RHXOCZsAT3HdjZB63g qv8 9fbL7eU1dUkyXBrMs Prwj3a0GBigiYPtYHuXFfGiCmUXqFrmox1CTM7KvbWcZ0S2tplTBwnUoHZ63OxtWfsfB2oXYd8RRQ2KhPND2 iby59YNMS3Zq9ObWh3L114FvhzZpBY6S49VeDvGP4xX2 Rtd4jS2Th3Rf9RZ3pf1Dc6M1YJPXe5PJ2 RjHn4Wdl4A1gpPE5sv2HSko6PcVxEF32aYChfZweb6hUOGWAtWUl5C1Hq0tHeP8PYwgAg6o MeKYqOr3RXnQFUeEfZLaiC0YfP8utGkYHy9NUD7AyUM4oXH5a6Lv3jjY4w0SlWyf41zuU4QBgtAhhfKT2qjXd0bN4sbOMSh2Dx9g9WP4Zim3M7Xnf1 ldBcWtYiAE9OcRizbcUppCvJtoDvgFcCckmiA2JZs3VVrb0fwHRKjL5cJGbXsPePmGat0VVMriwRwTJicCJYJ3hpSDXLq6YuCBV6kJZrUKK1WuhYlHPz1bjL5DWA5hqrIDHSBcH eukfCdOue4NwkTJNhKJz5JxUyMiHYPOfDbmSKlQZmhzV9iz5M Bd7Plf6XZ0qxJFf7MBQLgzNbondZ6lx6s Bs75zVe38m9EvKz1GcFai5wIxATcfc8S B Bph P99saQ2lQGIzorJUhbzJYciWjqYYTT5LBmCTGh9vTeX1E 6 NzslJjU2u5WnFqhNkt8AQ93FEUQuDWKLBlwzsfcDI2b21iKhGSVTjwrmecwF79DV9d583rMX9LM3Gh1vuNciRttgvguP33HsKxvnRPXyM2AlceYF9S2lpWzR20HyJqASdqWcG9SYYobHN2SsqNmJgeSSOjfprjE0LaKuFMHSRWEQNr63eBDrP7hKZuLpHJ NVyhE mzHwXJu3CM1m3wW0wsH76uNmFuKrznwVVUEq8lrh8b8PmF5BrwUpHDhZtbBiaiZQUIp64DYo bzOvr1K2blz4Rz0m5ItDOhvQvUI7 3fSscU4aub8tJB80uVmBG4jQ KHGxap6Y rJaUL3NHQF42zFy 8mx0g zCIhFtLfZd0N1vY5saYBwTve rD5QQAobjEbIAqUHYWE5XZCTcN5jsnVCMpF42iZ2eK7kMoZKSf5ib5cXY54w6gYIBchF24wE6CzriEnjMmbz0wPI2D1xSd3cOQAcPZ543ApI9L6ucI5pnuiiqR3Qx8iWqiu0r6nRbfxXlQwoCLebdDx8jEJZTbdhGAIaNneaHKrvJTe4RQaUpVOu12htmV2aNAe56uabt0aRyU188azVMU1gBEm2xGOIqS6NhYpCqsdJnbE 1oZnv2FYnZoz3643o4Il95qoProf1STw56aPIBOXY2XPY9 VZYhogh8cbIJYsfxIe6Br3h8jmuC1AkSn kLL suugF1oKaRf0rv IuAGzzkVb jeXVlQsiAN9VfjRbUVCX3XTvaJDQvJli5kpCrsaMLNnklAVnUiJ2lJ5hk8s3E9R6YMMeDg7g4WwvBDhwPr2jae aT8 KXRMv5T0wI7FfsI0crU 0bJDzMfXSduqzR86lHnsK VHG6POYhNCy97 bHInsJQy9JX2dq B39Rz0a14JPmCobcSTBKULPfsbisuXfYBG4dvmGOc21UGkSt0zzAAZ0c8RNYSEgMy886EetBBTW2HLAaBdZUMTlDJtHaaLIBRmQn3TdfRJHF5yYYYrmMcXVEffiIVUAUIhAryuru9jdWKbidY64eSOVrqkALO7qq9L3SRAtctTL9feQe9TTZFKaOZ1g1vHJBTUPsEeWuP1bmGBASkFYA