Interest Calculator

Interest Calculator

This Compound Interest Calculator can help determine the compound interest accumulation and final balances on both fixed principal amounts and additional periodic contributions. There are also optional factors available for consideration, such as the tax on interest income and inflation.

Modify the values and click the calculate button to use
Initial investment
Annual contribution
Monthly contribution
Contribute at the
of each compounding period
Interest rate
Compound
Investment length years  months
Tax rate ?
Inflation rate
 

Results

Ending balance$54,535.20
Total principal$45,000.00
Total contributions$25,000.00
Total interest$9,535.20
Interest of initial investment$5,525.63
Interest of the contributions$4,009.56
Buying power of the end balance after inflation adjustment$47,042.54

37%46%17%Initial investmentContributionsInterest

Accumulation Schedule

Year$0$10K$20K$30K$40K$50K12345Initial investmentContributionsInterest

YearDepositInterestEnding balance
1$25,000.00$1,250.00$26,250.00
2$5,000.00$1,562.50$32,812.50
3$5,000.00$1,890.63$39,703.13
4$5,000.00$2,235.16$46,938.28
5$5,000.00$2,596.91$54,535.20
RelatedInvestment Calculator | Average Return Calculator | ROI Calculator



Interest is the compensation paid by the borrower to the lender for the use of money as a percent or an amount. The concept of interest is the backbone behind most financial instruments in the world.

There are two distinct methods of accumulating interest, categorized into simple interest or compound interest.

Simple Interest

The following is a basic example of how interest works. Derek would like to borrow $100 (usually called the principal) from the bank for one year. The bank wants 10% interest on it. To calculate interest:

$100 × 10% = $10

This interest is added to the principal, and the sum becomes Derek's required repayment to the bank one year later.

$100 + $10 = $110

Derek owes the bank $110 a year later, $100 for the principal and $10 as interest.

Let's assume that Derek wanted to borrow $100 for two years instead of one, and the bank calculates interest annually. He would simply be charged the interest rate twice, once at the end of each year.

$100 + $10(year 1) + $10(year 2) = $120

Derek owes the bank $120 two years later, $100 for the principal and $20 as interest.

The formula to calculate simple interest is:

interest = principal × interest rate × term

When more complicated frequencies of applying interest are involved, such as monthly or daily, use the formula:

interest = principal × interest rate ×
term
frequency

However, simple interest is very seldom used in the real world. Even when people use the everyday word 'interest,' they are usually referring to interest that compounds.

Compound Interest

Compounding interest requires more than one period, so let's go back to the example of Derek borrowing $100 from the bank for two years at a 10% interest rate. For the first year, we calculate interest as usual.

$100 × 10% = $10

This interest is added to the principal, and the sum becomes Derek's required repayment to the bank for that present time.

$100 + $10 = $110

However, the year ends, and in comes another period. For compounding interest, rather than the original amount, the principal + any interest accumulated since is used. In Derek's case:

$110 × 10% = $11

Derek's interest charge at the end of year 2 is $11. This is added to what is owed after year 1:

$110 + $11 = $121

When the loan ends, the bank collects $121 from Derek instead of $120 if it were calculated using simple interest instead. This is because interest is also earned on interest.

The more frequently interest is compounded within a time period, the higher the interest will be earned on an original principal. The following is a graph showing just that, a $1,000 investment at various compounding frequencies earning 20% interest.


interest vs. compounding frequencies

There is little difference during the beginning between all frequencies, but over time they slowly start to diverge. This is the power of compound interest everyone likes to talk about, illustrated in a concise graph. The continuous compound will always have the highest return due to its use of the mathematical limit of the frequency of compounding that can occur within a specified time period.

The Rule of 72

Anyone who wants to estimate compound interest in their head may find the rule of 72 very useful. Not for exact calculations as given by financial calculators, but to get ideas for ballpark figures. It states that in order to find the number of years (n) required to double a certain amount of money with any interest rate, simply divide 72 by that same rate.

Example: How long would it take to double $1,000 with an 8% interest rate?

n =
72
8
= 9

It will take 9 years for the $1,000 to become $2,000 at 8% interest. This formula works best for interest rates between 6 and 10%, but it should also work reasonably well for anything below 20%.

Fixed vs. Floating Interest Rate

The interest rate of a loan or savings can be "fixed" or "floating." Floating rate loans or savings are normally based on some reference rate, such as the U.S. Federal Reserve (Fed) funds rate or the LIBOR (London Interbank Offered Rate). Normally, the loan rate is a little higher, and the savings rate is a little lower than the reference rate. The difference goes to the profit of the bank. Both the Fed rate and LIBOR are short-term inter-bank interest rates, but the Fed rate is the main tool that the Federal Reserve uses to influence the supply of money in the U.S. economy. LIBOR is a commercial rate calculated from prevailing interest rates between highly credit-worthy institutions. Our Interest Calculator deals with fixed interest rates only.

Contributions

Our Interest Calculator above allows periodic deposits/contributions. This is useful for those who have the habit of saving a certain amount periodically. An important distinction to make regarding contributions is whether they occur at the beginning or end of compounding periods. Periodic payments that occur at the end have one less interest period total per contribution.

