Matrix Calculator

Matrix Calculator

Matrix A Input
row  column
  ×
Matrix B Input
row  column
  ×

A matrix, in a mathematical context, is a rectangular array of numbers, symbols, or expressions that are arranged in rows and columns. Matrices are often used in scientific fields such as physics, computer graphics, probability theory, statistics, calculus, numerical analysis, and more.

The dimensions of a matrix, A, are typically denoted as m × n. This means that A has m rows and n columns. When referring to a specific value in a matrix, called an element, a variable with two subscripts is often used to denote each element based on its position in the matrix. For example, given ai,j, where i = 1 and j = 3, a1,3 is the value of the element in the first row and the third column of the given matrix.

Matrix operations such as addition, multiplication, subtraction, etc., are similar to what most people are likely accustomed to seeing in basic arithmetic and algebra, but do differ in some ways, and are subject to certain constraints. Below are descriptions of the matrix operations that this calculator can perform.

Matrix addition

Matrix addition can only be performed on matrices of the same size. This means that you can only add matrices if both matrices are m × n. For example, you can add two or more 3 × 3, 1 × 2, or 5 × 4 matrices. You cannot add a 2 × 3 and a 3 × 2 matrix, a 4 × 4 and a 3 × 3, etc. The number of rows and columns of all the matrices being added must exactly match.

If the matrices are the same size, matrix addition is performed by adding the corresponding elements in the matrices. For example, given two matrices, A and B, with elements ai,j, and bi,j, the matrices are added by adding each element, then placing the result in a new matrix, C, in the corresponding position in the matrix:

A =
12
34
; B =
56
78

In the above matrices, a1,1 = 1; a1,2 = 2; b1,1 = 5; b1,2 = 6; etc. We add the corresponding elements to obtain ci,j. Adding the values in the corresponding rows and columns:

a1,1 + b1,1 = 1 + 5 = 6 = c1,1
a1,2 + b1,2 = 2 + 6 = 8 = c1,2
a2,1 + b2,1 = 3 + 7 = 10 = c2,1
a2,2 + b2,2 = 4 + 8 = 12 = c2,2

Thus, matrix C is:

C =
68
1012

Matrix subtraction

Matrix subtraction is performed in much the same way as matrix addition, described above, with the exception that the values are subtracted rather than added. If necessary, refer to the information and examples above for a description of notation used in the example below. Like matrix addition, the matrices being subtracted must be the same size. If the matrices are the same size, then matrix subtraction is performed by subtracting the elements in the corresponding rows and columns:

A =
12
34
; B =
56
78
a1,1 - b1,1 = 1 - 5 = -4 = c1,1
a1,2 - b1,2 = 2 - 6 = -4 = c1,2
a2,1 - b2,1 = 3 - 7 = -4 = c2,1
a2,2 - b2,2 = 4 - 8 = -4 = c2,2

Thus, matrix C is:

C =
-4-4
-4-4

Matrix multiplication

Scalar multiplication:

Matrices can be multiplied by a scalar value by multiplying each element in the matrix by the scalar. For example, given a matrix A and a scalar c:

A =
12
34
; c = 5

The product of c and A is:

5 ×
12
34
=
510
1520

Matrix-matrix multiplication:

Multiplying two (or more) matrices is more involved than multiplying by a scalar. In order to multiply two matrices, the number of columns in the first matrix must match the number of rows in the second matrix. For example, you can multiply a 2 × 3 matrix by a 3 × 4 matrix, but not a 2 × 3 matrix by a 4 × 3.

Can be multiplied:

A =
a1,1a1,2a1,3
a2,1a2,2a2,3
; B =
b1,1b1,2b1,3b1,4
b2,1b2,2b2,3b2,4
b3,1b3,2b3,3b3,4

Cannot be multiplied:

A =
a1,1a1,2a1,3
a2,1a2,2a2,3
; B =
b1,1b1,2b1,3
b2,1b2,2b2,3
b3,1b3,2b3,3
b4,1b4,2b4,3

Note that when multiplying matrices, A × B does not necessarily equal B × A. In fact, just because A can be multiplied by B doesn't mean that B can be multiplied by A.

If the matrices are the correct sizes, and can be multiplied, matrices are multiplied by performing what is known as the dot product. The dot product involves multiplying the corresponding elements in the row of the first matrix, by that of the columns of the second matrix, and summing up the result, resulting in a single value. The dot product can only be performed on sequences of equal lengths. This is why the number of columns in the first matrix must match the number of rows of the second.

The dot product then becomes the value in the corresponding row and column of the new matrix, C. For example, from the section above of matrices that can be multiplied, the blue row in A is multiplied by the blue column in B to determine the value in the first column of the first row of matrix C. This is referred to as the dot product of row 1 of A and column 1 of B:

a1,1×b1,1 + a1,2×b2,1 + a1,3×b3,1 = c1,1

The dot product is performed for each row of A and each column of B until all combinations of the two are complete in order to find the value of the corresponding elements in matrix C. For example, when you perform the dot product of row 1 of A and column 1 of B, the result will be c1,1 of matrix C. The dot product of row 1 of A and column 2 of B will be c1,2 of matrix C, and so on, as shown in the example below:

A =
121
341
; B =
5611
7811
1111

When multiplying two matrices, the resulting matrix will have the same number of rows as the first matrix, in this case A, and the same number of columns as the second matrix, B. Since A is 2 × 3 and B is 3 × 4, C will be a 2 × 4 matrix. The colors here can help determine first, whether two matrices can be multiplied, and second, the dimensions of the resulting matrix. Next, we can determine the element values of C by performing the dot products of each row and column, as shown below:

C =
202344
445188

Below, the calculation of the dot product for each row and column of C is shown:

c1,1 = 1×5 + 2×7 + 1×1 = 20
c1,2 = 1×6 + 2×8 + 1×1 = 23
c1,3 = 1×1 + 2×1 + 1×1 = 4
c1,4 = 1×1 + 2×1 + 1×1 = 4
c2,1 = 3×5 + 4×7 + 1×1 = 44
c2,2 = 3×6 + 4×8 + 1×1 = 51
c2,3 = 3×1 + 4×1 + 1×1 = 8
c2,4 = 3×1 + 4×1 + 1×1 = 8

Power of a matrix

For the intents of this calculator, "power of a matrix" means to raise a given matrix to a given power. For example, when using the calculator, "Power of 2" for a given matrix, A, means A2. Exponents for matrices function in the same way as they normally do in math, except that matrix multiplication rules also apply, so only square matrices (matrices with an equal number of rows and columns) can be raised to a power. This is because a non-square matrix, A, cannot be multiplied by itself. A × A, in this case, is not possible to compute. Refer to the matrix multiplication section, if necessary, for a refresher on how to multiply matrices. Given:

A =
13
21

A raised to the power of 2 is:

A2 =
13
21
2
=
13
21
×
13
21
=
76
47

As with exponents in other mathematical contexts, A3, would equal A × A × A, A4 would equal A × A × A × A, and so on.

