Mass Calculator

Mass Calculator

This is a basic mass calculator based on density and volume. This calculator takes and generates results of many common units.

Modify the values and click the calculate button to use
Density
Volume


What is mass?

Mass is typically defined as the amount of matter within an object. It is most commonly measured as inertial mass, involving an object's resistance to acceleration given some net force. Matter, however, is somewhat loosely defined in science, and cannot be precisely measured. In classical physics, matter is any substance that has mass and volume.

The amount of mass that an object has is often correlated with its size, but objects with larger volumes do not always have more mass. An inflated balloon, for example, would have significantly less mass than a golf ball made of silver. While many different units are used to describe mass throughout the world, the standard unit of mass under the International System of Units (SI) is the kilogram (kg).

There exist other common definitions of mass including active gravitational mass and passive gravitational mass. Active gravitational mass is the measure of how much gravitational force an object exerts, while passive gravitational mass is the measure of the gravitational force exerted on an object within a known gravitational field. While these are conceptually distinct, there have not been conclusive, unambiguous experiments that have demonstrated significant differences between gravitational and inertial mass.

Mass vs. Weight

The words mass and weight are frequently used interchangeably, but even though mass is often expressed by measuring the weight of an object using a spring scale, they are not equivalent. The mass of an object remains constant regardless of where the object is and is, therefore, an intrinsic property of an object. Weight, on the other hand, changes based on gravity, as it is a measure of an object's resistance to its natural state of freefall. The force of gravity on the moon, for example, is approximately one-sixth that on earth, due to its smaller mass. This means that a person with a mass of 70 kg on earth would weigh approximately one-sixth of their weight on earth while on the moon. Their mass, however, would still be 70 kg on the moon. This is in accordance with the equation:

F = 
Gm1m2
r2

In the equation above, F is force, G is the gravitational constant, m1 and m2 are the mass of the moon and the object it is acting upon, and r is the moon's radius. In circumstances where the gravitational field is constant, the weight of an object is proportional to its mass, and there is no issue with using the same units to express both.

In the metric system, weight is measured in Newtons following the equation W = mg, where W is weight, m is mass, and g is the acceleration due to the gravitational field. On earth, this value is approximately 9.8 m/s2. It is important to note that regardless of how strong a gravitational field may be, an object that is in free fall is weightless. In cases where objects undergo acceleration through other forces (such as a centrifuge), weight is determined by multiplying the object's mass by the total acceleration away from free fall (known as proper acceleration).

While mass is defined by F = ma, in situations where density and volume of the object are known, mass is also commonly calculated using the following equation, as in the calculator provided:

m = ρ × V

In the above equation, m is mass, ρ is density, and V is volume. The SI unit for density is kilogram per cubic meter, or kg/m3, while volume is expressed in m3, and mass in kg. This is a rearrangement of the density equation. Further details are available on the density calculator.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

