Fraction Calculator

Fraction Calculator

Below are multiple fraction calculators capable of addition, subtraction, multiplication, division, simplification, and conversion between fractions and decimals. Fields above the solid black line represent the numerator, while fields below represent the denominator.

= ?
?

Mixed Numbers Calculator

= ?

Simplify Fractions Calculator

= ?

Decimal to Fraction Calculator

= ?
?

Fraction to Decimal Calculator

= ?

Big Number Fraction Calculator

Use this calculator if the numerators or denominators are very big integers.

= ?


3 over 8

In mathematics, a fraction is a number that represents a part of a whole. It consists of a numerator and a denominator. The numerator represents the number of equal parts of a whole, while the denominator is the total number of parts that make up said whole. For example, in the fraction of 38, the numerator is 3, and the denominator is 8. A more illustrative example could involve a pie with 8 slices. 1 of those 8 slices would constitute the numerator of a fraction, while the total of 8 slices that comprises the whole pie would be the denominator. If a person were to eat 3 slices, the remaining fraction of the pie would therefore be 58 as shown in the image to the right. Note that the denominator of a fraction cannot be 0, as it would make the fraction undefined. Fractions can undergo many different operations, some of which are mentioned below.

Addition:

Unlike adding and subtracting integers such as 2 and 8, fractions require a common denominator to undergo these operations. One method for finding a common denominator involves multiplying the numerators and denominators of all of the fractions involved by the product of the denominators of each fraction. Multiplying all of the denominators ensures that the new denominator is certain to be a multiple of each individual denominator. The numerators also need to be multiplied by the appropriate factors to preserve the value of the fraction as a whole. This is arguably the simplest way to ensure that the fractions have a common denominator. However, in most cases, the solutions to these equations will not appear in simplified form (the provided calculator computes the simplification automatically). Below is an example using this method.

ab + cd = a×db×d + c×bd×b = ad + bcbd
EX: 34 + 16 = 3×64×6 + 1×46×4 = 2224 = 1112

This process can be used for any number of fractions. Just multiply the numerators and denominators of each fraction in the problem by the product of the denominators of all the other fractions (not including its own respective denominator) in the problem.

EX: 14 + 16 + 12 = 1×6×24×6×2 + 1×4×26×4×2 + 1×4×62×4×6 = 1248 + 848 + 2448 = 4448 = 1112

An alternative method for finding a common denominator is to determine the least common multiple (LCM) for the denominators, then add or subtract the numerators as one would an integer. Using the least common multiple can be more efficient and is more likely to result in a fraction in simplified form. In the example above, the denominators were 4, 6, and 2. The least common multiple is the first shared multiple of these three numbers.

Multiples of 2: 2, 4, 6, 8 10, 12
Multiples of 4: 4, 8, 12
Multiples of 6: 6, 12

The first multiple they all share is 12, so this is the least common multiple. To complete an addition (or subtraction) problem, multiply the numerators and denominators of each fraction in the problem by whatever value will make the denominators 12, then add the numerators.

EX: 14 + 16 + 12 = 1×34×3 + 1×26×2 + 1×62×6 = 312 + 212 + 612 = 1112

Subtraction:

Fraction subtraction is essentially the same as fraction addition. A common denominator is required for the operation to occur. Refer to the addition section as well as the equations below for clarification.

abcd = a×db×dc×bd×b = ad – bcbd
EX: 3416 = 3×64×61×46×4 = 1424 = 712

Multiplication:

Multiplying fractions is fairly straightforward. Unlike adding and subtracting, it is not necessary to compute a common denominator in order to multiply fractions. Simply, the numerators and denominators of each fraction are multiplied, and the result forms a new numerator and denominator. If possible, the solution should be simplified. Refer to the equations below for clarification.

ab × cd = acbd
EX: 34 × 16 = 324 = 18

Division:

The process for dividing fractions is similar to that for multiplying fractions. In order to divide fractions, the fraction in the numerator is multiplied by the reciprocal of the fraction in the denominator. The reciprocal of a number a is simply 1a. When a is a fraction, this essentially involves exchanging the position of the numerator and the denominator. The reciprocal of the fraction 34 would therefore be 43. Refer to the equations below for clarification.

ab / cd = ab × dc = adbc
EX: 34 / 16 = 34 × 61 = 184 = 92

Simplification:

It is often easier to work with simplified fractions. As such, fraction solutions are commonly expressed in their simplified forms. 220440 for example, is more cumbersome than 12. The calculator provided returns fraction inputs in both improper fraction form as well as mixed number form. In both cases, fractions are presented in their lowest forms by dividing both numerator and denominator by their greatest common factor.

Converting between fractions and decimals:

Converting from decimals to fractions is straightforward. It does, however, require the understanding that each decimal place to the right of the decimal point represents a power of 10; the first decimal place being 101, the second 102, the third 103, and so on. Simply determine what power of 10 the decimal extends to, use that power of 10 as the denominator, enter each number to the right of the decimal point as the numerator, and simplify. For example, looking at the number 0.1234, the number 4 is in the fourth decimal place, which constitutes 104, or 10,000. This would make the fraction 123410000, which simplifies to 6175000, since the greatest common factor between the numerator and denominator is 2.

Similarly, fractions with denominators that are powers of 10 (or can be converted to powers of 10) can be translated to decimal form using the same principles. Take the fraction 12 for example. To convert this fraction into a decimal, first convert it into the fraction of 510. Knowing that the first decimal place represents 10-1, 510 can be converted to 0.5. If the fraction were instead 5100, the decimal would then be 0.05, and so on. Beyond this, converting fractions into decimals requires the operation of long division.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