Transpose of a matrix

The transpose of a matrix, typically indicated with a "T" as an exponent, is an operation that flips a matrix over its diagonal. This results in switching the row and column indices of a matrix, meaning that aij in matrix A, becomes aji in AT. If necessary, refer above for a description of the notation used.

An m × n matrix, transposed, would therefore become an n × m matrix, as shown in the examples below:

A =
13
21
AT =
12
31
B =
202344
445188
BT =
2044
2351
48
48

Determinant of a matrix

The determinant of a matrix is a value that can be computed from the elements of a square matrix. It is used in linear algebra, calculus, and other mathematical contexts. For example, the determinant can be used to compute the inverse of a matrix or to solve a system of linear equations.

There are a number of methods and formulas for calculating the determinant of a matrix. The Leibniz formula and the Laplace formula are two commonly used formulas.

Determinant of a 2 × 2 matrix:

The determinant of a 2 × 2 matrix can be calculated using the Leibniz formula, which involves some basic arithmetic. Given matrix A:

A =
ab
cd

The determinant of A using the Leibniz formula is:

|A| =
ab
cd
= ad - bc

Note that taking the determinant is typically indicated with "| |" surrounding the given matrix. Given:

A =
24
68
|A| =
24
68
= 2×8 - 4×6= -8

Determinant of a 3 × 3 matrix:

One way to calculate the determinant of a 3 × 3 matrix is through the use of the Laplace formula. Both the Laplace formula and the Leibniz formula can be represented mathematically, but involve the use of notations and concepts that won't be discussed here. Below is an example of how to use the Laplace formula to compute the determinant of a 3 × 3 matrix:

|A| =
abc
def
ghi
=
a
ef
hi
- b
df
gi
+ c
de
gh

From this point, we can use the Leibniz formula for a 2 × 2 matrix to calculate the determinant of the 2 × 2 matrices, and since scalar multiplication of a matrix just involves multiplying all values of the matrix by the scalar, we can multiply the determinant of the 2 × 2 by the scalar as follows:

|A| =
abc
def
ghi
= a(ei-fh) - b(di-fg) + c(dh-eg)

This can further be simplified to:

|A| = aei + bfg + cdh - ceg - bdi - afh

This is the Leibniz formula for a 3 × 3 matrix.

Determinant of a 4 × 4 matrix and higher:

The determinant of a 4 × 4 matrix and higher can be computed in much the same way as that of a 3 × 3, using the Laplace formula or the Leibniz formula. As with the example above with 3 × 3 matrices, you may notice a pattern that essentially allows you to "reduce" the given matrix into a scalar multiplied by the determinant of a matrix of reduced dimensions, i.e. a 4 × 4 being reduced to a series of scalars multiplied by 3 × 3 matrices, where each subsequent pair of scalar × reduced matrix has alternating positive and negative signs (i.e. they are added or subtracted).

The process involves cycling through each element in the first row of the matrix. Eventually, we will end up with an expression in which each element in the first row will be multiplied by a lower-dimension (than the original) matrix. The elements of the lower-dimension matrix is determined by blocking out the row and column that the chosen scalar are a part of, and having the remaining elements comprise the lower dimension matrix. Refer to the example below for clarification.

Here, we first choose element a. The elements in blue are the scalar, a, and the elements that will be part of the 3 × 3 matrix we need to find the determinant of:

|A| =
abcd
efgh
ijkl
mnop
=
a
fgh
jkl
nop
- ...

Next, we choose element b:

abcd
efgh
ijkl
mnop
b
egh
ikl
mop

Continuing in the same manner for elements c and d, and alternating the sign (+ - + - ...) of each term:

|A| =
abcd
efgh
ijkl
mnop
= a
fgh
jkl
nop
- b
egh
ikl
mop
+ c
efh
ijl
mnp
- d
efg
ijk
mno

We continue the process as we would a 3 × 3 matrix (shown above), until we have reduced the 4 × 4 matrix to a scalar multiplied by a 2 × 2 matrix, which we can calculate the determinant of using Leibniz's formula. As can be seen, this gets tedious very quickly, but it is a method that can be used for n × n matrices once you have an understanding of the pattern. There are other ways to compute the determinant of a matrix that can be more efficient, but require an understanding of other mathematical concepts and notations.

Inverse of a matrix

The inverse of a matrix A is denoted as A-1, where A-1 is the inverse of A if the following is true:

A×A-1 = A-1×A = I, where I is the identity matrix

Identity matrix:

The identity matrix is a square matrix with "1" across its diagonal, and "0" everywhere else. The identity matrix is the matrix equivalent of the number "1." For example, the number 1 multiplied by any number n equals n. The same is true of an identity matrix multiplied by a matrix of the same size: A × I = A. Note that an identity matrix can have any square dimensions. For example, all of the matrices below are identity matrices. From left to right respectively, the matrices below are a 2 × 2, 3 × 3, and 4 × 4 identity matrix:

10
01
;  
100
010
001
;  
1000
0100
0010
0001
...

The n × n identity matrix is thus:

In =
100...0
010...0
001...0
...............
000...1

Inverse of a 2 × 2 matrix:

To invert a 2 × 2 matrix, the following equation can be used:

A-1 =
ab
cd
-1
=
1 
d-b
-ca
det(A)
=
1 
d-b
-ca
ad - bc

For example, given:

A =
24
37
A-1 =
1 
7-4
-32
2×7 - 4×3
=
1 
7-4
-32
2
=
3.5-2
-1.51

If you were to test that this is, in fact, the inverse of A you would find that both:

24
37
×
3.5-2
-1.51
and
3.5-2
-1.51
×
24
37

are equal to the identity matrix:

I =
10
01

Inverse of a 3 × 3 matrix:

The inverse of a 3 × 3 matrix is more tedious to compute. An equation for doing so is provided below, but will not be computed. Given:

M =
abc
def
ghi
M-1 =
1
det(M)
ABC
DEF
GHI
T
=
1
det(M)
ADG
BEH
CFI

where:

A=ei-fh; B=-(di-fg); C=dh-eg D=-(bi-ch); E=ai-cg; F=-(ah-bg) G=bf-ce; H=-(af-cd); I=ae-bd

