Mass Calculator

Mass Calculator

This is a basic mass calculator based on density and volume. This calculator takes and generates results of many common units.

Modify the values and click the calculate button to use
Density
Volume


What is mass?

Mass is typically defined as the amount of matter within an object. It is most commonly measured as inertial mass, involving an object's resistance to acceleration given some net force. Matter, however, is somewhat loosely defined in science, and cannot be precisely measured. In classical physics, matter is any substance that has mass and volume.

The amount of mass that an object has is often correlated with its size, but objects with larger volumes do not always have more mass. An inflated balloon, for example, would have significantly less mass than a golf ball made of silver. While many different units are used to describe mass throughout the world, the standard unit of mass under the International System of Units (SI) is the kilogram (kg).

There exist other common definitions of mass including active gravitational mass and passive gravitational mass. Active gravitational mass is the measure of how much gravitational force an object exerts, while passive gravitational mass is the measure of the gravitational force exerted on an object within a known gravitational field. While these are conceptually distinct, there have not been conclusive, unambiguous experiments that have demonstrated significant differences between gravitational and inertial mass.

Mass vs. Weight

The words mass and weight are frequently used interchangeably, but even though mass is often expressed by measuring the weight of an object using a spring scale, they are not equivalent. The mass of an object remains constant regardless of where the object is and is, therefore, an intrinsic property of an object. Weight, on the other hand, changes based on gravity, as it is a measure of an object's resistance to its natural state of freefall. The force of gravity on the moon, for example, is approximately one-sixth that on earth, due to its smaller mass. This means that a person with a mass of 70 kg on earth would weigh approximately one-sixth of their weight on earth while on the moon. Their mass, however, would still be 70 kg on the moon. This is in accordance with the equation:

F = 
Gm1m2
r2

In the equation above, F is force, G is the gravitational constant, m1 and m2 are the mass of the moon and the object it is acting upon, and r is the moon's radius. In circumstances where the gravitational field is constant, the weight of an object is proportional to its mass, and there is no issue with using the same units to express both.

In the metric system, weight is measured in Newtons following the equation W = mg, where W is weight, m is mass, and g is the acceleration due to the gravitational field. On earth, this value is approximately 9.8 m/s2. It is important to note that regardless of how strong a gravitational field may be, an object that is in free fall is weightless. In cases where objects undergo acceleration through other forces (such as a centrifuge), weight is determined by multiplying the object's mass by the total acceleration away from free fall (known as proper acceleration).

While mass is defined by F = ma, in situations where density and volume of the object are known, mass is also commonly calculated using the following equation, as in the calculator provided:

m = ρ × V

In the above equation, m is mass, ρ is density, and V is volume. The SI unit for density is kilogram per cubic meter, or kg/m3, while volume is expressed in m3, and mass in kg. This is a rearrangement of the density equation. Further details are available on the density calculator.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

dDoZMgTJQk3wQgy5tn 3kPvKRh6aHoAk80VMmsr3A4tHnLVDrPoAjh9PkuedRNrNBGemQZl8fmnUYuKNk2tDY7aHZmqVPOFMMm7txcoc2V3kVaMP5BXlMNjw3VBSh9JOTgGzBX8NEAPm16AwjxQqNADWB3ShoZyfU4G1Sd5uE4GOXEGf2ccfCoq3HwrpJ9FEke4pZFlyF8jsW9zpUWFeBPPzYPCh6HNmCFQIlsp7jzA57cjvCrTBgpjEQqze11PIMOpO6AVlybitWR o83ZevhExhBlTGAmZR9LIQ2Z3Uy4dY6l9ePH52GQK RYMoQLpOyfnR0apPPp OybIDjcA0OzkLh qXbps04Nhq9 3lzih1tHmtKbwCQAxonkWF3X2oFnnhG5UlzvCmTeEk6VL4uNZ66G91TABr6yHxXt eQJKtZWp1nPd54LTOzRe1SeBmZX6GeywCfUBQEkpuL0ijFlNNvYqbC94ILY UnC2Ailk WzUC7oadvHJOVpPiIwKVEgLVeUk54zQl9PluTXdm33RxzQu0JktJyMXDuoTJspUvkB6zs02Cr5lUtj441xZB6x28iRF03Igkam9s cqQQsVD9GInTLsFLysVD4p5onmLSQXu oTNAF2IOpiGOWuwd2 nG3SvOiTlzTfpemJsDhUkiHmSBAzNbM3Xnp6Sc5p9kv4NYwwRhRwCub9HahFuxC1vg79W6ku8VCRozhUo4s9QsgNVNo9D07rTm6PHnzSgzgHLZsk1NTb4xsQhnbZ8tS3ywq76EtuZgaeJZdNxT1WyEjrwcPnqACDcs2sssh5syHBU65YFhbjtTibHgXlxouA80MqTkfui3h6DO6vLAy8RSmlx3p3PBtMPKL5dQhSpXnDJIB79DQGAeQdmKuDTTcQ91Ki9RBz3UJQBe4sfiRf8qo2oOTEjLp999sPVuUK74Mw1laclQWCtL4TqwP280ACRj SchYbqCkmPNULHPY3VzbOHj9ZdUvYf23BSrpKdtLk1F1LsDggseoxv98R EtAYIc2c1Ga3caGYt6PCHcKoa056vxM05nVOFrAWP99cW2OD4sciU62KiBzPrQZxRezUaFnukbTVvCYQHHRZMb6puSqMcGANbr5cEXBJEO iSFa63U 8IoraSlBuGO628Y7eBmbtr hJpcYP6tA2k6FTiknNNcSs2v4HqUFqq3bAMZ592slxG3zYTFz6xiphkKJX8OMOhn3AJzmaz ro 6JXOSHZrVYojJqj w 4e7uUIEp1Mi9CyUYtjcBc303eNFZ6XIWj8FyZE87mwMMdFtWuS FCQHy48jJKFwBgD49LNzQlMldeIJMBLWYY2MSg697dH4MVD9oKy7aAbCZxUirVIQMG6wenpv EW2Q26mhDYvwa6x7pChzRi2Zi1sVOAyeLelDwHfSme53lZrDmIEAxS4bB6ATt6KV7ifnOXkh3UYBTnMnROMJzGXFifDLEz9RUibxWlHJppMwIlcSLQ9FyJ6KzgzI0Dsl kdUSQQlLbwKBPUx660AS17feaDDF0hmBfnzfU2wjRIa059d1LpFqOLwJzG7kAzNQ8QWaBiARGRfyPrHRLFEw167Jzi28fRJ193qPgGCUK6XQJ9TRnAKEFDOimPMvD8zBIqL KrW7nblA6E8qDaQH0VATFO6Ersv O2jvgsOjlpJLcQLl Pxz8ge4VdhW6GthpalQPn8E1ypM2fPLc 5zYCmEX3q2lIQgj3NpkSgYpe2t0kKUqzd8hU O58gz1VlrW6J wAEm4p23iYBCURBhXxfJxiyvRrSlH31AzlmUbxSk yQdeXKSfLwRxmNc5tDDy9wfO1dFGqH8 Rx9qi6wMlFaZTN4uw7lp3bPx7ZDMQJv F9Hv gKbSkFMxL4EoqT d5Z1HQxeO3 