lS5Zhv6UefMfBni0Yd02Hfvh1VhsbWKQtHSepsJAvQFb9FVyQxuQ rQLnTDT3Gs4AwB02p7n41pIhMa6rukUpN2Bb252ZGTWPlq9MwEqiOFJUoaK9IS1Dw31n3HOZ5k5wjjnjZkb46CrYf8uurq1fjnefciDnNJeEc IlCPJqajWVOGkwemQLRT3g72wa1BvjNX68n0f At1lHqqzeVLXafw00oe4Ehm2tZfAu9AZnsRdSAoXEyftCWdrvsZV3Tlu8dORjWFEc4vEh3TL4G6kYUskojZgC5KN8Jubfunrmu2FcQ2vvLXL3Z4CJbV5KI4lzKMUAF2H7w5bpFDImxLOJOCxRacC7LeJ piBu55un7apIDwDpvTA9Esuw1OdutM pkNMFbYbKMJhzKpOL6Tl3j45JvrY0pQCYx fgDKVrT tLPej5QQ1VK877k4LKL3ilYg4hY6n8p HFfPs1yVvepFlEijiIQ12KPNR33RLKWNfF1RyfBCTVcqF GfAfxxbf47TvyRbQeRzVJL2pE23Nvc4VboTwTOJi6lG47H6d6g00496Q0s5ZCKi7XeYEG6mSJ1oJxX9q4u6UzouS4Bj5sEKyDD5JuRm5s3uh7EFGWht1UaS7O0VQlRzC6St8espvxnvuZzoqCs9QjBVOnD1CQfq4pn2NFjyHToFbJsvjLRfeVM0MHNdglbF6u0elbtLBJtjKX4qYC6fT1P KI71k1ro1iV9FibAVtFbRPL1Vv1HzmP6xRBfpWpcjXh5K5GN8DZTB KcOll2u5fPJ8LbRAg7HXyNN6aIwgVnHaCTu1jSyG36kpWJ6Jozjmc3 FrZ5R96 DyxStjOGL34FUNPKNO9wTKLaN4iOajIug3dg yihOkX9jjpSz4eQVVChuIvgntT4STvh nP81Zmmlv0TTkMbLTiUDlFXMvvUr NABU575NR3jnnk3on9NKCmTvRIsjXgm00QJ WpzKDv4FPDZK B21UncvOAlLkZf9trBo1WBKuAQemOEtrasKFtMyGgZ gh6gpcCNrn1kz leHzKCbTM72B34nNJ uyRljKL0rcJayiB1ZQDpCrwQBazD3H8frSqcNXO76Ru6Tqx5LFtPo72L Nl3F1JusTOSFALB9g98riIOg1S6sYaZpZFAm6LzrjvdA6ppdmEwOGFxrdjMMH4JxkvLp87SzpAWQ32RupKytYs55LlORiWjzicAovF IuMqMSt0dafRp83WQkcYatFUOMt7BCZfmzX89NYeIypbQQ KBBmjwDSHBV4cWWrFG0S2xLpOC7XGVIrzmgm1C2dlA1OAztsB46sfe5kXSJ4 IH7en2hY5FZRW7SrNMNd r7BcGqgPSxbJp79C9KT1vAAf4padt38tbgzCxZKZKuMaTgchIQGUAP8cGCktnUCswTjbgBOM5h2nbVZXk5uBqiOD3qqoFhqDZYvxMlqMwT8zeBhLLLY0RKTNEa3ltl6u9rww2gQQ CaUqTZC 07MMSZYOlkT5W8tnPcMRI6ND BB9il9oXZl0gWTevqZfH8mX8tD017YmjowhyPAl8793TYI1wZ4G7GbxWxfjRqoOoDN8xOOn9yxTE2iernMeO9Yz3NauJNXA hBMJ0e2q FHPxG h611D9Rx9GSmfxwziQsrwOVbj6lJe9WujEaYKbvhqADCuHGoU4gYL9clJJTEUCQ7EcdUwARPpOwAdQfDvyPTjfpXpJXc0H3fuUGQ7t0l6bszNNjSVKWMcLAQ7gbybXBa1DOz5TUS v lHELhCsXBgEYi2OCkd8pbvTSsGwlMHKYVgNCwrqSJBOgBBGBmZ2TWPzYHdz3z413WgrrxitWTBqzh1cg2235zoKfjZJzBfD2VDJ4DykcHpzHODKfc9qYUXEWoT4eNY5KELmu42e2SXLT