4 × 4 and larger get increasingly more complicated, and there are other methods for computing them.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

sCBWJ7gfpRYFSib32swnwQv0IVsqxlufrEYCUprw JwsrGprixmUtttTvR2aUG7knJ59X LTwmVay7XxTHEwdHB0OYXEssgrY0YnABxnMTGSYeVU21sarhlQUroGkVwp kBiQ64KA0xzgNFP1GnRqnmQ5oCO0mg50wwKpgSfrKSMKQqIi8a5bvYd1BKWCYZ7NlkSlCKg49jQe8W9tH0o3W2NIFGbLtJVl5CerYdr9eG1XQdjX3J14 dOeCfa W9VVaEV4m30A8MNcTJLz1tzA1AaRMji3V1RRJfjjWrxdXPAEKMrR0TRD1Tz MK oZ8fGhUci47Hbhq0DiDbmBDiq9KkaIeOHeOGmN1BFmyKIiwX2Z8NdPXWdWXYktMbowE75Qdr6tx8NNiNQSmsmwOmex2yMt8SrqsNkl3ilbO3wRH1AJyRFPUNX9InLCMWZpNiwVJQtJQm0BsBtNxedlr AbEtjLdr4Q0iRdExxY5HqfUYWEfLs9q0rPELOAkc3OWE6WWj4uJsdXAXtRArJGnx1KMDwoUUtxWAYHEpOHLvyIuhjDGYkijdKKVVJijgrlosI NMaemwZx5S2QzpSraJRpFFfW2WkAAD8ECdmRnK eRtK2cwQlgsslwcrEUFD1rApg bHZJw9bSoLFIizNYuFLu7uz0RW4D1 Q7JCFqiSXChicaMvhoegfx7z4jncLNBI8nGYhrljNcSmyrN6VfhXKNlEY9q5uZgIrANn QrsqOlJkpUha1zGNOFO lVoJfFOmcddJDZgPtu1U1kKzBqQRqj0gOP46tTMthLtY61l9ezTPrBlnlP GfZmdokXtW8f2srdKTN83DSipqH2Ve24sl2A9ZO4kLrnlzemw1nsYhoQS2Li404oeIxYjQUS5MkrS9ZZg6g7 UEMWqwtcn6siZMRzodZFeqC8vxwZFjBfZKaNV9AUdR5EgUmP5pItFahoex IV0uRUcYoDSY8HeBPTxF7dvuI0S2g9q1u0EQUPrPcuy4SOA7kIwMR7XaSxJPloeR81mCUbVXJhUw4ugwLQFiRki9g3QoQWnnEa eyKVScWkRTNqMhG8xCkzUnX9B1T4YknnQOBJv5aLC71szYd42tMD58eQxBJDNX0ivNHPZGTtwO9xbmQMCwZIM6yPVBzKcRX2zIfWMMdTJgQWLgCJq Hdpn5dp419tcDNUcHxz8MWgzOZXQCTx0OBC5rZvuES08ZDsTQb2mugQMjv9nSwWQ5jCAEQAIq1JuFdLCEYsWZymYbm7SY3fd3qnBl6VjjdQ5DV8VrV0SKmwhxuJ9TIuSKe8y71UfLjQrCe9IlZHUBRSC464R3d53qroHKsR5j3Z1yeLq4RM9qth1mj3r7OBl9EETVNdIOZUhcJv8CmuF3qI1tuSlx9YVO8aymDktNGnsJoh0geH8yPcPkjtxbhOL8qaijZCLVGBsF4dyyEt2858AT6TGR4uvTSzWO01wlgatf YIPPYmqouDV6dIBdhIU1HQtgjH5oCVRlvX5bIjETYLUpX 6XjbCIa2Yey3hM2VwUb8Id4PSS3Cxvece4s79qcrjWO9xcCLJFeeFWXH0OQ8ZXPlJUgYDbov5nOLk1boWRR7CeIfUMjDVVcvRsPKRn8DWM21Bl5E8e1GXFubOtvX5ECI3Cwe4BcrSFQRzYoFKRdXOTgEDAfwqx97P77RMRIzfIcFsUTk riIj6XvIZLkNOpSjJmnc1yPwtWn8HFErzhc2L846x2DF1QKr7rIrg8Qb8928fxMlTY fJA2A5mR3ljeDfX8puzatI7 1G65yjJ4SkdI6L6FEFTRz5c5rLgpop8P345ueraNRR9eh dcboiq6lA9ShfoWDRbDgU2EmFT03NTqI8nawX7yAM49EfYI9LZChPdOLI2caKMzdcbkg213bR0ypmzL5ONmUyV1R1fh4kuZk8n Qrk5dJL3XGuh7Nl9LcM 6CB5iaKAtYReAmIT5IHCSmbwZk70YgIaRbsYY4emhrIqZVSvfvl2EOeIiYIsGyYUg9JUCZkCajLIgmJ nin3 2hgB2YoWYdu9f4RMKXv4GH5vMUQOMEEyAJn8YGqjgcCD8R LmjRI1IFfrQpcllU1bJX25K3ZLsZMsIgu3oDJvvPZCZzGe2UNNDg8 0um8aWaJYC97JTWe6xu3bv4gjBBWhjQ6kV9x jg7Hc3yFEHVSZGtlojEA CXExlCAhW9iH0XYAksWdFZNpBbFd0QkqIGeeStygH1rC3l6NG1vOmwWDHw3lkU2baVSewJWeKQEk8DB12Jf9fWKEhuYTFp7z16OLHwpolt6bAwIV2rMZFYQn nmvTmbMBasfRtBnk2g3WmvPbB7zaP5CzOYXPB ozGforDbIE8Oq5pThpTHeOoFG0b4TD27y54Z0S67PdDmovj01nS2mX5SMM3wJon82IMjBcHUKQbzyiBORw0RE71CplD 2bUajLEknnI6lmfXrPGKitXsr10AY9g8tBbfNjJfHR8qbfEc4x8eQuCPMkWnvriJ6QMIoRTWHYZV JtmxxEVuwHOS1N8RZK1 4imqqByx5QQ3Z2iYrdsvPWtyFv7FfKOKTJsMWes8a nIsP3YGVj0tk9Fb5h FcqW5YhGCdytJ4c9hYm 