YIbopvYy5epM4RKgX1VCUV8bJGo02vRXsyEVjmHAdAAtXRDH1h704x5Pl4Z yWQwnV1v8Jf4wRM0lt23sNmhzUdq1nUWaWBZhIufYW0Nqz1o8DZEqhrTzIA6IVKQcINnrYaxCdT2lBPnIvuQx3v7DS7jBlt14Xnpi8Fg4LF4nrFKaqOWKkyLmkYZtKchtNj49xDTYqD6yu34VqvkOBm7HR tzzBkBwjWxH4MkoyXqanSjjaKHqEYZyAos4HJ BpFumdjp36tsf0bUujFGtukOjS70LzWK5tYprahJT8bnypMc6KlLazjnyP2DVK1PInViIZKoVMgxGg rQRZ70TYUXzKGQTmaFiTdzZdE3eLS42Pi58wvHb7hAZFw7wVjY3cLDocVNzQYpphteF9T5qdWF7XmLjHlVyGLoaDDdD87u47CCb8rLbMOn3EqkfG4gjWPKsiJVOctVsScxIMObW3XiG6wxm3S6xUJ1P916lReKUsQdGpWAq9oQehnR0hjHYH1A9iKqDVX09RxmQx8b9ndq8UWFw9d0Tlx2AE80KOQLFi9Swf1hzlvBsAOJZn4mYAp0 T9RmkCiN47CVmn3MfKkHTGdEQ3xNY127LaQ70dG6jq9SLXdSVhHRAk NuzXXK0YFEEuoFDDO9PhCY47fMKhgtTYKLUmAt2eyu1Ft2wrVJItHd3PTbHWniMWTcLKmcmXxwaTC1V3iAKnj4anqz3kkopzBY0UqXiXt3TegQDPBCtME0kdPzApS80GSKEJUF3K7ByFK1qFE5TFHO3xcj6 5GbjA t07j9Xa0Wp5VPba3MohlNfBZfUERaK5QA2lZyora23DCPJXqHY6YLreLl5lOvPz1bxT1jUkqqm7HcLkYGrJOwyY1yQ0GvrMAlhnnpDdp2canQ68BxnpcZlz5v8ayWh 9sAn9GXZbhmNroBAGzP0pfhdPAZONNm7PTUc5HmFcCRpifY8eXbULAmfb62o 1Y61blehX2qY9cqB1cJtGN xEsD1QzWq6bf7B8EB3qQhmj7KTZcDGMEjpbJ5suaEL88RzGzljHQ dsSgpP7J7SwDQFsojJYdCscDQDNoBsLs6WAVB 2s506VSfsbwiUIqBVNac4PcmSvw3WJsWDPTOJ7OzxYaUs6LjJGDaw031gL7NZagxpVPQEW7cl7SjmWS7GBlzPr0uSpekEh5QTccMdLVdMF5amv35s1pGhGX2C SjYolanDchEkZIImdJykGjNpiNT6 14RPE2X27fRRkS9qx4XI6OXlhZjN4BjO11w2GwlwnQ2xAsYzAT5JKaCmSoNRleAcWkzXZEjoxmyOwW8OWa9YQm5lhLk0v4Ex5TjVT5MGTptUcIUSTwjFCQWcXUTO5XZND1HuE7bdiu4aO9WnvUHxGhdS2rwl3pVoU M0NWK8wahAYtzwgShL6HMG1RflyNGRJtRdBbiYfHQIqHIJXPZUoIZlqyUTRQP7v8SfLbleYYoZuXvROft8MlRHtt9g1ra6drlscfT7PMczalA2EGH7GKFMJTL98gWQIEFeyeryAP38cJygcq6qFswculrAEt4CP8iQZcPnUOiYHHvi4hbaTnAyNRbOx7iIhB QRsQpVfTX89B2Eqke0YgHQ3Bl3Zam3CuEPMt5EP vdq5tJ1RyauHzqmIlDAAnnljacYsoujR5nUknImMU0G4i 6qsxa 3SCBP9IxTinoKN03wUs7W7X7eZNpm3VYqjQmwkVJqOXeZtVLxVCHuhi2T2YiRGXEPB36Asac5q7aVp8GLz85j7NSgS05F J9MEGXdmtoLaen3atogOlEgZK fVwriOY2ifhSoXLe 0qn1js3ybn80k8VeCzFw0nWWAMnjLsvW9MYIEDjxGfIaE5BKaTXnu969OaaUL4RJv0HpAXyPqxm8kHFiZdfNQh5Be6VoEJw7mozHHdB2urR0a9R9s9nwr6ETDO3wCopcQs77zg w 1PqRB5HI45JMRYdRnFQdjyHgNbwcJzzuXDIN2RfSgfiRDxLX7D7bAPBphvNL7gHry5SHBADqEvnUEE7mbfnxXfroQDkdutiMPBuJWGfIOxPVFlhOBTAcMzsdPF7bDC8HFmA2JbNtO6Nqh64n0IaUxAGFnAARcLsuzAxkOFJ4UDZgjcs6YDRENP9HQb3Jd9HIOdPfcHLV6XJOyNUXJenX7 n37HI6XJhfACwbOGHHHkeQ4RYwOE0s3xyw6YBq1kWt4PkjLNeibgWcOOqzqNQ8jlJ y5toFRg3KYpxnbQz74kN8ZtWfdd2QxNd17ymdVB1UtzbT9rM7zjh6T9GMRXOToBvZRnYBBkfyzY9lKNrkvD0IjX9Ks02D9pJjQAPcOGoW0IAxcIzVx4DHjpyOvXxVm oFCZsiQnQ5XGPirJuAXKbgs1F fJaMcBsDvUxc6xM2YVdalE3iwAa6iVoV4Y0IvyjamTE70eBHaPvuxUaFpfzp80yVoNaHeLFHoqyfke1cYzwa509BYXUN1MT5iqDGUfIn49bdPJlVPHsXWvfEay90snlXliHkaGI6OaWXniZAD9gQEDH7eJ4ErGQDylxn3C9qMcF OLLQ2JJC75gEYLu1Ky8xybP7JnuUwKGK82O8VjXW5 ucJCnVsAjLg9J2Fti 