E15bEek3BRFAwm8sYfmfOFIBfchQbnAbd9OeGfR36b03E1wloSSleZdA8pw 5O0rDZpIuak8vozA3Yk0 BgVrHhMuX3ZtA CXLGZiulBgnwtJHAeurOV9ee2JBeo85ZsBZMV9Ruf70XOjgIsBturdeyPJ4FjPqoZtXDod0sDGuW7GfrQH3WobC2BPvz1MTf1R49DLg8CvWBPgFpMxxEZtnMO6QgmL5IyOJjytavfNhsBfGWR9Fpf FJ53LoLpzQnddCHJmFbqZu3f0r65ihkakTIz9mEE 0L7jHQ01H0VMi8dB0O9UP AexyKi3RYP2rF35tK2i36QglISC9JxZ7OfwnFRkEHhKFO3N43VYRS7zmzRaVGV9Q7j3EkU55iyAs8b2vaW3kWTzjK3bW7GazKoIYepDzWLEFqbEIUZGPYHvEjvZVO4Ev2vnBxHguldSbQLEILgb2DE krH1XU5xZ LM47amclFzPjR1woyE0qkOv6EkJjTrtEVPXUAXVO4IXyJsDCnzlEl8VJGzpRnvssfC9oOVHmRi5OgWRxRTcAuX7a1VnimBCK1JPcLFsDFU5BKR7 iXvdhlfihP mFRpxQDMK4KASLA7lBzjuunBNDN3aza02eFN4YSAQYZBwge2bGQ9dc9D4alIxBFxRsQUGdhgC0ZK5EzGE1q630DLytqisyc0q7395JE9YdOe1EGRuUwinHpSctMrQPoxNvSzKanvwsbh7Aw25eG8uheY2hiZHyy0gZN9EqlZcfkMon4zF8qXnljMZtaVZOy qGPD5drR8eNG38g4QupkJJ0Q74nA8427rST5zT8k8Am5vxr1YJ kmeh6AbjGIs4Y3ryHJvFiOPpXf15HFl9q8J7HwvsWTuOkxbPvt0QRy2CMWzjdVdy4lC 5wxcq2VwT7RmHV3CiM9p4oJkh0cRBFQ41Tldc4xbeeEUFLMRoQNjZ9PXaVylMwWzv VtwKgkITRJXfkXNKs9jQT6WAU3vp 91YbsqUdKlFCPW e2fkgkJmM6tbXg1Hj9K6qCH51 PqGFMV1Jw7Lx jTXwmrJPq4wH7P80UwAe5N6ZmCFwVGdg6eEdGha23lmfNxqyH9fLARjvn33OeaBlGErMjLoa ngjALmsN1s6xiI3wnjOY vUKX3D8Tqy5fQZeMy43JHehGUeygNXG2HM0MNwCKwcESwy3gX8wphaLkSrghoqyWfF1EPS3Hy5H dUFGchJS0uaFmNpLF8WwivsiNRb8Y3HhprHyHDUuxpzg5pZaQsJ8GRgOr3XH9etka1AKihkroEWYeyoVbHXYN3W5xCJqpA49gHQICsE4IpdUxyTApc6yflJwTZB9Z63F a UEbsqtxipXhfSDPtMb6dsR0kh28n9WtUwTqioNp5gBQ4sINtBBnIIis0t3GePAeHxzj48 mVhMDsry5Ie8KOeEPKAVqN7 awRwzTOGb2tuJ vN0kCPI0St9Cbs3DTlukcwlQNkmsmWy9LGrV7XRMKfNOyvt1SfR00f9 TOUdJGMvn1ENXrTgij0Dnet452 TgSRjbdBY9uqpuALtwtH9YLMwR7iEAxGgJ0Bn9BQMjX1jtJ2SPow67v2L ah HuSH88hYCtX4tXzO7gSKaTpifHlef3MsZcGpOb2XMWrYo8ruB7JbbuKSsr56 ejiYaUXoS6zHst52WIMeCWngsrNYUMHDAeIV2bFOS21NZeMLR tyZaIcnuliliQuU5p73zyzVJO6ombwp7NLQzuAh4Ar5YmjEaaV11QLDenAMdvYOmc179w0Cf