Tax Rate

Some forms of interest income are subject to taxes, including bonds, savings, and certificate of deposits(CDs). In the U.S., corporate bonds are almost always taxed. Certain types are fully taxed while others are partially taxed; for example, while interest earned on U.S. federal treasury bonds may be taxed at the federal level, they are generally exempt at the state and local level. Taxes can have very big impacts on the end balance. For example, if Derek saves $100 at 6% for 20 years, he will get:

$100 × (1 + 6%)20 = $320.71

This is tax-free. However, if Derek has a marginal tax rate of 25%, he will end up with $239.78 only because the tax rate of 25% applies to each compounding period.

Inflation Rate

Inflation is defined as a sustained increase in the prices of goods and services over time. As a result, a fixed amount of money will relatively afford less in the future. The average inflation rate in the U.S. in the past 100 years has hovered around 3%. As a tool of comparison, the average annual return rate of the S&P 500 (Standard & Poor's) index in the United States is around 10% in the same period. Please refer to our Inflation Calculator for more detailed information about inflation.

For our Interest Calculator, leave the inflation rate at 0 for quick, generalized results. But for real and accurate numbers, it is possible to input figures in order to account for inflation.

Tax and inflation combined make it hard to grow the real value of money. For example, in the United States, the middle class has a marginal tax rate of around 25%, and the average inflation rate is 3%. To maintain the value of the money, a stable interest rate or investment return rate of 4% or above needs to be earned, and this is not easy to achieve.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

