Exponent Calculator

Exponent Calculator

Enter values into any two of the input fields to solve for the third.

Modify the values and click the calculate button to use

^  =
use e as base

RelatedScientific Calculator | Log Calculator | Root Calculator


What is an exponent?

Exponentiation is a mathematical operation, written as an, involving the base a and an exponent n. In the case where n is a positive integer, exponentiation corresponds to repeated multiplication of the base, n times.

an = a × a × ... × a
        n times

The calculator above accepts negative bases, but does not compute imaginary numbers. It also does not accept fractions, but can be used to compute fractional exponents, as long as the exponents are input in their decimal form.

Basic exponent laws and rules

When exponents that share the same base are multiplied, the exponents are added.

an × am = a(n+m)
EX: 22 × 24 = 4 × 16 = 64
            22 × 24 = 2(2 + 4) = 26 = 64

When an exponent is negative, the negative sign is removed by reciprocating the base and raising it to the positive exponent.

a(-n) = 
1
an
EX: 2(-3) = 1 ÷ 2 ÷ 2 ÷ 2  = 
1
8
EX: 2(-3) = 
1
23
 = 
1
8

When exponents that share the same base are divided, the exponents are subtracted.

am
an
 = a(m - n)
EX:            
22
24
 = 
4
16
 = 
1
4
                 
22
24
 = 2(2-4) = 2-2
1
22
 = 
1
4

When exponents are raised to another exponent, the exponents are multiplied.

(am)n = a(m × n)
EX: (22)4 = 44 = 256
(22)4 = 2(2 × 4) = 28 = 256

When multiplied bases are raised to an exponent, the exponent is distributed to both bases.

(a × b)n = an × bn
EX: (2 × 4)2 = 82 = 64
(2 × 4)2 = 22 × 42 = 4 × 16 = 64

Similarly, when divided bases are raised to an exponent, the exponent is distributed to both bases.

(
a
b
)n  = 
an
bn
EX: (
2
5
)2  = 
2
5
 × 
2
5
 = 
4
25
(
2
5
)2  = 
22
52
 = 
4
25

When an exponent is 1, the base remains the same.

a1 = a

When an exponent is 0, the result of the exponentiation of any base will always be 1, although some debate surrounds 00 being 1 or undefined. For many applications, defining 00 as 1 is convenient.

a0 = 1

Shown below is an example of an argument for a0=1 using one of the previously mentioned exponent laws.

If an × am = a(n+m)
Then an × a0 = a(n+0) = an

Thus, the only way for an to remain unchanged by multiplication, and this exponent law to remain true, is for a0 to be 1.

When an exponent is a fraction where the numerator is 1, the nth root of the base is taken. Shown below is an example with a fractional exponent where the numerator is not 1. It uses both the rule displayed, as well as the rule for multiplying exponents with like bases discussed above. Note that the calculator can calculate fractional exponents, but they must be entered into the calculator in decimal form.

exponent example 2

It is also possible to compute exponents with negative bases. They follow much the same rules as exponents with positive bases. Exponents with negative bases raised to positive integers are equal to their positive counterparts in magnitude, but vary based on sign. If the exponent is an even, positive integer, the values will be equal regardless of a positive or negative base. If the exponent is an odd, positive integer, the result will again have the same magnitude, but will be negative. While the rules for fractional exponents with negative bases are the same, they involve the use of imaginary numbers since it is not possible to take any root of a negative number. An example is provided below for reference, but please note that the calculator provided cannot compute imaginary numbers, and any inputs that result in an imaginary number will return the result "NAN," signifying "not a number." The numerical solution is essentially the same as the case with a positive base, except that the number must be denoted as imaginary.