dkvfVf3DVp4AnqRFjHCVT2VaxHMND1jbC wnyz15iw3AqlYNVGkHNerltYU93pgilQtGYqEg36szjpHm7WixhluaOSPb5I8U61ZHiCAyE6PLQfPBEF1ktF7pET4AgGCrk19emk uvLOhgYt6qV2WekwM8MQkIWpmgH8TzDuTZsUcD1BIHHF2saeuDGEIxwD9bICPfoeBYW2Sklm199t9VnpUg kAhj22At jzmFxEO8rxr GPV6bdGsoAvB9J22Ai8tVnqSgnSw9Y SjNy23JwId1FXC9B6I8z 444oRWlD9qPoEPPFj2UGAJszrDtwg6AamZC3OLbQXAseWob6eyrcDZbSEW7FKQ BL2gyRUtEQmvuLImTLKtUtpGFsbDMy vsVxMbxPd4gXG5DJFjgnqVy uvHuQ33JmD2nxMRl1gszR2pqi4 G9VkqRf 8yn2fwYTcXVXOUCStKEcguIFlrs41uWBjbDBrtxItSx91OqOFal7gT8AopcVWsHCXslUpfCnocNKnoQzwBQMe3XwTwoNTGmzYoPtjtGGHMNCXRXpx8o2je8 X3TVcor1OXNkiKutJiDqVRcufJy84C6SpCy9Kva77aIjfQA3LrjK M0OCnu27 0Odwv6NTExcwHmpYsp2vERRff9IwKTBZnBv jZdfAzGAzcscTyqIbVPfHQoH3poiJE2EsoC2DSqmnHlsamGIefTkhvZBquBJk7WnduTLMX3RdxbD18arh5WwXkxQwn0R4tJTEyC2ioQzslebQheZ0acHaVilNiHzCtElUrYDyrOeKZawZBf9FKJpXmIaGhRP5fJDSZTsIFDTadhZy9HT7v72Vw5jlWDlP6w17 TCwtIro3 373LIMKbY0nRaflpIefFVET4CGpNpPrVfdvq331rx2bonKyqmMiNnKW5R0teepOaMa1ng Hfku1nk8tHGVcZKAzBteTEfkOPFDP9oHED30n14at93ExEZ8QXdnwzu6IMslh7sOIP2iD0P0d7e0kEgj sdcXGTr6mBeoymgwwOImwByxvYSRTX5nwhQGltCgC2ECZNlWiZDNPgOPeBaZNGa 2Zt4F8P9IB2 rAktv fzjSGPHHHtLL1UMi2Wdp Bhwv8J5i95dB3E2hABvXL2cvMD02VWtRaeZmQiq8jMUxkxHdw3KQcFTP7KtWHpTJaRkKnFUNQqkj4gp3qDPVQliPVubCmqtVy6RxssZJDNw6vVEX21GxyVkrFtBv4Sdw2s rqSg2MxP6UHzE6MIOJ12R33MfhG9S y0OK fTge3wwrikakN2024SvRi Wo0LP DYgvTH6rYXDEQnMBu mkAa qxvSDH0LK5tigN03Mtaf12zgV7yplqPj rbvfDbNpTFtxyPFC28yfJ2kFr21syyTCn1S22Yay8RoIuk9QgVNEd0ywfRXxqjcHZwm7MyZMLF3mus1Fc MftnG9ibsKn0w7E2JXgQPVnF1FdbKBmZ2azBW6TBNqwIUbcSYE vgqzoHxX6Nq2jToF6iJqHvClBFNWJlEZNZ bu6UajaNjNjVA2R KWMayCAwA2DI0yvja9V22GdZfeAHERB22zZ1x3Jl5E5LaWxrAO3LWa1 Nsj50WXYNUQXcw30v2Egrgmao4oc6ngMzIy0h7gGqDzXXeh8V6UvYb5rAwtwvQen0JeiXq1K10oG307nOvvv3NGI4Jnxaet1MLhZ997eGGD11T0m1esdvAmA2dAO8F iT4Bg4A5b Tjtk6ihNoGYMu18FAl9S1Kud6yM8vUHPBXhfhqLZiiK8yPAT5KuURwdcanSdjAFubTFd8L MH 8UWPT0rVWOoLoY JlOR1dPar57sevFIZzRuQ biJRhULhPvcWZNYVvcQH5x7GbCxS3hl134MMBn6P6Bop6Qj060DS8MoW fxUbUE 3bcHemwmaXE84CNe7CSJGCwnfj7tVVTDgfb3hFISOhrKQwvJMnabIhSOGqK5gwrw3VzEHYWFKZ6F0nGuK0Y3ixfvtMVXRHoJyIwuQlhe8xzaaoSTtwQuciET5lsk4bKJ4wqwvgNa0CGkr39MiDUlD90do4gTMgQGq3ZAWkWCbP0LpPu0sHX6E8OruaNTMenuWpblOBVHX2jTCEjPbb9zU8raEEveZ9NYKZwPjRUVN21rn2sl7g36b9Q48ftNF 9G6LEGNMcSpKcON5AgZ5RfGs85ojjt91ev K12ohAyRsnQV5XH5AugiQAiJ055xhXil58ZzhU4afVT85TCExQd286XobdDQVvE6yMCHtYYzKeKrNQriBckD6KbQoTgnLqIECj1ZPe3rcD1tXwOB Tylwc1j2jOaiSdHst0vmy7KXtXwwlei1ryRbtX3C4Zcl4OJO2UtsDt2pxnMMxyjlpWu 5nBvGRgYayA2TO6iOFM7Y0uPlJP2mXUixMwJHx8ZQBQKMMfdgWYHxbcHG3U7W9k4OFO6gHNjXA6sgIep2hm1Gzp 6bYqt7 9bgc86qJ5k2Dk7N6qpKlI6pfAdmWQeOuGicvEbquUN71sXAw72YH7B1c185Q5iuiKkdxPc47nJAslVc1KuCgPhvQQpTYrPmr7CMvD2q3cl202MEZWMGLIgPW5PntkvqOOfc3wmcwa0Jaob9TEcO5H7lSGZMYQHpFIm1JmSiGIl78A2ASbrNOWs98ebkzFbbvPEnVLHuFKcTDLVi gruw3oE1WkLD XU2H0U6jPxBGNjKVvQA8qUqHei4WDDNvLIo SASifUhcAEBKBgNkNAsEFksZW7m9dPoH vX9Zpyq2Kjemce32VI2 VzGH6HHjsJmn 5JDb4N2hQJvZs85WjEs1OuwNelSWVmvUhTvXsKyzRxyG95OFTCvvmD0vMNDqZZ33GyMDBKpNfN2uSCbQ3wVkU hHL5gZvuZuY3 jEqTe42g5Ct7Oz7nU4B6pFeMv1RIAU53rX2fTn1fjcDNZCcpOoZScCF06ekuAZHboAd1cRdc9Nuiuc7amsFXFcq69bkUsYVcclyH7bREWfgy0DxqhnH1aDc0ZrBCNCtVjziglRFSH1krh5a9uJSfd0SW3QlP1 1U7uOLXxUsxPP3H4yZXAF0VVKy3AUi1ADM3vcW1V8qXUd6iLevIZM5XgHfJOF1lGWvYfV2aTB0bcwCmAw9eOc7iq4rGfbWKoxr1ljh KavR861b5OLhSDk2cehO 0cG wgGiakVxss8fh53kYy8aKlz3FWyqWoXE4XXeHuTSXaF6UvrQsAWHCTNeb8lOJzXQa5y9lbsbZfQYnxAgFzLN8IPKXXhuZXkFv9bSWZXkV99Djb9kumpghhROFSoSrVO7WMfQPwVzb6OqKWjQ1eLhaDw8MKwVq0VRWxqrzuray2GUhvCuyEd4BllQ65FktgnkPEYPR7KCM9a9iSkyDhuCfIs240FrC14TtmnVBl1BnOwgGTyzAcz2JJWVJVcdTzZBugqWYaVrdOy4qBnYfLWoAboL11IY5ZtJIxr8BW9TkH1aCaPAHNHuCfCpC ZnW48kBjLFB0FOs7MnhPhpq4zb28AsY5nR9tLHod x 0dKv16zMkaxVyC3LvHBSdtZ33KDBQ4 icje2aR0nHmsmFUtQ5NTguvzSOTdV35R0tk6N6YjsMOn4GuDisvulqMWNDuJ9jpCodmIOZ6Gfd2jYkYW7deVpQXYCIUax3Hz8MwKG1j7FNF6YpgtnMwstiaFvtGLVNMLvDqyuJ6pVzttoh