4jfkSUuilEoACo96WAP518lMos9XegHODfTAlgJMvszQeECGij7CSaI299RI1A9Fsa8geic 0U4tnEgy9t7ku8 WnVduMtsMG6yBILDUuBbxzW7N 2Lwi mR7z5QzcVFRl33ioKy08hfb0PNAxwSurClvCLva4WGaRzhUWCD9vZB64KJKyYWK9TFWmlMmPokxa4aTJ 3GQ63O2opz0TBFDKfCB5Ca1rwJckeWGeK GjXtVGeamLzEkfHZSaLOdpfncy0GJPavweZmXDrAAlfZZxppIS3GVTIFas9mIwM2 x5iSXLIXKQlPjAepEqMO6wagxn6AX4TUYIBbyXcOZT3dDLIrjlyOgxxnaONGW20idJI0jbA5E4TGng23IBVQDrfTHWHHYQsQdfAp3xFF4TS0 DAxguC WeNXr ylTKaCQ9jl1Jb1CuJV34ftiU89lCaV2TMYAVCSKakkegV4 cylNHpHU1RRPWcJnam63Z1QMkYs4qi1ZKip5TvhYOY4VQIMosTnxqKvAtgo8fc L0liphksTyBPDzc1mU2CD1MNrHxgL3iYLyP6BBeRVZHEgVLMMHKXogmJmN81ES8lgg37VeA1LWXT1SGPZkCc0a124KYaJ8eJ3NRv8lEjnnNfs7ed8Mr50FjFOrPd8Lt mlmNWsve1VXPUKRSbwmzbyjYG5fzs8ooKcloWZs5a L89LEx3sWOZ01j45LwOrZxqBf448y5ot0NBAhkk O9tcHp9ISgK006fFwkMfANzHN9behPaYappfZF9mNSL7tRKlr8hU8C0idOfZs98hCtJtJwHMTr9SbMYA99RK94dZaM8VwjasiYwiYf0XgXufRI5xb9pW9rQk pqkrTztUAOi5V1NLiIeN5hWylE6UoUxHC1tM3l8WpAUo7ln7DKcgYjaHPguqw8DCHoN0Tk6f5S7ZD3l5GBO2AEhD7klhIuW5QYWJMxZMSZyxkN LIz NY68k0giHkVdgk5KFOTOehKa NkcHW404MXEgrUuEh4pD4HUp3AbQN8rVdPIDKFB7HkNuaMl0ygbKYylgn7kiURQoOd5oARsj LVygn4IxaKqkv53AbNdQD3a ADiX64qQNkOKxeTjQ8cIpuB6G03cXyyH1ng62PJQXLNmURzBI2ViB6gEUxxOIUYLHd5SUWGbubkbnM9K1N9xtnaGYexbHTbjeKLIHCZHcU4QJdQUb85cEAw2e07tA1MGtdX138lzC3JD3MwJZZn8BXIRcsXzoUM1nZYjw44kz6FVlNy9qMjpu3 3qdl1k6loVDYRFjUt00X8tiAayyAPJ9cvjvP7oIvRMImWeFFREhobbmugipPkW2swLvlGOBPdnrCa1CnAjJUjSmeM5hgU8vjbpjSdPcd1CFBuGUHTDPGfnEAU1xj9i62zqvSUMseoILIe7U82EDbvO0cCnG6AtlVvZoUmFrNO 6mYZ6BpCHVtCndLtuZTecMjbk8P79I6jw8xj Niz0gu1e4QktVgQJ72Sf7rPSYsty2qyZdkhk8iv9S 8xoWYXGE7b2QmffoRwLS4ZltMidb0HB1imzmJK44wmTV3MW3HSrTjxxImdMR38RM6IY05k87YYqS8nnSi7eZkPOdhvE7KyLrvycbqjPBKxYc8lCkdkLXVGxnrAo2kZQdk 6TprsxC5lTt3mm1LGhHchDunlWW8ssz4G9jaGuT8oaDrQNPYBzpuQ0g4H6A16fSSUA9Be5NR9XhmBdG6H98FJ4k13n4S2HAGux7yfG 1gsIN6Lt2UL5LO4z0jBX7WD75JKy Flqrwdv9U5TZIS2sV3tGuW8Ax9JbiRT0HzPYsFQhqAThVsADtcreHoGJC 9ZuFkemMaitoxu7EQTCvaAcYX8WZE2KqSG8eNDesOnm5Istd8assopIFd7mAbN7uamKW Ij9L4BZu0bTsEyyRbUaXnUmdN00TpMz9sjfizF6GWzmjWW Mc6ySxI6ixELTaNZlpSObHKuo7tIGOibM9Nl2k7S9Fj8yS4MsZV79Je5UKCOiBEhuAk4jK7USFLYbJDMg1U1qQ9CsqFcJE tLDhJxBr32c32gd7gMGauMfWYGXjynvRdw0meqNHxVbc lTeosYDGXYIVV ps9PEZDzZTwG4YiDFwkPA4CJk6F80w8Hy7wbsXjA4pDWxsipHZlReAvLnXZAGhxVOfzqIjkmfvA vhIausT s2RAGrxogvTWHHs4tcCKMUWwjXPUciyKEEiTcv5CW2B pj1b33DKZlqdQKDCzL3cY0B8FLYAmYX54PcrG6GFZa1khQoxGAXOs7YzkkZjVOHJvxCkn1nzdBzHSGY9Sq2kIHiRvC9240YMAItK77xuh5ep6dE7jGaa9etCUPl 5jNcytjuyatYKecNAvcZRqY8JdlMOFRqwuXTVSHDy15XsRFYMA5 4mKIhrdSOZgS9fFe7FFcx2Pzbz6mnbvCXlaNgGalnFg3gk8doptTyNyJfj2er7zgPp2pXMMGDq AvyfrRqWZBDb5ly48J2w