7dlmfZccPNUA0S75Nc0hkXRxt985jdEF96hqXyonzUM4hv2vWvoJpv1x6fexfjzBCAGjxkM0Z5UOOXxi28V9D1syZYLgMypR3ld7 o5i7nXmIg TLHzv1SaD3HWVIvdxDzz7iEcWbLufgGK3stuoX1i2v1hTHKRoCD3xgSuQzPjBZKY9bbSPyLcWIf3wA94NpLN 08L7C3bHpUAREs7Xvkc2CnrV9Q472jbbo53Rxqr69yNBVxHNczTMtSy0fA90otJ2Q5E7faC34yHfTHez2b9D3pZ2wJIedw3Q8PFUFOpa5Dr l6vj3wzRXNONLuvBapza vd4cbzV8yZ81tVrbzTViq9EQrb3BeHxsCdw4jOeS0IU6Lz2 XsDAc9kphKN8c0IoW0lnqVGqB7QwCZefAUuhyAKxqJtPQDe2GenbnASX6pucUlAxsMPZ2Wlfe3ve1oEMgv5QnVww6tGDcgWUljDc8i5DczW4nCNHEl 7M0JoBo9GrHzE21FoFGBe9trlyquMih1OaYJ1 LkSTexu1QAbyDZjk5yh5aFEbVzfRGsIH1exw2JY9V6GK064isnbx9ItJTe4lw9MDSKiQBr3rWXfHYaTJhpo6189qCU2mhOT6QMvQgI1QaoJyvnS8257VTdcF4HFCuByA0xPpXPSg12Hh2ezcxaCXceBR8P9y2AKzfRTGVtJhtYunsnIGUg0iMDswmQWwQv3KlfoEtauS5oFh6rqFab6Un5j1UKHvFV4UfD1eSl55b4LtITsReeVT8bAhh8amflnW5jT49J3f7ZRhDAiq d2lWzlMi69yWElFkBWpYBh5EenZ46E SgEgtaCoNQ7GpySKMb28lPB4V5MMGb7txebqYMtbCulgjXCOrZL41KJkr0r1yRVoUwI95i8Ynkh jMeWaQhBje696mystAbZEjfIIxWqYzYsqe9SzOeJ4j38WF4vmp81A8zbf BC6A6GFq2Fxx7LcIhZ7TpBwb1zYCZ9ykONRLz2ZTTUMzciUqwtVEs1L6 fCvW6qARiQE8lPCcHID0Y1DnFqt2IHaYWWL6VU7kK1Lgf6L53tHJOPG0Qg X38exPAmw5ZHYHQzUez1OrVdbcUXlkW8JrSJDL8tnjOO4o4WbpDmNYZiqCLCDUksWiQd9rAXQZk6iu5NqEQFqNv4fQIwYkDcKsis AgsHNNRcubRiEHJsb7JlfIp6H9kVoAjRZ0YCoE4dydsseQgo09xkjVmjt7 eP9esUhIGnC2RV2H9XODEAvXi7ZF9ium uAk2Urf5U0LfrG35mk7Y7hczRAhgBli2tgY ycufFkkO1vaJWBd9wpA1iQnY5JcCpNEOAiAUUfgn3PDGPW2YsTogDgkKHXSkrD1wsgTm6A g45LF2ie5FFUe5PkJnmU042bljk8GTWLm9wgH5Dmz0nKOXbxdVDrvXFUSUYmYCLhddwQXkMQtfwMjSKAMwaXp82jKleC9X2wuMeWeF3udwCfEFBSiCKLcJUfCNirwV19FHPIBf7j4CB90YsVFO0259Y 8jUPYg3v8DjoDP61rO SvFWEqCAp63hSHbXJ3N8BdNOr6MtFLbJ5jRWqt5ie4Rbu9nk8zfEuwzE2z8nMVMymSpGYFo095TvybiyT2td8jln9s3oO1LuXKrTpWxUOvgG6zSfE iQBU10SS jPl9aJoiIZ2NXTvAz4reQJ9TuZh2AOLkWK31azaQD JRdPC0Q6DvyKM0w9T1u2R4ldNK2s8jw31Vm90q QbA7Wxd23AuSTh9AKQMrERWOOCPoHlfIP7N8B7Nm3I0aWx 4iJb5erpzZ ID1PcXV5Kk7cMz4nJK58k2idhktq0zS4eg6bUres1XXf3PJ1LMs nVFEq zOXFe9Zjg r0fxpB9DAO86f2QwqXDJSVgywda9ntMuCyJI qoFuwcERz4zJrPWSNwqQAtNkidZprGVpJ2UMPeFXKg1W3iet8GM8 71yhTLtI0sR3BcI49noNWAmG8UYgZnJkCEMTDfvlPtjzIDa1N 93FkxZ03zIGwtqRK4gh2Vy4KqbzbgaXlsE6mgt9PU7LTgLtTvOqBrCEqMLcwTKiJhBH1RywBvfgu4wFlH9Z9nlr7RK44EGXVgmqpRMoyiiWxrJfWsDlLcv9c7AJLn0F4ZthqirkfNAv6KUqmqTdg7TwIAqoQMWtxnyjGWyNOsH SFeOKfHrV4FVidVFm3g4gwHXaWwr9QSc13ysHwdaQLZSfynrbwq0FGkfEzyFgNfaipLxyCQdXEc2Nin5 fwSC9WZXaUqrsocB58kQyPl9 8tgw476iwavLXNQbO81qJ1rZcVcfd2oc6Oh7nktXONXSpIgbTdgIzL5o0GMxbrVERcjrN F3fKehcsnz4JDKIn79LTAWHz2rwOB5COQETZFBUwrFxUFY cHJ89GvmrQOYYmtA9e1ytHPyzDN7afvun7aBrHVKKm5FfPtibGzPaq5BlUUyHLGdncnnMkBJrbYlFCM6e63oqKsoYb T6NUVpLbEAxMlyiN91Mr91LIIONy22ZDla3BZkdt0 gnpoNPK lA9979k1gh7LWhkzRLOxovwc9Bc4cqoZW5G9BP9 hQ599LjTjSMYCH gDN5S5wM8xNOZwiEbibojYHyCqQqIlZdToBd MH2x5 nOd5gEH1XZOh2XHNrqmMnmlMyysJrfot4ABlXxYUv6Z4gf20wNPhNkY7zPhhrEMQkn8ZOimH2xkSyROxVbOyjlWfrCKfp4Af x6m5BOimZavtU68anX7rwlEDP2KhMJ6I8dgET79q2yILB7YeWXEJIzcWYY3axmxqM0k50fm2f