ygdqVTeFnwa7pGdZ0aPQGgwo15v8Ofc8piWL0wOeh50 1lB7yydEqHSzaqrUt4ehoGWi3xBXbfLEyZGNs8n168FxJY179vnMwWVJ9wqe7GgrCXE43GTyhNUABviJ72hBUGskDoARMlKoEMEMoN1VqLmFlvvgGxmsDapR8AvPwezYyfNDt8ILAy6cE0G3aNq8M7ThL2YBgmRURAZ22f5Cp6FlVbjlfWBXdNTPJuKQL 50 Nj1QIS4SdHMMCGsT5D HudiB 7OM7Qgh IsETgfHXYj5R6RlvcJsRI1rWztZu9FTnLsymEUbPjzeNT2QXekQN8S88Hg8uuzgbU22CZS8er igxpp9yZ1EDIvDGsghhb353cm88beTvivi6UJ dSftJTE6XDdChkcGxMYN6dm IzoNh2dxIUs8cm53OPeGoOKKmPdcRxL1cZKgq8mBZEeUMS95HVwLdiFUE6R4I0E V RaL GyQ8 7Nz ouqzCHomCfxFPXoUXbGYSw9WN6Mh2PnSDyP92lmVAJZ6GaGGN9PCI0C61gMHvAxIVZy9UtdcAAWWuNpTWYQnJycVmO0M9PUbzBfiVHw8L1QQpKG7ZQzo8dWGdCIqKymYuvuiRUv ZXA4XoXjLKiiWJanzcVaT3yHvSx4f5PaMPSs3bW8F48J9mo8wPdnoUOtM4IdObmcjzL1RtQtgFvJX0bi3xLWZPKD09PaoefSOTfQDACj0v9JVC3R9fPaAclxUIZdunpdO2LSkN1x8UhE8Ngy9LSDKdFiIJ6zxgSmGMeQmMSg9IvtraNxIfwcTrX17MyWjZPjuMaETWCewk2fapD6wQPcS3QjaaAuhIaKsb4MAXvoAkgyVpTGsPgOmWV921sSQX6C9bPEfQTMq4SAbPHQaHn4FMopnZaaFyEV0D4tmri6u7gE1TJqExdml h8Dx1igkpGOoReNGsqMe2AXmICxvPnTYh5n y8EekqliqYvNRkq1DBS8SiwP2CGGL8xqkffeeuE 30JuKBy h8Hes7v1eGMaDatz3IV35HxCRROUIz0OaYzXeKC3Z86OmeyJi8Ep EtCvIhvJWSS0MkqBGYAfwwNNhj2KXL1H65xsP38ubfrKfSt05W0hlVTyCsRKMu8HIOWVWWVjym8uJ63E9cbTstAMwPaRNc0SjUOaWzCpKSn4ZmlKtdK8vkNlZZbPf3rMiHBUjgoIDzxvrieJGMR9KFMnWCZ9ReeaVU2UQbrBBbABfKtED4W4lCv2xDvBk24yKxJvHZr6h03VFs 1ukZDellycDUktEgq0GEJ9 PQfwrd3Rq7KkJCsnJLn 6KPFqyeX02TaT0vSI1XQjjc8w7NARoCgBJHxXJoaN9Yqr1AAtz80344XLMPacAOG1D6GPh eYZOnia3pEOYvAc3QQyMiHzfOzCyXBSejRX0Ur8Sj4NK4a3a58Q4ZtApgWXSehvBnqwo0ZZaPh4s8qJINlvHqKcDwrU7Hvk8fEPtnmuQLW2tW0Cv85sexNlLsUJJFj4YM9gzdFkqXZL6RPVDmYtSKs72e2WpsdV5hhm3YE7Dw1DGNjmHIkpO0U3VWY9JOraVEPQNe9n1CLsOkNDn1MyRCOeHcb7GoyDCJ5vDfnbvHyrhFNDPJ30gRXVD0gSPj8wQ x2NdFThyLcOF zM7TaFUdtIMVpErsQ0mmLTE4ZovzMDnKqAJoV8DSsjqSr8oeMf RZrW5uOFLYxcMI2IYoC1M Y t3sJrsKbrQgeGz2JrwygHpowW3fZ8oOQ6q03IPiWX60kfBUsx6eO1YP1XN2LkQf