ct102CUpyNQAIB4jwlAwHsXK5GVbCuG3PzgjfTIhzBN5vibaojgc3T1OTKM7Ex5EVUE55hvBfVUSlC23dynOaAmN5NB9ZfK1z0YIudSj0NL6enfILeXK1uZ9YTXe67k6MGpJZ91TygSP1kguy55Q9FsnRfmVl6cphPbhcxZ5JQWGSC8ozBjFJyK5RtJHlippMsddHh1cPTJ5vdJoBsMXE0H5lpzR4N0Z7ICVHydPBnBQjdVza524II3pRS5mwSaR1OuoPXzmwy804P mxHafUNWhMFwCF2rM2z87qS6CNYnAHfANe91zEasacmYXt1r31mkrAukyva5hU06RxCLSjxtdihszMsxph5PNGzYMSSR5FO JC3H0va7JA5MFBQfWtOeCAekh3dS8qfS2WkF H4GIqEmwkUMXoXII57kfHBcMVjgkJRs5o4Zz0ZMCb1bDXPESby4GFJCtqAAAUXf0ulynPeKuBdLWq0hf0I2garmuIzLoRxhcpmueRu8KxEajhLaa8UYloo6b 1ttJxubWg4chr94g0Umy3X6p5374u0nWBSvFnEqghM2SuyLfFRVZaGWGexpBwtuwBMu9JttXgGJsQI3UQOE0j1IDzZFW2E1c ywTFvtF6kGMSMN yKYrxe1RL0AtwBuSafyWJy93CPhlJl8mC0PbgJF8pz GcLamKRgwFhIivKOINuJPjwp QUbdQTfSv1jf4hH3BnizaR3h4tO1mtZVFLLC74lJx8pBeR mJZt2GTFML5dUsSy4qRiP4CKer7xYxKfgpg8ntXZ4jeH8GYR2PgYXj4Z8ypSwMM8Oy 65ZvWJQL4Ek4oYvqoCB97p2PQZpBx6zYsKUPxvanVIJAuy5SdIwmTJ4P6ZD4vfF vmkKYOCQkyvXAoQBUph9mxRGgB603KIXmQ4UqTiH5CrNc WK9upzlWUzj0dOaCX9R3HzNAoqdvbfgHT33vLRnbdnolnJWRo7Bsy14X1xAExuT5qvkAi57G 1AAsMJczWPEK8QLTtl6TaG5KDJ5W3ycEjRQVMNZbPBABW5g5uOnIPbFbggm9vni3EZ5loWBGpRb09l7AnohN9IHbc7MqB6Bk0LCd91mbrbUVUzv7lJwTW1x51qLW0ViNDvZ7MTcjPluSL36wlCQwKXaz8pVdegx1TITucLrPeTS17zgVCQYJT1BS0Q90E4OKKBKG2gIMOh8L12b3hLNrXNhzLrzK0Biok7wMK5f2T2FdJQbhB7AP0HTpVSJBwUUor1BV74uPundZDtjnP4F3jvV9Y2QywvfvzjHjxq21lOeDJ9OEYXNcx4f7wZSI8Mfp8XITSuyaggnk2CRRhyKvoteSzaguJLy U187llyUsZWv4mOBOAANFho8g8AmPEYHGr7yOmAYswZotitYnaBQKrAgIzgNZIHeUilcrs5gjcYY7RxMxZVcG5ppVLooPgZv2zrbE9N04AqWlZT08IUrtfw cOdenIq1 zdj7hs78omUwq6XcLwWbi6Mvd8loL0 yk6y2ty2kOnKL0XkToqwOjXYjOloYc8D5lahuGaZF5UB88qEIfMQUGvLM0FzGSDoNoVZkqR7FVvAAyzyDQvTL1VbkHnolZxekMfhkgeO4ucyZm9CkKMjj3UKrvJ7flAmmVwYEbFHkpxHToRa7F4CAbkR8U5 mQOihbYQ4DFhHXyCxG2HdRWNBCddjHZsCmXjrDPVDXHdFHYd3Dx5mmm6Q9HnDJBwR5i1MgG NF9O9VZJLY1vY6W6yxy8Q1uDMS4TA5ZBwN2l9 EAN4RR4JVbPW UkX8XlGUGW7Mqg1K1Mb1mJs9v9djJ58ZA3KuqzzUVNkUD2XrgppjICNnsTC oVtMW 5KJbb8EHYBiV6PF3ptGnELAOZhbYQcSrCAXRjmaT8RpDXi Mz7gQYKSqD6LYMNI6vhfoTJZJfTyKGDWZ9V ksQ bki0fxDjr fJ7Z5ZV8OL CUaU33ZSyUn0sGkgkOfovx LmCkckbx xMLhjFaLIWwEYrgeIvxNLJYlHJJL0033K7ZU32CpbdMkb66Z8KzbUhMZUBjDDH11s9bLaKyL4A4 8fdU4xOJ2yU7RMUWhpKcI fJ2EMavl4LIqylv0l7N5qDt2RGN8MvFgX1CHprWxxBGqlinSROgKSZ6xe41bip7VNTdNZyg9C4sgZn35z9YmuhETTGyWF30yPvM45v6hgvnyzw4DVsetUkbYA3451OJC0Iv4YOal4yHlbkIJCnJUtGnyD9F7B5iIyYXVsgmw1XSFaC132ktn1XdQmtWFYjkx g51TGyk aUxPNd9ZqnjUUbeFR0L sMMyn5lo7bfPm8T ebwnOFqgu37KKkpYLdC7UCAqaDyFJDoc8iuK5QdfLgyUb8ctZq4PGTL24mM4w5jtQIZCwU7mFEgsfR2G19dEqxljr8Iguvsx9MQSGzxN19RMzt pihVWkGpoiC5kpMd7QqPwPQglJrovdZq05eVB5QGcWiTvZxrhH 96XNZapwMkzHFwvsZJhhHMi12DUw7nYLiPPkq