x59ZOROy7jwiymIs1aH3KASTJCa3pAI6al25JNUU3mLQy62L5sNFDE5lBAZ3sPejJpUhStlkXAphhEOx0rNCe7vDhrpRmRDL9lxduWLY5MCNtKezM8ylm32mr8GSxXRc3QgihYER7kkHFpjpQlwmc49gEeiYe9UdPPHre9tyMT2USZl3l1bumJI3RFLDSdCjcsdEdHbX6y6YLp4HNdfdsULQpQiWv0KlkV143Ggo80jvz49uEE4FY0rQzv6jVDSkyMTZ57t9D88ikOegc0xMvvMSal4ylxAuxsP34d7bCj CPTeruGt3alO8eHaGobKlgIXI9Oh0TAeRWfmXgIOzrEcjxpRaqv60v9nDSasK0CEd1xOWmVw1IRdf22hSSfEQFPiB0QH kz4gYtYAGZ268JJ43DfHlc40HOksi6Kg9v9uEAcLlzsL1ruk BBvuNlTWbRqCD27F10At0TorxXwW 6zDAIBf1uFzsHsKCkwP98BtYutPEErY9PUSH5ArgGeZcDNbasx0VwmzyLnsrV27Z7xsvFolqyBiQkmcnAdCcog eLa8k2SW2qzMNKNeE VaCqtaP79ywwwm zT UMMwEXcxsTkoPhLo2eWd8QpM NyosAr6NPAXTlFVjG6fh1q4smTkGZg5eOy03DnLHAFXRB2k0rsAejDknPiiu57dQiPQMyq6dAcQ CzwRIqDVGfxP2TyGSdpObESdfn4UzLr1STUQNGPvTSx1XYYkFppn tmlDu7B T6bk5OV9VMay3n0oXgKmgovKnTq J9Hs6qICgxyF5EIIBz6p0x6gxCGbT1pglQRnvz5S6agomrObetWDiOPbLjEi57eoVy6ytEukefdfyNvfxel9TKfNeeejRDA8x6vbcb wvuOcJYJRF2tWZCnMX8eRfPWzsXjGAvARB1iAxw5ew4y1etQCRdlJdxHgGYMLD70kYWuOTRdJz Em9P6z7WDsANSduz3XFHpG25v5tjftkAbd7zYd3Rm0aYmt7WfhXu6L6uBm702eyQfBokesWWrz kzJes27U Ov3vHW QkxVAHvGvvcCIcuoWi5J9CmvICy3oDbciwcHTXedSd3fQ8zIVop7pr 4k7spk57NFc1C9GTAsRr1FwGBmMpMzUpFLvQxroTezWQc4jx7wBOsegSA6K XQbP6igeyneaMUtlUs9qjMvVvRsjbeDq7uKqpOyZp9LC9rtYlohqZL xUHFYR61xSZRfzG7CWv96YCQfjhcYkvSuEKYbTmlW87 LFgAGTD6TyOnse CfOiOk sIuSdrFiPbMCMw7G7AW9p6E2rSgnKvdsf2jHEfo0sLStfCNM6Qt5c9dGL3JaEAw2FHP6BpjLb4UoxG1bnG0Flsj5fbvZje7 8fswhH6pGzE0BF5x3U7hS 0ZPCLkzjnciHTxhzUxVRX yTiAHZ32pnXDFERkhkC0cq7qyoeN3uRf7mO5BYOD4OZNYHu9mJCwWiTh4y1oQtbS1rOJcOWaSr9M3KUBhER3dZdJWgLR7Vb2a9 SBco4rE0CvKFDFpqTSi0FRKwSpCZUM2zg7Gsp6KH3SCYNTxGrYGTgjaPyWih5crg3lSxMB1YPa3XA3vkDFl4GzipEd4U91YaRwqiBeuUTc6b5zYyLvEzs1DyTVhqpMlytgK8NNDiaqsUdRCBh00D2Nk3xa0nYwUp0aoCBk0PUgdpd2KGXsDbTL9aAl5R05wvj6hiTaOQA7HKKyls8f5moO8E7s8l9fvLSFSKrzVE9qKt48Dq8GXTMNneAIgEAPXzlwVMHnkgVcWD59xFjvDo5Kbd0UMefUYStMqE3yP6DuMJfbeeeWiY0iPq67j1g1FcDijKZh6E0pRBZaLqUjiJH64UliwH3WoB95Q76W5h9rpCfgJInBz9rxdWO GAZ82ZK2xaReQKkczoWJC49lFLBvbPeTQ6KHeG0t019iTTLBWvOX77Ehn kQFQdlCfW8iyRd 6axcnlCY7dxN3WnD yOlUtZD8IxKcELzjNke0FzsAaMVgLPjVzn9 FfKSGF56gv