exponent example 2

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

apbEteDHLRFglVuqyTJqq9IBpM4NDRVaA eTHcOQ5G2xl7MRDG2QcNCf hUFRPme440uP2gyQOgeksRE27ROsy9k7T WlIyK9I6aEgBEAGPESBNgoSd8yne3qbIKjx61yO 8q04965wNqlVif0t0xOqh683d0vVNCIbxMccvFx0qNc9VqBFJ675t1YHgNLAavdKQrbB6gM3pgX340aIwek t7W48UVqjNdopn4Kp23xEGZFinHKXuvKQ5BEVjUArfhrtRG98dBtiUdnLTRtgzfj3arXUlxlUCxjrxIvOa7KjBDsbTHp7WNSH6n2nQF0mJnzTcSjRbURtVqLJ02nExHqLpoul6EhTvzzcgR9mCS9DutZl9AP4m7NQVAOpensfR47hHTo0jqC yZpOgaz8UYmgIWV EaEoqyy1xZg4C12U IF8NiJdAPFWe1LtQ4Rv 9x8OpsfYl35 lMqoZnJ4EdoBNufqy8XbxzTS1CyVUxeaqXqbDqfVcd3Nip9f26J2kSx6gLa8wJlvWbLlHWRoyliG4BRGBw5ikFWtKV1OklbFuZbUhJ2WWvNUvGo9WCHsqz5n3wzobm9XOqMYfGLWU6zJPqhaFLtkL8B8MbU0qOhx0rnuLan3b1wfN5ED8KR5YPxWLokz2M3kNU0M7YQSpacnVx64LXn5MiMGKYurOJRWv40y2DFBgrMqXU4M3EwLx9AhU BVmM PQbc9ed02eZD0x4Jc8Kdz5j1e969sBTiW14xOo62pv0J56Gs0UcZIHsF50vt0vqGqXMDrSeekgOiZadkddrP0JY8JduITOhfxhwl7hRkk4JXFww1woUh0nQqYxk2Ebmv7qITcYRlNTrhuN6IngNDLfkBdH446LFihevZATq6V97 3T2kTmCvmDd9uMwgDNM 6TTIGi1StsRIU7vxDeVtzeJTrdiCGSWJFjH6pKmjJNA9MvizgkhaMptvtz6MVqyu3dpAEr79 3sqgapCAo7QcGuyMgklj113RPpV7dwg8k0FJ8YAcQa7Fcht6Ef7JlPi4UzgnJKkXL8yG 3ShbBmyOrJLNgIuDDfvfN6GCFqMrpXNKOLmwG2vTQZcj5okkc5yr0oL5r8bcoJkE5WrOzexSSx8wlV7C8XqY3YpsaF1aKANLw9eeeyFnmgHz8lz0PFvWcSZbZWIQtEtPPFHTteUHHryTLrqer 4DjcLRBWXUASnxpihcmbwKQYIGP7dJSdvW43lhAPwy8Ch3q43lHonF9LaNIiEX0xA3hD73Oqtq9HTvSt2VBzKj0mjAgbD ugmS1oTkH7uOfa3D9Z4YK7whx41qVUmS72buM98aohJib3SzD8MgaQwyXrk78HkTUM7sygAlj8l9f35yua9nouR OMEJM2VQrpUbcP3J09p8evfrYS3WWl3bKCI059jYr7TV4jOgIAou5uPw2dWcsSi3Ehokh5R97U9XKkeU49UEmjrZ554EAwEp2MrcvUItslolOjEn13oxsGbdW2o9zZEXmDkkVxu1wStvw7yzCI3TfuRdJXB3AJeUYAEpUD1ZB2Nw 2A0yIzF50NELsjlXYUkHzKCfejrNWFNOiLF8PnCY7RexLZ1jwV2me478mHWkPW Z9Z2w72CGhKAVenB01xn NPJsYIAjS5NAO 0OFjygOlnUufWv0glRrqgHVqHY5JNJp2QEOjtnjdAdcvxLoOubxpTfq3iSpPC7RUoUNymwhcvyRYtCAnL67dr9awxfTJOqiKK9unMsRW7KOufsii2jlDi r5gjqOsCjXdoUszP8WfgNaMwhdapWxToAETTaoSnJVNBsOd6iJr mMZmvyT2v5dvYFLDrOcHees39wXFPe80suC5oPA7KvwVxlydsCLGNWYGGFTatS7LdmeiwqaJ4gOSJpmmbagdqvZyNT0n0CnkRSNXxKKtcXm2aS7kxadsfeNPPs2ygCpiqMrtiooohoGMWi trQ300gvQeEMcKvkTV96haUoAEv1cawBs365XGUP9cMBRQppInucFkB4sOuONn3atHbvHb6G4tJusfK3gxqgiBuKeZAbn21jHubeXJVwYNPVTMwvKdj6nIdMXvEB9 