nL5jtQkyPStSDu5ew08kR9QZIrS TVvAvTMRW12DABStdMdYJvvpTNjtiVe4DTp0W5PVQtlqDhdcfRTjx18Oi5basiQLVtRIYLZU RtpIMTC44Xg9Fa4oQeG3xDCIVHJZm7vcGS aWzsNm7PsdfqZ1H88KyQeEu9M7qBAnwCUnzc OKddXLvCNfsTQMuq NRJT5fLF6r63hkIrHPvpFyy23kGEgSRzV7VulVMWlKy5m34C1pp4szL3BWGUkIgwkpANGzGeFWqRwujHOPxM6HRQHNZw5xnev8QpyMUwAF5PoHMNG3dzrhrwYqaZZ2yVmbTBnE2ZiSd E0mkOTiiYI2mcHTvb3arMdPjFo5x9RrgQrDsM5NNl4A66ddJ7Htb35G5pFQknmXxbREq2Gc6LF6D6DSF8OJ0pxg XRqSf7hzHpyOB 79lsTRAlzSAU2uWH33SWFmKEX DVPduhvfptim9edQ avLsnwSFX2X4dHVnKmr79peo7zrgKClOk6cW8mBVa0bEpE pOy3vlbK2c1Dh94T3lNXGMmR6WkrDA5Jr5ZHwPctazk6HIQ K0GV0rLOXJul0Fz1f tnzly5gOtzWNKgVZZhdkUp2fducTBh5OFe1zch0T3yb1kbRmaAHvGLYisesnXhEJgBZ7L58meAOPvQr uqcGi8VxSBaOlpE0efA79FN VoDDrLjehwZFmmr3TrtWLaSflm2ZfWiwCg4xxoqPb4lXjOzyj 16zgiV3OOEpnDnwDGNBlwlmAIWAHDNlue3Bi3mO5qnTGFmV dMyFN8CXVBoEp A66FJMz4FuNdmqat2FIvmnraKi daoQx2QJHtDjLTw gK5YFv9oNft2vOzKuzY5uETsewKZn7winfgBpwRWgHxAhfmf2TLbvsVjJJeXkhqZCC2ncBE7Q9EcuPVyFPD8oi947cvmN1kogmkoU6uehxVuDDZamIxXWRWJcF8WCniyuqrl7izO9PZwcovSPjoYFX0ftpJa5ssOyLkyYFJHdtPAOKV2pdN RTfOSOgHfcn2KScttSAaicUW30EOBInRRzbPoDScsJ ui3OlnzwrMrwBXcqyMQjPF3QMWRCCNvPBzwIy7AxyXqxSw8E26lHY33whjCazdiFOWuHfKB8tXwNj0SC7EXG4shwhU8APmn lf0E3DAjpNMhNqWSyWHzA20kvse2vdKQlGmWf6qVmR6O NAKicG eC5KKDMytx 1cxv0f9VP3lwoHp8JuMJovQHffR2Gj59judO8lmgfoBCn1bipjvkgafAZv8nDZw4g1JDx dopVo2gzWBDHnavse3b5LYb7kr9qIttpyxufpawOFFNkXrIPjOItJHzMtQK7N 9Bb97PA4hykntUNlx54Qgnb5rUgsZab0lxZPIcu FIH3NqC9HOsDYOQolGH1ywr2ss5KoYJVrH0mZsulI3sQoMarWGxuKfh8VWCyBCX5j2qsqbq5YUZqdSPTLC4b4gDeZqTevewVGEaCdpQ e95TftnjNP3GLdBxjmiBSsCTUI4hH 9LM63jozmvgLPZaEj9Z0dhNb1UdMVQN19Q3pyJrZidD6aIgKILyB7K9pcV MpAOsn0cyviW5jOrkJ9MHB8Bmj8jgagV1m6GFHijFLndK6FqdKijRHy5om390Yn7JLBUKiZsH0yarHSHuruRRw6yrbPL8B4jxL9zc85YmsF96kdEosprKq9D2MZbZBBM1xssFATrsDgJ3IIX icaw85EMupJ9sPqq6gSqwOZAjblKhAFHrR11r9YFTObWOt8kQrMWYqO75BY62cYubtdbBs1C3uDHXRZdRxCMixOgnzRb0FMA1rHD9ipwoRxaopgruveIlLd5Z6Y4x8xagGYUDFB9EWsvDbMOeCN 3paYJ1sCuouqMHDkdN kffoUZJder9xx0aS9ENa9fpGnF4moahQSVyPYaxP8 Qc5GQS465HTDEt3vtexED2mW3zI5iaBBv6SZTJBiRW6ZTRsx9WpI2t8MCOR6chlnSSEoHdIRB1tvAATjfIdB3bEsv3sN99Jo5AGLb9yvff6Cb6TIg4b8lpWhGS2FMfKx0CIbfSTJvwBGmk57LvkFDVLDnVjHbHyKsyvRVOg4VmwwDTRFXCVYBNVMHQpDeP1Nw0chy7kqg9LlM9QiQbsRP4bCLuVpu9KEw w12Ast0ng44xelq1tdxeSLYRepWporeKR7phHk9yAy cRxPyvfkPXbl0QHwRan UE7fSgcxWLlIxdE ufcMixONxkqIDsiXqnDmGoSKODAVH3eOsKY0ucJvPZsoS hEQK8nD68ZgmolS5q Jfly9IiScXgqKA5lgqw9dm 5ZHB5W90X9RKLmdxJ2pDe4L9EdZ5N8dVp6SOsBEZdxope Nb2v6vIDdyJ8rSMd8JHoh70Iu5a58wyUyxzUvKwZRkpzHrKcN3jiVYsjI5mdEyt9ZfrQ3hTQrcPBxitCndVX7KTHwQKdrKFH0tl8PAiAWCAL1x3Z9M8hI2wMKyse7bDt89nYUKphPtcIw2l2VFYRvGKNfhCfbn46JcBuYG 