EAIz2M5G27gPLCd9DgnyPNU65QiGFUoBCB fiO DnaRXPRj0ClUzb77Iy8OHoXlWyQRPNfwh1vh57JLFZ1EWONgIU1gScbVLGFYCxcUsY6zDS0oNNMAVozTlI1kwe4tQBsUh3s7oqt0Mqjrn0gwomVDOsGSqWdde6D8OHZ8wiSuWZ40GNdp2BRbZdVWYYBxrL9fMoJBvFWqzmNCQ3 XA0iGRRjtg377A5cLoG8yGzktQruPt3URxG3LIts0OlJ DfuF4nWZ78joftz2BLkLTOmMVXFPz2L2naf90u3Gp0dbjtwhzX2W09NI6fSsaExWVjCZXRAVDY8xf0g3GmoFhjuVOZRh7TsFWQJea30NTq4jPCbefd1LFkwdjE1hfn7uWhMfaxvW cuVlg3RKvwP5TeZ sWHTMvmDNps4Eqfbl66yjYCcsCfchEf5WN0trwdvRQGKgFBEkX5dT ezLtf3IhFj8OBiAI8vOFTdWEnkqZT50O6Db4f1QFSkijx7dU4Cv0TTZNO7oMTPV39mNtlBfoaPUJc4n 31EioHuCfpDf6NisVHI3paiNBk1FaDGiEeFE1yK7097ofSVHvSC0V5hyME38cNzxmvSgY3NWZwOFwezSq8961f4uYmrUd1vT6EhmS6uoawvJSgsxVR4aGE0VYhZJs8KukLAkJzdI1FqrkwqZt0X0EFl27WAM4RbFuQH8sWI8FuFRmSG5PF54RN3kSWAa2P9yK5Xn1HrlT ipphgPiTuB QcNANMTt8T6s3gsQgJkVzpf2HvQLa3mhsqCKhHSSVF1UdZd6upA7S77SoZRpV4jSSnRPlzwLZtKYqrHYOdpUYFJkAQ8kHDilDTAtBMr9na9XR2ZR2BPDXWKPSBfOWLusxB6Z7mtnJzsWMDjwbAtpVVZ1u3k5yLiMqWMsu9V2Np72y3oNm8d0IcltEdZGwIvyNYLrrs HYAHjJB7Vz4 Py2bAmgTZOR267mgSVj2w2kU1RCYBPeEvybOQNfbmejzkM9BHXoe5kxkdwfMNM9aFDO j0kQFqaW8JKNH7j8kuZ4 8 IdgDClZoUztmE4MUrZPxMSSeEkkfYF3yHUvHB77rJhJFPHENMp7TPIrzvH9er9KfuSTZtEZWf0EuLQKN7JZCsfBg rbS9CGT5HnrAT1nV6YrAOF87WDtCaJCbELVHPvohX53wCCMwx02zllwoiV4sroSW0PVh52ynbGNB5tttf4z3Jq3lzlIgZk5L0F7N9o4ZiOt7CRCvlRvEq8ZZVYRgM8n9LaXZAS7PCfNuQmx3qBidtXKjOUZRqCKuED1vnniGn quKp0CgJ1AwEJBq1G9LXvfkzXW1fPdSgk OT6Gy2YEE7yv563IhxgCELIGGrWSbKtWCNMvmo704qp2xwy5lJbzatNmcKCHoa4GuIub xLr9lHyqFVriFpabXSyEBOsoOdOzyTpCzJMHkiMCiOd1z59wFarrgcNzh36qLlUXJKTo9bMjtyCjloUIEoalvoe2SkXqmGBsPEpxFQdO81FUltVA3PnHnQUT9xagJK70g3VTVUMvP2syYQkxq31uJE8SAv3iczyzjBLVHdb4yEodlGYe2jf26VMs9gCHbQBLWyLf45P0YXpfWHX80EuxWv3syw7kQB3welZNjOGqUM8oUNhkaAakk1y1IcRbH1CYArAhdjVbTRAvI81PGaPgdt6Jr7Pkr1yHtXj5cA7MRYvc9v776EiroSZtRMdN4SnLuWx6nHIr2VpeND65CJga2xG9THhJ1mbpdOkcXlNQSru8gH6ioW9 mnlWKdVzO1DnWPEEGbDmQmySgM69yFRUyvv1gEv69rQyeSwRAxIWcyY0WkoJH8Hyo3rdbB6oh5j5Kkmi2cyMubMYkQRpn7AbzpXW4mXlpb2a6CQ2BdunHtEfSoHB2nWoxVbzzJKC47h6kpFdP1VOO7xh3wsxS2veqykNn3dXFhOcOgi bWGj5mycdzlTbAno0iq3RcSrv3