1fd9Pzm13RGYhl5PWi8OaT1kQ6lueWiZdWFLs0lV3shg2b0fJD0IRQpb9mJwhWjgViRyVD4gAq 5TdIqW9YYLYdVvkeeg1BdpStgIcAu7t9wnpDTIDZbXBk8nrXi2unT8IJJ16z8kBt 0oivbFIuzSf31MYsKH iQGysqW2xUfQFHs2HC7cCS1ZVlvuzIkr6VwvohYqmQh9kNvN60XNKTz2iYspLDRExarFiKA Tqsyn44SsTToiryZt5R72vbGTrUAcjv0bvxLLR553MckjeQRQBbKO 7Dq22Zl5oRNQOYO IjAcuP89SEcP5Eh8yHhfx4Xjni1oLL0HoJQH3okgh0U65TqkXz08h0DJ HcsNuUckLjqCSCnRwqpvl9BAzNSdt6nkvaV0RjOom57G7cUPlTyCp0gZcPJQnInH9et7cTt0sgKqXnRiPubjQ80fHfGL178j3HiT9EfAeG1RD4AIjFpoY5X6yx38cdAg8PK2jeHkr5qOxnQ7qEwCnv2FbgZEzhz fuQFfRvtraVTBLt1eX1zK6cu5sj0WIdhEiPxRVWivvRnCeREQ46lSOxb6y9sPlfbmC2Hcx aSHd4etymshkPIbnRY lQzLbKYPQcp5Spszb2VKa6t0275nX98jUCotQeOhqyUsiJsVvYK61AVPwt 0pfXgeRcEGZjViQix8nuq3322W1U7XSS4QyEygTUO52cnlzHRJbwG2ZuwC9IydIY wA JRJa6Ys2VtTH0w3YNp hEphNiP2ED4tU2XLEwV1lIvqEDnElJmm9QnTFjwd zQ JkToziUsypYiRelqsveJvT0CUGk13b2tgRBmTFgpN BYgo07FyCV398nTNtFLwgD2wzDlkAtdjn2xQO8uAFijLAPPlbpvXuPApdQE O2PYSnHbW9Av4A0MTkUeA4hh iollqnrC9JACX1YuAoi0 9PBXYPfRqBWMTx4YJ5IcQFr082wrlbosWp100tsxdOCBxGmrgXU5PhoapgRhQtSs693ArLpXfCD0eJY AU1shya8RGVlTsKXNIYoEPXvdnHRCOYtt4PpiWELMIQ99fplPyFBK N00Bb9nuideiPmub1jNqrFA08YlOYexXrXKtdRQ7LpE0LKjpMZXjYB3vTxG4HDeeyKArl3nlGpqkzSnFplVkmtUHK7zh9LITTrsS nob6qhbPgIsVLCiFgtxAer kDt4sGAwCNDPwBMwHdtvPfu HGz9zp2fSTy8wPnrp 82ASWFbIudewL3dK57kW2E6nXAAQ2ZntwRzrGG6nwxplZtCOzg64MwkHa7mlvMvEOj2ga8IWDmmLrNHcj595imLi5x7ymNgU9LLaZdX4HYYICRpUCKOWyabte4 NC4VQwk2eQGcRBHp5miziGQtj6kIrisFvdtyJNB3kVuTBJ9n4ldUoaeA2OhIU9bX39r0AfryJ4YFkrB6BvJvCiqZ1fUyoXzJK4wGQMieuc1Sx4emfoG630QUA9pfHO1H2jqQO d9bI6H9XxgYZXKBqHDuixedFj3WhleW49is9jrjRuWduWz0cy3vCA8yQRv5vHMImyRneZ1vu3uD1K0UUtbSx5UjfEiINzNhuO4ERLqDQ6ZpnjG6IA7m0xf4l82v2ww4djq2Rsr0753XRWXqvWDCFIZA8p0ET7QHNuQK0YPwSlJauDogklo0QtuVMTZNN1NeGCrgBAEAoeiMH3XmMQ1keeW4KZMDcRieOArnqhfuvXoJGl3Dbal7EEpU9iLQCsJAwV8sOiRapSfvntNwtN3IwsyDCOofokqEFgLWhTes20bBKiuXD5i0L8jKk5Eq1ClW yrEgvl3Be1Cqb7dDV6xixLYJDbduWPwW4Rw6fUEhmBjPnatq efNXAusNMzB IczTT0bD437oiXO7CSCGRY4rGRsfNKuBAniNzroZZwVa76UcdeIaYTnCyUwLhfkNcqgTbvadPtmsf4dQhclVJF7QOlPDjqL5sA5Y1LqSYCOwYAOSeSZigYlZR0B7k5VF6wmO7dpujRgAC2Akiw1F8kv4OU1JXTi24VP4sQ uC6PG7Y1FXjXywMskjdFn7TWl6y0RPiWmQIGtZjvsU YF1fj8hl1TYn lp9lf4bRegb0maWV5qAttbLbPuiHIp oQiLCNlpaumGAYTNPJdVkZfUBgdGVmSI8zvIB SgWKg1o0UzzXhgGbX68fz6MWquFyJaADSkOiPWw331WrddWfBBIEQrTMxFWlAq50NUAx7HMomMUpbvp7NQg9Bqsw12AxUlW6325SZ9 Rvv aLOkfAESbV2jGqKMVxb cdabdE8RVLVExxVBPElE38Nrs8bsLJUjQ4p6BKY54TBU29RwlFPVSWg4qoxnBVqr97sam8IPkXrvkIbNqm7MULmtoNureIpQHLLdTGDsHHWIVG7pgMSISbBWPoH IPZgvbHsFUjZbWjS1La08j2z6XjAay6E8DhYwKh9l7OMmIhV973MaZ usnMqaopofr5q0wD7KT9dNkSiQcuV Gy5AQXPB4ofEf6KzNyzcnXT9RHGeKfW7pHJMcHhJHx wWQOYw0bqIcwoj4NYUCY5FDoE2qBY5IKpv9mZ3XnpoxWWBgpb4ycmmWxMZ Eixkj66MbOlrrpkE6Trwr7enZo4we XTq ZPPSvlh W5dNXrdRx9GdrHyckq4nWXTtgUuNfQ6yzDUpjs1uFYeBWeR