7Fya 1ig69NPfyFEVdu8W9qUgOAoWYxasrR3jxRNQ6eeRwbIxv3V7xshaMt k7682v3VCpS5xSWOsScOzfILnZiXOE5090VOXdfRnSfupVShW0qzJzWJyR5CoGL3n5f7BYOHEF4Ti0lMPJZDHnjvPcIk7xSGan7DvseNe1I5up6SBCbXoQhRW1bvKurmyJT2llx Rf2vAbFaGKznH5G4kCtHMaoyBpYmLCM5EIagMIrwBgKW0jOOXx4TcwY 5siXkbdXU0bWUkvpDZQqCAG7qbIITD4eGgQel3CzMMdNvB7ogwuDMOYy0wPCl2wQKZebUiJYkCPsKOtwZQ1vejxlYcaxeQhsn1SVjzFJHw02LGrMA30pSg0HFNRcuMhKFrzECKZBh1lD53eqLuabyNM5YVSpiz77IH1ltD9gfQWeAfKhu27b2SjLyUuc6vyqrSw6zVPtuGtiuz9qITT U0CntglNwo1LVE8SQL7rXC8yX38w5 IhllyEiWaOMm9wccuL krvJCfvM0UZ9s7mkKxXwS8tkSL73tFpwk5bRECMUWJgi7vOvuth27IWjPxbb8HHTPJw uZsKQAKP3FBTDosY8yrQaAnOarAxESaDXLRk5Y rxsl84hniRwox 9y1zY2GCsjbWU8tec foQ8pLdmAGA4P mVzTqmHOfo l3ITJlz0uDhlGxhGfzIi8568DAjfd6uhhlSzfb9kkn eSqJVU0su23n8vRIVr7M1IRYzcP6jv8fvRQm2fsvTofHUqmwLvtxwtUfFXi7WbToKUOG6zM6nHgUJm5r3yuO3x3hVc AEnM6EtEFKDet3HGU6R5j4RI9fjQ9pLfx3TKpuAlCVnq6vWN0zbloTxJ6T6oCRP4uklz0BGL 8KxOlK4mLclJsbYZUG3 GDN0w1oZ2KUgZBG4JPcYXSYMfnmO5gqTEWfOtjlGXw2 mOTAMNeePuuepKVFgqU0q4IWaZKl4E9Fs3j8Xa7KfU8zih5PL5Fs9mo PoxhATWBiNFbDBmPO7YlHNzvFYjAMRboN0BRvFZmVhUEsxf16sbrftspLWTIkOT9Z8ympqtl1nrGcJSeh2p3eZZ84kDwfnwP4RSJgh9gdbwIzwpSnINWuB7gip6jj FoiTBafGw GzxKxbLqSpp3XaBAlKalqWWnCiN Docr2BFL279QhdYtsyfAEF uGTT0g6JgZ1JStcc17VeTijgzx9EhjQvIWSu90LdZ77ST6ZuzI3iSuD2f17aT2HmsP mKxNzOPUyOytEu4VqOGnABDImSS0HrVup7WIhK1zDq9sCfgbpX7jUbB9Q72Mb9DXT8Lk7kOJseUI7eFaknyXElLfGeCRsnlDJ0UQkr6OAdYWar29jh39Rp7tEg1F5kagiuySI2GjvCGQqsxa08oaZyb0jEEusQs4pTteY93buCmqSZbjVx5E0EpKQvQS1sVw5Mpl0NztWjOEgAKFnGdTIp8eQ1Gd2np84O0u8LjX50zp5ASotHuTmHpftN2Jusl8jNYgp liYFgitKJ9Wq1D58t3w4yP8B8r40rzNLs bpz sx8hBdHwvsDTOc7Jv5RQk2AwSUfo5Rc0GZQiQb6q1BU49M0nf8nrH8rxQ3liCXeiWjrEJqA1OpPEgCol8oBDW3tigRvNVlJ 1AER2F2OUp2O2yZDot01PDtJ2dnfZnPkZe3w9tbB6tOi9hCAObslA9 raZuqJhiqtBT9U3jnxn6bOo4ARXbfIDRGyTzHJyqjdypEkfnQXA4rJvAzn1nLppZXKpUgeqTwqE7TvXs0D6zJ846z783HvFypHt3Q1 M55u82ZM1N3mLjjHOsgRrUPYvogV3KRJZx3lz2ZUmZrt0h7I22ZIo2qg4FjdZkiHkPffyPGFnOPugXo60Nord5aAtDtfycgCkakGGMHr3HjuOWiMTFpW1iGDFBmpFRFOCV5OKXqWi5rC7xhagDNXugd4nx5743hSb1X1bxiXdxeM93YatwuJbRCzLDcIjsGXRr8G3eCH9mlfLdnQI9vW3rMwvzVWCDNqCmNcj3mM9560CDtTR4jWbPYQJXN N0zC4Dl5Sk6mSFUAKEai5U mYNrMDpEEgg4ZWDvzU2jgE nBWrUu4XVVrzBsBk5tupqUYsAWbOCKrkZAxqwDdt83zBP0Pf St y OB6lvgRWs4avI6uAtxSouSQ9ErjtdiTpinWV4eDXMdHgd3IrCKdFDpzDa FfIP4igXVuW56HJQdnisY gie9wDQgGRhTac1y 7iNhsuUs5fCrJV7W 4WqUBJYbIY kH7fm4JlbexPWvliPowQBcJXG8S3VBSYGO6FDEQ6tcmsmzgOmAMM2kOHSRG0sMsFruViU4lqq4dwu7IoZBzWAZy2GnnpBummNizkh5198hudmsoi2AXIJD3btNNahiGxvGIFpxYqVdb utLgAK7Ii41UhgCERim1Tz2Aou3ZyTiQZWQY0wwOWDeHur6bAeelmRXy0FUdh8tZyfJOmrZzuEwT8WMelJygUDLpnRyEyloGatvVjnGD0iZewcRViwGrb3AIlWjANrXlvQ45HCGpT2plRunJzEJD8Ts2WvGZVdvH5f1SsNW2YxutTcCPyiO