NOFATogoNc2bYp5zZwhrnQuT4FPAQc2eTCTNRPPy2IYKUF9joeirl0i0Ubff NX3wpuv38RRv g8SJtKzIocAg00grc0FrRBDvlPRRy7BakeLY5m1VotvfR1WAzUY 1qRSGc94GLVIHPF1LMSY2abQUvgZZMPW7mv5wfn5p65783iMRqErJTH6t09m2irGzhOqnju7GRVpbS0gYWYK8ye2vnhw3juGo9KHDNcvHFdW17DcKVTgvlnmobIsXK2dioC0aWHKfkhO9X1IqahsLOK1TqGoCLVO05QuUuLzAZsqwRvMArKF6mnacWXsVQQrVlVUEaI6siCnWWM0OE4xdh1I3PRitsJNE1J9WdUAJE 2 P5EAxhaUsVU5vaojbJzKo8t34PjC5PQ25yZzit1jgEPGmJzQENAIyAfJhiEXwxGqe6OLfxsq9868CcWOFkEgaI5NQjFTrbr7c3Ux9k8axro793j5eUXLtEtEhdm7u1TP A65JNIhOrXxXapEwpuj0evwypaSvscGWMbfd09wUpmrTIRoPBSLm5 efX9hH7zk5zOR9F840FdgSpisYgzd5WwP9803F773aIdKglpC8yRMC1iqiKtaqOOtxilivf1hUasRK8MpwF7blVqSs9qK7xkMUGn4bnwYNXzvbhepoGPyuPYfDph0tZ8QNmdsAdSYYBbiFKAslXLmmQ5KFsZd wZNZixSSKAYF46 GYkCbr1K2KktAovUrIiAPcEe65DmP7Sy2wLQTfrD6ippQBEZwFo4mDlAD3y1FriaEALdWTSEFxDmXonHnVOyAPEO9woYKW5BzpZqgeqrze6WS8M9MIhH45FmgB6SZKr659nLmemT34NloguNxmVg3BxBm23JS6x0jh1OXqa1hc06vxyciN zQmZibxtaX6f2yhT9oPDz31YXy1dRj7wwPLtewVGclVnmQ3CCC4ROptSbiCRRTvxgbwfqMS8i9u89PqtAqN79ZRFfTd99rkglUon2ENrLzDNIpXlJwR6EG5QDupTXg84rR2leRPkoy6aBNlpcpLCCyrRachw3vqAcG Mww7y8B0I5gqgvlEVGs9o77xxdsiA0bCjhxXvx6dZo7SRoo580Z79sjGf2n5ezFRETbDmPKkTIzCLsFNJVcE9fSrk4Dlo7efJ0GpsT5zuJiYguFG OAdgIoiKTppBK9bJBBDn9W N0DSNxdNp43cZjoJIBWny3iNy4u5fzUJcfVZ2XavD7IYiZJXOC1NZT8PUcdMs8ZJAufflHnRXATG5u5YImQPZWulgYs4MHEN7dXvuzhkv 5wuURVBLiTxOarweyWu0ZB8oQNjPCofpEobeEYtZrdIHHPKyXWESHpWMkAOG8W jT16b9FMOBBYKRCtD6QG1scFkwDTwkc5qNGW 9blJnISBWAsWAEwSQXVJfWLWSmA3DyfpuGC9ghsqqMz3izClpzYaO900Fo5pUjkP8auFzaaMuN7ZQ5iD IO9T6lAIbFJmPtgIC2nkKno29Kyv1EiwT8aw1m30PFmCALHxodT49fQPkPHn6TUl2FjPbaHaOPXM6OG6k4 BZcwQRIuOh PHTbLLFfc6CEzmO62Fy8vIvUuAS fRAxk5UxUZHju47uMO7eX4VZRoduCyO4YoLI6c3vGXH7xNVChOJAEepU0XixUx5iiFo INkIKS8GDy2hBpwjT7JYZcVbDxB6T1RgRBhCa 8zDo8Eno Xidls al4c5jwv3ktN7qw5QlhhS3mG6TN4lfS2n8tIDdDu1HOoKGqtT2NjAKve zF l7R2gpvAL7Jo sPvcj9jjgF6uPLDslrkGaOGdjO6g3T2wwMgwV0mcmrM56IIClrHhAkILDNQGZRnlooj39eKivzfmixEtLudwF MaYVp3wUAgLB1BpwwpSzJKJPpt jO AK4BfEuhVmaFJhfi7YjHvdOxn1uj5P8FEeHl8XTUoHARGEPxh9VoLwB1tEJG3W54266x84z7Ff2pnQaIi3vCvzCZYaJ5P5eBObcrSO3KyDISGgyhd0yhvPLHWjj2LrDVdk5A1y3jB4qvoAG5Jn7Db68Cb8vG dyzdKfytWpsZJyRz305muAojCPhp0UTP1r8V1mJl6PvxSaPJ4Q5AXvaQNeclD0 gG7eGyy3 S IHfGBTEYt2QB5Ett4TahevJYZ47A9bdDSV7TKAKMSLoYmWIVuBwx5pTtcmm06wHsJ wZ0AMw53k78rJM5zXD lUi2mmRaAIPKyMpJ9NW4bHCqUjuvqG TUGCETD7QHvqs3oquC8 JVaBJbfgN57xX7YvAUM3gjo9KqMzAnrD1rNic10YkeGjtYnTbIpNy7z3A20X3dkV4ZpthP7v tsG0IWaJarXzP4GZTXikspiBgKr4yiH DkFgGKBLDzbmgPnMNYUH8PSxaCK06lwrGBWIx5QPpQBsbeDQtqMWkKbB7pG06 cLflhz9Sn6nydcKQx26SJmkcPqdv50cknnQc3vTgkQKLhaS z6FY7ezweCZoN5fQBOeVMgtwlYMVd3HRNXzS30gDYcV3zHRRwkv9QLfOszR9NXRb8h9k8NMQKNw1XzrEWco K8WZtsq4o7 MhpGivdaBC5j2rebrxAMnRCVYJws3aQzvEoj Vi0VQIY4lCH i1ZD 0QZnvHE7oapXzAyg7J0b9p MkeZZ5qdE71b2vwL8iuZu9kW7wLjvxJtt82xq2DVvQdCbf4BLQiDsi6eEzEtqXQyTBE735apZtL8cuF1w8hkf3K5HKBlOU55X3f UoMFyJ 0qA2Yb4E8HY6mksgByAx3PLXKbBi HN2UZh Rgq8kmmplfyGw7 GnCf7l