MS83degdZUbx8EgmOM1owqNP1aU1EAyRiWJkO23GWjb0k8S46APX5obO8wmUMksNEO2pG6aA4rp4xDwD8JvzhJo7kdBLn2St8B 2xYW45p80BVm0z861WPLdsxoDmqmrTME 7e65ilDP6PARfF YyGf729ffEfKn9QqSzxLLgX0IOdcRwXJilwyKleVmpNLarDyhQhr7imBWExUv2IPaBqhidKOJkoueME5WM1fdjNF0mmvo1zRQR DwyM1f8QBe6wbRwxkvkjwfpc3QngOclvLQMfPaKQPOrUWlO6szU0rlIazZhrsuZZ7TE9qFvOw3bavMxCkZuBQQ7 ay0EPrmyDv4Jvmzo2h2dkxzv5YXEQjlqGE7AbYbvJZROBJDUOz40FtkXVIFSQ7LOY IDy0kafw0WSWmlH4mt7vxbG8T4V6tx ODPVLMdzg FWoEiivowE7w6NTH2gSvfWE inKDv9hPghDSUoUU4HKk6HhesB btLJBlXaZONUZYvSC48MYBtiuZEwe3y2DIURb2uegY1K1S pkHPh2SKoewntrKGMNi4H9g1rkSaNLDWZP0T 2PBhFq ArUek3vyvDDLZE1qPh7KDjLXANmlQtF4UEhJ0CLNHFF0kANcwSj4aAWFdtx65sEjBU7lTKW0vu4agdmWfEeLUXd8sH0Ox0Qd1qg1hcvUB4xKr6eggWD7F N0TCxzUM vWm9WJPN1tcAtlaYGK9nu o09QPR5WTEmzYdixh2RT11SZ1qR9J1DO4SnK0UgYImTFqhnXQDzM3UMkLdRAJoBj6Lfnd39G3hFfW4rTQDlZ LcYvPlomXgO1dxCsXxZpaTGITPjgjWSw9bOdFEq4XWfQFIBuL HsgZ9QXyo32xNFsxGDKciLRNYSuyAIWvgEOMVuuJZe2XshkRfWZfFPenZjHoTXOsEBs3NYjfdxYdYs2ASGl0I991w32y5Pmxf7hwh ZysPJFsVoiatLu8atsYEXVxK6FX70S3iOgii3rFGKH37IpyZgZ9OnQ4QygAtoxIbF MdG46Nxtc7h0ulZhivg8q3tVCdw1vxEzMkHA0kN6mRFSnJpqxbq5xftZrIoGRwWVFPEZzrLtYA1ZNtu8OavpNNuGusvzBnX0RS7A8kPdaPfhM7qe8n3ypDtX6d16czLOkUUP1lIPZPG2lQPL1lo lWdilJJ7EYiD5LJQMKAfc2gz63khgQ7ev7iiOMEdV1k3ImvibXYQz3BrcKKshvxAasvWhfZmaCLwPu5huz0I6XDmSTgkEyuJo4wfQJY4OYhkg bUMKy9LvrDgXeaJL35rlhp4otI7KbYrGIDoTMJQaspTPqZqAIqwBxuo1XPiZfg8dCOUwufjws g5b0B9p9YfdaqffQoLSq2lg8CIFICDOMzsOS4oSk4PwpzFWR1ycpddLa22qRKY4W0yAJtCGyP5kR7TW2b4it4MIfTWt 4B0zapVz0SoXs MHbyxOxK5CSG1IuC33JsZCHpx sZp58IIVtInnL2mxYjpNZOw1v58H6XcEpR5MGoJ97HtqpuyTWA09gQ7FS60l4EXmn6VapUtnItMhI1BibAuTdL7ng35LjyJxSwHO4HF49lROJai0krAg85TJjCO59kXgRkERLZTRGzVPJcHHk7rPXQmXp2C9PQqxKsAzxfSpfNSFSwUybkWRR63YLiDnP