TCu8jW8lwBEmxA4mzooafnWFazouQ9OnstuPVrCkRYyU197ZtRZhsoIE3Mmn6tu3Dbhd629pOvheGTA0wLo0CRSjIP1jlTEdqkeGk4O5qU6hHNzECOZbaBJHNq bYFQ8oBfd8m6gaq6 e41o8v7hJc4xErnG7qipcYfuDkwV4Km3HVdDeheLNf3uczPALbWKrifcX250BQhog9tRyQls4oK9jk7TpWbdhvHYtugoBrUmprPoCjQCrWgxLH7jwO3Im2FWfC8EsqSJeOE76RrR aMr7JBy RwmNfaNf6HpWptBKb8srHU6Z8ZWcx3LQaqDgwx3Ly14PuiVz3P8SvSQjEYCca5OSnQy5m4lQLuoGdoTidD2hapxo1bSVBNqIJmMiCRWZ1cIBkkWNDkXMzNgFWnKXMW0hE9462howYpQAqnUNIdR01UX91pzS5qaYshg jPc06lnSa0x7Whff58y5aS QyFlAhcnKTVDG0POzzItLWHwwlrpfpmwnuJd1vikFe4qyS9sZjtc0pYFpcWgp9Zosh0bDCHwDqIJe9O4INN93CXG2Gm6EADFldvdaZFLeCHXyCOajBPBS7GFWBUZSEIVv5LPq0Brce fxC7xObKm7zFArfmLelaXUMYWaZatasB9Q81FxC8BRWiwtlF9VhsoJ3CLcQnjawp8fYnn mbY3NfvhCKSp18Yq9gN5hFmde1293uZooTLFd5hzTvuWY3bB2cyylO3zFMTXAn16LggUUqQzr7OqZbHzqsOZLEM5RlTvHB2hZnQ0B35ogHm DLlXXklGfqFdFasUiSocKAw MZ4Xz3Zz5LYuZhFXgt4D edcZXS5dmcx53 yFgquMHbxdghpdOF2vFNs2PYYxPInRduZMVUGvuMPVoiaweMgsYsdoNxvUoqtLdStGTg3KnQO7YRFZyV1tN7LyTOyO EZT1kcQ8JjMWHspT4tsbX08eIi75PzthuadqPdANOMOxPg0G7csWKakq7iJE57pmbDy47nC LGlB071UuRbNE8AVUTNvXQIGl39iP84lFXT7PBQ9mDMlznriOXEbhTyKqfPkzeDtP2OuWCqvKPuYbZIPLRUuSKKNTf6aR2LbkKRvEtRUYyg1iulITQ12VfaBwFMOP7RzB46gKl0RVqvh6bHX9h1uIwQd3M677Gndfy6L8tR04TijDMPzQBqDVI6CxnGGWUBKWcIKthL7Qi93sC9CfO31bPB8EwU835hBUbmueg2g Z2VnUX8lHbkj3mLL7W7VyoFRPYTHjy0ddi7OhZMTo9Ki7fl ctl1jV2w4ZwmFI4igP6DcnnZkC3K2lAxAnWEyAManKf0vHwpyQ8NqMtRZ7p2nQxWye822jokVCXRYrE9JD3bd4CSsjWBCypKo6l2UlGoU1K1mN5MMLxRANWvwFjunx9ymgpEA HICMMGwu9Wz9QQOk8hr2xMlY2WDEH2wjOpnN5K2MynijI2GjJsHE4xH9SG12 140kzrsg0kOfwToVQOYwZpmUsLusexxOO5GeQwteGP8mZoJUGM1BiF034qMwJejCrZHYRpzNX8YXPHxT5n8KNg8xIvQXMVr50gUP2RQmcsZsfSqme8ebFqfYRw9PQw5HKwHECdkqQsvUOTNk5e3Q6EpfTdsa3Nst0aLajPPGnkDeGacI8cZRfh89piAbHba6eNuqX oS3CrJxhVhIq1IrMYdlcS53NomMh0X8BtHSe5Fom3V4ftlHh5bS 7v7IoqCMMSHNraSHCFkv9q TDEVcoKGIVmnlxukY4y7iOccWMVh2NYZ9sQOw86R1 5otBMUAFqBTXkAWSXeGIIrn6u1HArfutlDXbOOrVd4t2DADxgvgf W1VBYFTHiHJ4RNRwSE8lxUZ26HgVqWIAGMIbbniG8snSjO 7OjytvV18JgAchWFn9jfrHy2HlXt2ToBeN2f3mExQMOldyO4CWZXLCmQAbjMMHu0qHKLEZ4mWl3prcDQODfEPO7vK3BgCr9UOHZ7 g6EiQGCTfMJUfgYGK9Ilv2WEfaxb6pSZ4lwfTOyjpPXZWMEstWASrKpPUodkBYw3Je90ajJtNctPaJnjrdo4rh0BybhxfCAbg90aQHcea48o1MvXqe4WWD00huzwQkuVusrddGaKONWbGrtfFDZn7OgxY0jhQ2c84foHqHnqGfqSKCZufQNqEGhe0UucMPvRGjOhAiRu6SUKnyX3AhD1q th2fH