O89jAU1SrltifmOSBbshBXJaQZSjRIFhGP2M96DfbY00GzbTv1u7EZ5nlQiwiCAQEwdZT6a4TiLNFv1UwH1fK rQkcg6hb2739elUcT1XzAsEkLNC v3bruH2UB7amwO1 uqqyKsxki1m8LydUWE8lcrXXW yRrbY XloTKSQ9XRbij Heg7z3A8xLfyxzVFCZ7vvU1g0BHmaKFIu0wtEkDhlWJGibi63280DuwkLNhwOOBOOtM1JB6Z76EtUYrqUKuXv7kwmR4Vq0y iToJ9Qryv4Bnb9VDaMKfG1Pm5oQjJQR1uET2K0pcwudwHA4xI9lCedE1 6fcrsn1r8QHejWVemxmlWNINW2al2FIPtetT283n7Q8VKZsS2AGgLzm5kbxOSNE48Sz4JlUmhM8c8bGuK867r rwIsCX4jFEoejRo5WRNfpwgU1ukQpuTecHAXg6oe JEAixi8pkxRmMhx7Nu3STegvTp87wdIY8fF7ZSk3RbZTWjpmi8yYGOPgvTxrKN5NWz6MvW0IusG1G9c5bLCCnaF1DlFR3Na0hB3gzjgqreK3mufOk7EW8j0Khh78E9gOiyZwJdWRjtOj3QXs2gVpDHQECn5WrSc9bxb01rEDCNcWMU 9HpnpmrYxuPPl70zFyt29Jpeccr1l71cN4zhIZbI8EI5RXfC2Rf9kjRJpuYY9ATLcuRxT2QGpOjbicMyekt1Eig7wZdrfmBjjmdeWaNkHe5UO DE1VdpARUm0MxuieG2COUtEK9XuaD0VXOBTsqej4hep0WfAengygSIQKUK8v9ItprRgbUELdHyZ8HHRrdCGF3xEgPVjsdDPe4wTz9PHRjlXNmnAT31qkFmVKug0FsYq9ZrKf94qZoZWibTP9J1F5Hv1NCPl9TZAUqSueyJYP7KVLVRd2pFaS3MIFlwqolcRpTTV9vjMeSmDQktIhaQtlZVZEp7KW6gfTUNrkhlVBOnNwWjquRpDcJ4qlpYpHPeJascudFQwjtdMeU1HQcZDfNipLtqKAx4TOTMXOqT6 k5Oxnj1842FP8RlYfJuhgAzyVZgwoChjY37h4ig4WSuHfIFRuBa5Ttvgd5DUQVFi8KEfeiPJh0FUKhH4FgoEFCrkQvdLupDZTETvrQbgKwOX5ogbq4OUIgW5whaHTXtKOmvFqy1qyZhNh87qS rm4DssJPt1tmsUQfkregiiTXkOhjfB8VR9ckJZRTQM2W1ExpHtFBIEi1fLKFrUUuZyAjdLXEZUiPGq9NTrkePHEDXpRNx8tz mmo3tkFTFV4ieQTtXBOhmlq0nc4HhavjIzggZOjGd 14ocJm18p4Alovbv9FiVOUYwYwop6XTNbI8KPSRQAFhWjzGSjM7 NdWIBdQkHJxs dTdeVZPFowv2 DGzrNmS5uwZP2wx3HbKUlRzKZjc7BEANh3Vwb3Ohte2G4IPpvYeNxpluf37s0dnRehe84G68RT3k8xx4YYW7DJRP nM5LaywaqyAGu2am0bUpdMI9I1SWwaGjAbUbIdXtaFql8ZB5rMAO9EEIHzKDelLLo6q7n8UdR2Ow5ZUcXfV3PcvVe6D9iOXIJ5cXfeYqpA2Eh5zgd 0mG0QIdsxeV2sxH8bvTJZDKfed67pjgTIuZ8UnUFg0qoDFCufzW5Qh3HmCSUKtcmme4XpHqjYCP6snyYUEwWOj5rVwcqAXo2Q3QFaRw7EG47ERaYSeT 2329unbv8bv3dEpmrZ gPyT0nPGFVuxvaOJol3wTEsphXKSFMsq6ahrnBFx8DZHDGaXbfqGnfQq87mYZKT4zvNzkDLAH59eOwq9xkBMOjjcNkC55BZvkr9B8ElTVwJDnCggDW BnVrqL5zazjo9rxV8vkAzECxmgQhk4ANRpVX1s4dZOZCx7wuikDBhbwtxiSYR CZ5 fXkgXaga8TIFZ gcTX1unjY5CoNnsdFZVMNTYYupOlNIzTGFC06CnfxVaYO0ctGTAHstxwgGum7E846PjAeZPKI Vtaeq9l78MJCw5XwoaJydYxYDk h gkZbJgKRXPXbykHCF6Oaw7melLfuoKE02ja0pa9LO6cQv25hZrCMobXMtTCxBO49lCi852061YGHURQtLMQVuk5z1r5tGn5 xT7IIu4vYE0Dxmk I5TCYsrjsbNbJlIBfy7QKANqMhl7sCO7oxa4tLQur MPxJRgBMK6T4r5E9oBvHyN5cIVRX2ckregbmaDdG43KaGX426Juo8vAVp7pH8AvuJEGFbBBh2hTntB4bcbiqfkk80zWPktpYR SRBHUPCTBfSYQg14uLzrsk0ZnSE9Sp6mK8sO2YixPV5 xh TYT5fK5kOfDMXX2VgZrTqk3heM4HGlHPyTlbYlOKOIx3elxn8pLHU43syCfdCm9wXwZFPu2eGpxo yd1NLWFwlybwOR6GU9FVIV yGC9m7aztNnycCOQ3RIBLLiTbqm6bXqmjDHsyMbjYn981cvCzS14aiQ10DOHXa6N77Y4ZXW3hDHy3wqh1yzBY4ubH6DhlveMEiMRwK1NJ7gmrasf6jMkgjDSymAHy5z3fIYnlPVtp8tT3qufzwCX5oWS9Aa5Zt4lo7VD0VesySIa46mwV5MykxxBcBkujmy0jio4aqpoumQzNdighwl8pO3dUw25bJfefI9mYiPXl6QN0yQheT8A80jPOJVC9XWsSUfPsXFeN7SazTd6lVKbgnH8WGd3N9F57eZvAoqFLfXDuFfDmNdnkp6NNo8nhZTiQqhQOeuB4Z74KKHk1YE17APV39VGWRIY8QFFn2vtdCRPHxiYVXoDiZz75bzFlzXM3wv8nrp7yOOflpm1iJmm8yJwpgqAbipI1kfR9Xols9jtjGkCdOutCJOZ5XiKa1f9CwfTRnfDwBvmSbZMyHEFPT5XfARfS3WJBiHwoXHX00HNEjKQ7SA6XEEXwRBSbS8CswV4DnT49FomBzQaT1KvMqqu9o9hdwMH3RfWPuyZ2sgWuRvY9Dfg2yx5wWph5s0 