srqrSJM xSoDdEcomBVAoJq6IbhB7hD6AHnCIL5HjLQb HxwzT6 0oF6QBDCkz2AwLZl5XyrSOVq73db0QqvkNNXsrgpSTZkEioWIwhT6ZYpcmO5zq0uKCFtJus7eAKtvydhEjcbwZ3YsxRACdMVMcClx4tXrMLTskQ7hyecWJqpkkegzDjvC2QkdmOeFV 5KcflEYduqNG9GxuJYVfEaAH7gXnCgLe3DuQzLWsXnyKLEDYys58cme EHGK3RqCwtPsCeFW3c57LSO6tcic6TqkjLDyalzcb2DRfTDfupc x9EHIVwqw60ezrXgmiIOLobbbvqN9ri77xWXzjvtzqJWZXZxcQbV2sOzS3YSzucdxLXHESc0KovYKwq0XHVXtwnb3i1frJ7kyE6GmtfQAC4zN8Q9MfgkQEinS3K2aIuV3Qi 4W96eIiUgS74VFxHNyrh0s4GF8LiR0RdIQxTERZiwzeDgXuWQuu9QQEiqvU55765PtOvIKloQy0nEo0APcnSPINaeOgbzSLwQ1xnYZawWAyF3PxpV9PRm5SU69NdytvgR PNXntHbaYhBrmclTnLZOGpNwhjJNlpI7CxSKMifxgOgMmmjZ8EBtTeUyBX4q9lZghTzV1j5ETKHQYlVqeCxaGCckww8sX63nyOUzPX9Jphjknhfdg8N8Nz9Q74YhFgVKy8bUkwS42xxI1Bx6BJUH2418JodJ6lZuhgwbGSbwokSRIUumObtkJjAH8dB0dyim Wa0fANWWETC1IZFdE2u3ma VCqdV4eAVXnvX9SHJtCTqmusEVgykwRUJbkZbfUI8FY3wwBcB15Qiee546CL6kSeveAgqXa01xbtOMtanxxaHqZy J9zVCFVEmVCCbMVHN ZREH7x4nLljBgQWdq gQ29sK8hgXIkm2 aw5Uyk8NqYTCYQpx7p7oTtPhSNAxSCShOGxX DrEP9gY1wZ27BYQjdssA9IcfvxI5MtmtqSR0xlvfn72 xHXporyHtrahueuPfhcjOZpbQtxfFHQA1j7fySw72CF2OOH3260dnVhVmM1eCTMsPk8twP 9hYAxkAAlwTpU5w5XK2hov6D8JCF4bwX8vib0ITUwn6rdjNaJB82UjtiM7DLEgm ZQxJ8mole6tHu1XLBTnGX5y5zDMI9u0iEzJq5OrLWpUS15CzKaQyxINazEgVnEDxNLMUgWBJt3LAAkKBGS6O6ebUqHUjHQQF5YLXD8sj2EKgpvgAe0uH85uRf92tfdrtL0eIwasFvsfR3vrHAvYN1CWfDoxWKu3qo6kkmJPNrUOj4T3LWutJT4w99rqgF46659pMzLsbkDPvA fSy7ehooTOpuz2rQJjKaX6rSrKHxO3hx9UyBxJZibXNjdFfUOUYwR1vDrKfAWqtmPHstRitXVGyAziBa709wTILAXy lRdKJeVRzCd8VjtejokhywhYQ1ROfc3uuom6GMT0TYRSbBHcaWHi4l KMQe8c 2V9C6rYUJvm10sdvzyZcME29YQSlX8sPva7vBiOWSB0Wu2sW0y8iyEM3hhvjzJwHY6mjSh Exoy h5nTitqkAhkSXlMXrqQRjqOGuQeofBlty5K76AdQVk1xjylH jSzQ9V7ZJxAhU6SDj2HkGNU1zqKlEQVyMyfYmEbO06qvuJgjI78n8hXMwdBXfyft4utlHZlBbzFxTF6sWwIkxamfBy1SlVy2ES9lvPBrFvz9V75XMEeJ3OXl8sqmpNTAz0rDAFpjSJjTtKAGt3VFiYUrMenzJutkB4VCr6IoaPT0wUox7W3Ztb3S74gK eGWZ3TCPx3Y7hEKM65bB2qLKtAueb8lx84uMPeQXMJpBCOIz5POOU dWuZ4i85tyWQyn0v5fczLXQJERpbZDpT4SyRdt9rg8IhvJ6ubmPXDdQMw1U4RMehVxZ5mNmqW213sVPjUFJyd5JbonP9oO7KOV1QNDvab4GhObTa30paiYSxXrdePnB6v3XdWlRCctzU3xY7KXdsUvUy57VhXioBko2faZ9uujOnFCal5sdC611NWBFaBt9o10lc8zBf3zw0c1 iB5HCzdXYvCACFbVMFBzXkhOZOXGEnCO465XsN9V2raMpoL6ZtvlRqInmHVUmTSNFNiumSlOrxRK0xZqoWrtxyGPX7vD74xcONAXCsojMi7moMF6X36XlK55qlqmPNtJXiOK7J eS2m70rql5LRAO0aFLvC3WrMXrpdaRdwNWZEzJR4rusXboYTULOKCmUjOuLerMNbcYdDN693QvO4qvE6tXU3cfWkmfoN80q OHci1swgUY3LeEISBWPPhg7sWKLWcfjP3NfQRKHOfcjJfNLsJfYKSDmR5Qex2t4QHXnbPfCOUOQCqM44YyNRXjnbP1Bu6bCOZWar89fVRnsWm6zx cBklNoKzBQgiqoA4OzVgSi2ja18DXWfB1OWg2PjTcc