IvGlAzz2ID5P2P4194VcI8wKjpT6nGoKNyfGn9GbMa9e5i60rie5 h0Q X3ypKabXQU94g0T4kny6 7jgplG5haWNt8oph R2uZYDJE0JEE g3 HJ6pjDtQEsid4cHF573buYxus3wtH8ROLiiii7lWIIIG0PUsOZYzrsKooB7lYSIQs5uC1mg7MRM9tKW4CzkQ1WIptCQQG5tBUfKQwwxw1QyOFxPzL8oZib6niwMhV tpmtZ2qgQs9LLUbkxejFicZe5JDINyJQKYhmXU3ZNpMNGCFAds3536LQufRYasFb8 NoDOFrcGNmhlh33INj7QYpWNqjjeVCM0MPi0jfogAs3EiefniM3 IKEZzHzXAykg4VXmlccEQUNmOchwS1BbX fqZ8Xp0SNj2g6zPSqL1CN8jfoI5FIZ00cUqobSFAgqUnXgsRByIMJf6oZNf HxOyW2Pss40z kbj8 UWq8CQ7pZsPKmg7YNlRF1dnxoI21npaXKCPExk3rqXUXMDzOS8uWd0TVLGpMrtprhWuUfP7iQ43pXDHeOlq8tWSe nnJdaO6p CQwdb0jSkt1B0dXlU4ZQ1i7vrG6dJ9xYTQ0dyWTJqKUZSJK8k0eUiQskAhb8Ty9AcfeOsNnRBo8nKcSXGFTlpN3MUhkL0TrviR4P1YsgT0sQORResyHwB9jgZWwoJSJzJlSeClh8L8xwL0ugHuTUdiDzsU18koDU1fqMSHXpuO8UBD5Q5 L4svwkashy5WLEaJOVXXE2Qxt8EkkeBAIqOjoNlfwaqG9HMZellr8dB6X6BTamXEHHeVnJqtQKVcfeCRWPTSEVang1h74cPSCAqQDivGCb7muSm6amryM0sNa 9PDpc5TplR37od8kz6wuA A4Yh9bSDkKtUQi3fzFrWDbqGd7GUSNqTdYKAkmputolsMuPiy 2SmIxvDhTmSIDWqWyye5RhkDDnDjjOjU3Ki9Jv JVuRPCi334GLGToJ81oB3efVBaJBWAVrdZVUQJR7j8TBdqITfZeFVuBemLICAys62OZYqjk6QRNK2TngzSBKDkKBDAd rwG0eKo8WVVs4Qme1JNrg34oFuqvfHCC5Vhvj7Zd6 doIWi8GuAefAXYOlfRpayf GtwcbwpN4dBhIzlLlE7yvISdOdiAkEtBlXPSmfO5S2VGXS3oh2P4uLL1dOse0P9mqL7LPhhGeW2aJbvWmi47 IKDIAmaMz2WMT6ohRcdpS7Z5IXwZEdElysrzG1P3fei8 dxjlGe57dKZWirwYrAg8eKB7kiHtgmvnD7iyDJA21abjZSieKE8LetYnzob7xMvTtsDhkKcGKAOpkn9knRdzznEHBNFvRZO5zYDeUjLOXXLNGUfXpl82HPUgHdK gFmgb4EKhzl1fR9BK1pnBBXFtP2HvgXc9vkc8gWObFTvbvQpMwTCFiBfWj4OR3y9wd5e1BNW0pGRXH6RAXfzIb3V6yYbabU1sUBd10P7UFdGPASGzzCjxEPP8zzsKZfL5vmS V8wStTc4jW4tElOEFmmzS0gL3EzPwS94Oak49DGcs6kHSg0KDpYi75edpbMxjjCq2wb2zSN9IjO4YMNSaB2a1jQSKEu1nq4V77RN AsCi4DLAScaDEprrrmj f1cisK1E HsGeYg7M90aJdY25gwJs7u8Kwg9JPMT9wIWwqvPDkc0XQSwYa4K6cEK2o a2ekLaKMkNKcFtX2TLTXpA9 M32PVkl9bq8oiWs5DrWoAmv4GUtSxMbfAMkE8GXgsYABgCxSEHqTiHj3BcXltFE8LXoMjqWfASkyMkNgO3a4SP1LSA N7hAyvx YL1AoAcMPNvclRT4nJYprxDhT9zDaD55Zt0Tmo70rrQ9K0aES7vmqkdayHcaS aHE5FjYnaARDDSzMp1FRRpgbyQ8G97AAnswfeqAwynukL5 LBS157sw1 HdlSwTqKqRw9ZnLu4MUHeha4VMaYLAiIxtNpe9QHJAcvsvdcG7p0S58Zd0lOM 6adbuz xCBGfy2Gjtjg9ruTPZFi8LA9JWO6QJ2KqPU9iIpFqNtPmOKsVgTSiUFcaRSEpypwASHljAKiVaiQDFRX88TdJmk4cIcfWTP8mdqECxe0ZUNYpkUtOuZEKbFNdGMBuXDtBSArPtr9SheI7QfzwWgc3PvCHf yz pFU7pZ0zYxTVWIkmoDK3r3pn43zWnQJ5D7r