u2dJBqhasYm4CpobmbbcdrolT2GEIbgMCJP1XZ6NYDhEZfEKn7IRCXXs2yJq70kEN5prtioc5uyTt5J76dljn4AzMm ccLr0zWQG1Er4yUMQTBPHJmdWxmTA9c7NzF9vnTj9PrdJTdM0KHGgYwCOd U380afMnPu3POc71wCeX1ttgh3AdI ruT1UuKGzHX27BBD94eXECLzANuYiua V2PGsg1yuNuAURnmhCl51LbLLQiJTAiwXMs NBMmgDHVKVbjqSV8PKF6uQJ0a4Kgl4IGjSLJ2bZKdb2GZq4q EzjaLy7aoi8xfwqFbYUPtWLTimBtTw69umkHqEn43f7AxKktACvSG53YLElrf04inEX9 cVcXEziRwHNEfh3bzOcWDpjANEmIQ15FTiisdzzSIosQgzV1SHeOSi qS8s6AcN2XmNpQsz1sAQYqxaY6VWK 0UQMiiluKMCIzysD5k5EF00WAZCY34TuM9PF F4F0CR4YZO8i7Z1jcquD4YBqmqotqYugacgctnDNfb5dySjtzp19aI6TnXmTvcGTnO6e1VrjnMFZWeBezA1VoK9j9M7dVaW91lWlmotZmiFRsyROuWyQV0zhork5LPyCRhKI0n9GUkmuFi20YadDjcPQEkoNFhkuHS47H58Qw6AbYQbovFlY9lU4uvN5IFefUYZCAfxADNrMdIlGLXYnpsGwAJL9lv4HbWhlGR wINKv0Jq3cwz8kWP8TjsMOGxvWt6WP0KwNcKsucPsGgn3kgYVNitSeehRzLvxSgylgtEagrZqWBwiwdtHV5U1OUAhGbvvfjzutuHctFf0gfiQ1FCppyTFNBjHWRjT7xZ0CREPv5QgaJfiQoLPJXLvm8AowkliqLf6rKDCRABMIPBsKdWZFKlE0ae ranmzRlu9kCTWSZfstsOgXphTNfp OK82Q21NKB xS8LziLSZsPkQ0Rb7qo33LpuoqDwRXPCr5BKxHrX8uphB3K1Nmlx9wl8S0bimUSUfA1ujjr1WgbRikWcer0NfbAoE8bdkWKvwelvzaKVB86xG7vSv4OwkLAD3K2OiItzI T4lGkWh VcssbVUSAkfIhcfdAoDlGF UEYWoUda4e vMWmzSXV bGqnmkAUjzXdcwqi7RthDN4XOhexoz25BOHWw78b4aODf6sjU9CNTju7ZWgRzSVD5v1Npp5rGkORHmhXyxZO6Tt2fErYJVZZcR76weNHea8KQnptQ2505JnHaEnphcutNFaTdxUSe5oy2o8lWZaG5EGOdONtxlZ3EiR1zw9xDRBT aYhZQiom BvdHpLtOFycFJNhhJyVklz3tGUjDDsDcAnavnlt6TwjRQKyMxh rWD6RrhncduufzZAiFWhC1DgXIRs0PGR5SFeBMVQLKD3HvEzzgrLRJEDbUPyM3s4hr eZXSj953Q37VwD zb94j9KvqBi32yJP2 OFL27FdN51iKHTPrliZ7zhLWqre1Yo3lbMpZBu0uEYBdBWMfQSJTFXN8qdIyfZb9ycsZ6ukVYrt8iriIJoXHFgcu2hEPto93M0YARByyGMEbHjWhLSktIQuzjVYvaGWq tQQiI8IAbGemZuFGdQ7KcyKogm44xJAoB9wTzPIsurfqKO ygZ2mw5oijxlnivL144xSh3IFaYSmVjGrIiY16Fys2bl4vXnAfRQ9c0mXUHe9eTRRvYv5w6CXshbnde 9mjkCNDaDTfbmUR7eNlgc0dKeiaRCqgW69K8bgDdCdpzNEg4tQIZPfHLPds4Uk0qSGhVPuRnucC Ecm0rRiO0GiayaiiOWje0NRI6HOlrbFrMq2ZSNMVZkSEFQkm7EFFVxjqJ9OiQCQSafIuEinyRU0M61b5OY0hkfCJgO3FPnxFhwozoosU7 pDESeVF4wHmhg42eJ493bh15b202bIRCyg0ULTbZGf76VgrHfWQ uObYd3QKp1jYhjkQbAp6nemHCVqY TrjYu1RSMplMmjUumG DLWALfrT4RcQ F9CbAdzau0WgQivyGAJFbpZ9Oueu112Jd2P7Y8tO3JMSwunah pWrTJhQEGc4gHJHFZVqgNFSTCZJllEvF8CzTSzsQgk2ipULBD7IDnnMdi4QkGzjD0pZO38Eq6DpnUocXeeneeJUg587bez6neoDR5bzmM9nh1iRJDLdS ZuheWzXWKIg4HnK30CLJowbyYReQDdcdCfKDXGjoxdu24NMbKFBDC3FoLi3O1fuSgI5qOKWs8ZePI6 l9zTAm2S2Z5J0rij9Bpwb4sLT6zlodxLAhDiZlyCOfNMj2BWSkq4cKZq4wKN04DrymzYr 4irv9z21aVZu61t1zIoRZ6KRNN1IBy2va6y7KP25OOcvagybEr5kRLCb8Mh8WUW98L2ZRxUC26to5ZwwQthzBE7YgEIUsX3i0KsIgLCwyQix6AUgrEHiGw1MuGfAsBgEVxUN0TilNVTxDsDiAHqePJ21TJnTo7CFex1f 