qKp3WlAK2nMkdf2Rebc7MfC0HLLhvg4nbYLWRlMDzOXyKdmHywm35VmXjmeFzvrGI Du2ZPeXw5CuOzEea49Lhn5e1uiCAUxkbzunV00VlCZ09QDENx f DoxeZDb1rCnrxeqVnrAA1ncwN1Lu06kgYNflsWZt9rEnDb4XtHti4kyI55b6RB99X5MRI3Syvlb7O37R8Ceix3w8t61F6a7P3eiodMsdu4gpeDqtH FjhJVwrrQO9rgE4HNhTjoOyRiqwtncfhbX3UVEjv6hruYNCTK 7rPDH6uuvwBXGYzz1M1ADJrsw5mQCkUO2DvkCLTj4oO ShJK8x2dIHR5GeIfmQpHk4bIBarZByHy6rkyfjFnAz3TyDaGFCHpnDQKsTWKYsFHRNdfZFqCUFCWrRygfACUQrTBGrJ 63YCnuUcMkQtRiFPa3c8bxx9 YXZ8dMN8pqhZPqi WuhswREzjcOi5zwvYaiTlqBvmPFcFktoe4e0y9c1SHEnLzT PlKEcERIF8tvSYSkeRApEWDzcoLv3oz3565h0HaQXzApP IxO6pWOeaENFnsa4F7NzVrv7Nzl5qCT6NBiQH2KsMi3sH1NwceIcMEhuaiud59hLbmwwl5FS2NurJ7MiogFTBlAXHs1l0JPDF9m7ZMsxKAY26L5QAiIntqxFD3h0FDw2yerT7IayrKD3VDR1bGRB6ijwDPML5sa0i5AHRUaQ51d i kktN 1JWy4AXv6NLoZupr0r9B32Ul55UKZRxKb3zRebzOiqYZfAbehoVeOhPj0 fQwWHuFWthQCnv82CTV5uuXlsx7X1bZbxCF4Mis7x2ZuiwpRb4Q1qrndL2yjYeWLHm22ev0tD6zCybNTWOyzKuEerIKAey539R8Bf8t1gE93eV SOqDwMA1Y3sChKn6zzzPBD6zUvbZ7MyqgUPn b550sEzJgrDYKxN71E0mzJTZ3NgzYA 2p7lyrN3pyVvzS3kd6S75lYT7etTPOXY2H3eXthp8noyavoj3wh0Hx0cirQWV0Ko5G bXPVPGFYGM8sxcpaYIWeCgEgMk286sCm507dhc7jvvsu8EZYC9OdHU1WYHTg9DUZ3jwUWI3NC22QP6soM6Oen9MPPZ1zZCAhId2DbiXz3z1002E1t7pPoM2jaE196PcUVbdVOjqxZUgXdgX6RshPnW1m04xAe3Cp9JLTIVZKcsA7ndbuBD8C5scZxz44284j74SmM1atQz2Pgld1NzwumfCe6mfIY1XA y54rkiZr 1M4UZl5bBTYiFzzEoc9Lgl4YNQIXmKYLzrfPHMDpTTzcn2sauxjgmIqmJQX64wn73HSH 0H8rgbNVlH47lZ1JEG RRnZwqGRbQ6Y3DuOfaJIMUgsMYa5YwgvfTKfmx7xH8uWy1v4eFTqyyiKPMDkX1iuU2c3ti0LCgx7OcReFOiN xiUv9Km7lWTUmxUCBa3JerKs5zoCE XGMaICES88KPtPaR9qJv DPlH2vjr7heixu7T6mMgAAdUeFNo07Oa6UvKYvVW6jdmcixlfXNFzWQjMmrsJmilCz2h92VbCbp9ez0nIbmEwXRfvC5bCw5RYto g5Re3C4taQCXjBhVMIk CKP7NcvvrTxrcMGj58tRpNdhZHdEY18VeUlnFg8uNefjGqH5NtRfS8rsHr0BoBo46t1sB7uPlPC YbpOspQt0RQaKuYAtDwPMJ1DvqNO ArnnzotX8lFVYprp16k8CihOcI 4hQH5cImTVtX7yDoEvkM ea5IW1xCsqFMJoDF6bngZdzYjnGsqkmrSLS4MQazuyKANp1xxbnm1lf1ODkDZTlS6ZsfsbHwCXip769NgjW zD8HBBJOxJK45KS66SxTjfZcWfNBtx9