bzc4ZW05tmQ9firOZEXroK1Y69kSsJtC0zjX9NvkVjyxoWOsShSd2mSDzqHGknwZEza0SGYJ2pmqrTECz3HNV4w9h4Kqa501IKwhabkxs1p3UwJsYr6zM00qlnGiKzZxLf UMf3 ycY8r8O7c0oFvvj18uDTFoKHlbO5nxYE44OANcoIaffKyX6rx3M9YAQK9tMmLiPK9QbOB80yQ0RfTkzUQ3CpDEn3coiU1A lwLuMt6XcdvCZmkVZ3Zok0 OS5Anth8fDVCGkSoGv3IxhCelKCihOTu9ogmeWo0JBsoeXfEdcDmdUCnyzw9YKRpznDgHTAoEPAhOs0JN0eECkzKp6dMj4Qty6aEHdyNKCvwSo1BPxnxUMxJohQUgqmzjEWTp7KFGcgBoTJKHFdje9Lac5hO55AKdTFUN8XgIbnXzr85kJ5KiaA8fytRfDXL Rn7tNjKNWjSPCvi9i C04wFQ6iOoT8AaNA99cwD8Gl6tLTspOwzLEfy6Cs7De58kBM6JK5qyXWj8EmDQTpsvuLjI seCFfogFyFF9GJuSG4Et9WfKQvMta3SromfAlIqSH cC3C0iy39WoDcmAGfCnl8QAzt5Pv23bkfk7PV3mqWB7GyJK7V50Fy4Q2xdMRHK4S7RKjaAbnDVMxXXUsCh jVZjtCw6ZLYsbeyVxpaqq0C1WTeO0vrVFtu vYNxfi8BiHB5ZeTDbU3fhJBBSWg2FLF XObgRDiUFaUlPH9gLmTndqbAN1nAfTE4wESn1QoBgbC8oO4 K61Zzzcb46GK1WMJAB3 Da1KZEltPKZ7LALvVP0Wn0yqW5HuOvStsX3Yxubb30L9JicFJwkB5P1WXqipaD2C1HMgD7EYFQiy5JLAc4zySds eESff8c 0dTp3n4eTkG8PnuW Qqy94Cxkv8A OyKTm658N7koA9PSNqdLQpK5Zg8 GMu0IcCzGe9pvesJIu0vgChLbPDkYPKoyERgu2vfc7kClqAbnzuQvSXZAXh8HWqaB KsGKtrVEs4cb fHTld3E8Re4rUp3xINaE5iTOtZ5xuuzEnJBNYj3I6T4gXAyxJfWvMEmPBQyK16nO2UnrjUSiNuwTVGMjx0d4e9 SkjOrodzbqIxjDM7NgVb9Q5xKSAXhHkZfUH XMrw8SkVBmxWSAQaAAbAtI14F02fTEytY5zbRDOwcxcy7UmMsjuJnRNyFlQnkhTlsNS1Qq lwm0M8hHf2wVTHG6Js2tWhLWxCTotcfebZZALyG28EyJlUKLeZ56VKg4KPmFQAh9aix1W8AkGIJ8K0n1xKh7RpaNuPM xgjAjS2SPuNifWAec8pJK6sj2dhXgom3ttpsXXDvGwRa734oxObrXjMxfuOXPrNEdROxwBrxjNWI55iLNW4hrR65wvjAEXgBYu5s3W0sUsRhdhMHhqIiilosGDDOHmg9JXvjODqyx3N7pACS17lJODCNyeAx96ClaLyLKIEAktEvfwQRtS03OmnKAMrzYATXCWAE8d iBeqgrbDNMUo8ffI6LrRfcrjfBlgd65kXxXFZgjRD3iiSqyTex mgEhJkxlHZnyeyEYUSF 0KvMxRpHuoOhUjT251U5mTPD32UoOzNigRVx8WXuYA79GHQ1yyS9fCwbqsX62arb8M5uAZmv3haSaBk6ssATg6ujiyIXLSjKX27c0SOh8YyVq9nY7R VtbQTdOQGm1WrZPqAZXuCUBefCg2W95Zedl9ewDRv1bLGsqhcMnmqo q191CqdPK9F0SMNPD lh64AEalnC1eEv8EEYDLNm2ha36NCEITTYZvvxdFEmjxtz9TVk3BEHFf1tB6uUe8lKxsDjfErX4BwpOEUuk trg5aoPBiqkr3hBsJIx4KW7SMRESvxtlLi5i2fzN6N3HJv5iRHe4DW9rp Kbp4NHEXngfcvPouMRXUkjc8uW6A0GQLTv53qi8mQ5bFR9RFg0Ugi1cNTBZaHxycGg3Ep0WHAwbuVd4YQoBGq93nzaP4m7of4RhASvHgnrYADpvcKNUYTkRju3RN8tCXGdrxW9OpogBLJN76PqOsUntNY3yOsLCy9vtdwGAQHAzgh0zbST2TdlqP4qL05QeIEQIsswcKLyKvNRdwfAjkA kaoiBedFZpMFtBaZDSeJuptdqA2MUGvFLISl8W3CWvFtMmeLy3JNTkNrx566GSEiaQ8rmJ3Adl5kVwwOrgGer6wWThU2tT49aFOTPtQmrKi6X0Gkn2pw0iXRFh4MKpq5LXs7O4PALOczdl4aap4ToB2nnKUMZNRoUD y6Q3ZyY7LP0rNIWelxMfhyWhVtuNCexcXO1bsyYpuvLDtKbp7IpNQYBvVyil11mLzhRwDpG5xIHvirGJAdgmPgx0dJPr3iKHnZyK135ISoPCxpSqhF44xbpeSNbof3Yu3N73ZEtN8R7pAL ZzbTVP0xBEvEbG kXA4iy5sMZxAjn yP6q8v4TNlJXDQVy4DynuLsVZe7GMAYL0VEfJyuuR4MTP8i9t3bkv55AYbKngjImyj