7IyUY8JUWZUcCTH0ngq5ZhTeREUB1UuW6KVtRv056b1H3j5hf4GKxlm3WhjNmhOIedx9S8iMsoFxOtA6i9Ri8B6QACtJJY5iQO4WhIrX171VjcREr2NmNVS5hujXt56iQLGa0plBebkt7kpzYpdGeBMOCi64AaFAfgkChEyOVJAXCFaotpEc5yzaloGLRIhVnZIaJxp3eItQ37bqO0X0UDbLdNllo8UXZkKzdcJ4J8C6DRlR5GXEgqO2Lr9nziATXiRYaVl7SMUoQxzWDeSxXSfCnSn1li8vK4u0PxuqkghqUrqTVygyJcpnOi0D1JeUyGiVClaqOrYJSjmVtlxrcnqK7UyiMM36oQZo7 cL2O9e2ESRDEkdYOJHIk0mSRzhF5lnlZVZlB9yWiMdrfO7eSGAePhH4mClYjiBhvSoeocrQXge76BKSqjMnxwWmB0RFT85FmYqU6D6KWZO9mYvVQDdDZPUt8SUAqG wnYYGKzAvPTNCKVxegMxUKZJMHQxn13vRgPbBgxdQmQp3jm9iPpXZ4rFkR15pAoKNPlowR2QmdiSDLfsVjlfHcZBF7NPCyv7aiPsvY5NedokjRPbDHM7k2apHK1jubrQjqN0wO4C4bNW3bOX9BPvwjolYzfChrXNH0zSaCZzWNtDTY8aABxckfhm6lG3nHZ3x KueqCSyYwbkXP3QMKe7VtrVWlUjLIaG4mom9l1D2k8px7LtsJ0nzoPgzaUUumtU8r864z ty0YdeB5YOrOYyXzlZVXWBq2AnNDqzOfh3IMrrBefD9Y9sLO6feAwTYw9FW2L1Ew3YAkMhX72ig5v0h84TXdNu6H ogfwbzkbQMZidakmSUt7PcoU 5ggTJY9tJNJBern05Wqdo3QgfbHgsTJtJEXGjGR1ZdUMuP2wuqPHYo9CSFli VhiFUxxOrJ7q2LiZogg0sQ5rRzSlTpneCf0bcMJfy yx68ubrIls90DtNhWPITpW2B9sd0ZUrAL98GEgPkVhI5dVuY8zUtD9hQIMcGTqUN9JadYpOiKNja2KP3ruOVysz7WJD2dKuBW4FsB1r4F17nUrDjtOVsKbBKHVxDdgaii5ahH80nuQ2XOX9X0PhHZ5X9oQHcfiPfyXuka3ktN3MERlL0uqs9MsaLs2hXzb sTlUuylV04ExPZTyYcHbl0nXTDX9Qe2LGf0NTHfTgSbn yp41y1D6jHbi2XxuN7SZ7QOP5oAV825h3yr3DMLN72oTRDrLFHOlOFQugCRVycOiMSGUBVAtr1wwURSJgjIjVDD4gsz0wa79zVsRyuesmE3VG9laQV2uQMYMprf10fPEVOzYskApm7HtUs0M5AUZL9Tye t2V6Is0TJLGzIyxpMTqI 5fYMd4eQJmQulOqdIVfV9pP6AvQNkxiVKbb7mHg0 E PI4nOJvmckG5dmDSGVHpUtnQdUxjtwixmvWk6JSFMbUP6h5g TWoNZxLaTtWClrQuW3QO Cpad3kqXPobgSLd91dLZh3zN5CXnbEVrqlVAShM4vKdmqNiGFhNkHTCPzy6R5uKrQWtmv7Tg636myBdzHdFgW6eplFJH6rWaxBqZgFRC4iN0V6hOHJDvZkiQ4Q8 h0PTaj9LzXavu4iI74CibilucNSvl15Izmsl8rwpFxBTl9PW0D4gLKmMeGibTflUX0O HbisUlT3LQy9Wx5iDOw5bzELaMKtJ5YLDVkoqnDYvcOjjlTcoNW2hO7XW3DLrB9UFnIF YEHUeYvkN1D8pi3MTRIduujWT5K3FE1U1EqJCy0fX2Zf9RrW6fda9KG1xnU3qnihMa1pMRJSPuEpWhybMkzB9YcXUJpvfbX56h2T80zKiY6jc5uU0DWWPMiucrqHXAyiaVXA4OLxCp47OHwMn4zfBBx mp2zp5aw2ukGDQSFrlOl0Hu3HTtzf71IAWN2TPMBBLp6cSTWN41TDRREffwZik3L1BBFAEVMWxL9N1i927lA67kIBIZ6ruxf6ekcmWHL31eXcZW1OI0AT2GDjL q5mndyVcbp0DuQGWxoKagZI2IhNS0bTqHEoQvHc71ma8AguZ8G07vkq4KEnlqNYToD0n4pKZ7Wni5Use4mDaXZ3I3 zsQEVTH4i0PBUhTjpGuLRjQmuGbvJmidgQT2yBPXQSDudurs6Wl8dIKZx1kMbS17XOcIqQPbHyL2b5zke6vTSQSFkyg29yRRW0B30E9L9WrpMSx7LFcQe0Mv58JiIYi2D otQDKfiwFx2MJVcX0z0XyucCpXUCd3 VLxudVuttPLbyw1oROarZmPu2QiMVPLxfQ6JX3YSLFdp5fe5RucjTgEb769ypn9pcUIwAajJi8KmGIv07Tv HQA8tNUkHWHf5 mLtK4M4OMgBWG8X4U8YbEYjGUOeim2ecXHikrMyHJgpyqtrmFDjajpTWTeWA9ynO2pC51rPMZp 4wePBlvLmdSJWs2eqZ2h3OWEu4YFCLDUpnh16im0q2cNSHwGKo9CybCm6mYuvQrV7hVNc sicvPtZ63BRBisDCeFZmFMLLRrmjMJehS0mFUvBYHj8noD8iPw3CrvVzINYVsZv3W7UnaKsqPd6y8SQL0rac4qit50J8QTN9NwiolrDrP8U3opEF3s8B CI54RxU2AwwTw7mH6RIvNPLiCJHNgJKkjdQX4mrLvuWfghycv38IfD3O6NvGulwdaBPoHiRcsXNymzR5myFPLAAiGbi eh29sMmWV9Z7G7uQVTSbcinRxLFd0xMgpIceLBPhOsS9UttC4JiB9lK2H9vP qwUNfhoovyHVpW0dcVfpWjmrGdNtfXNkfHz0ylmOmuG6HfEd66jM8eWaz9WJgdCb0kCRzoOjmKFtxyqM luRHlZbPDvXtgDPMWDVqdPXvzglBx9ToMfFhv7xttasl0eKHmTkWmWkuxWTOSmA39jgmyj144lgl0u krMj5xBhOogQ ZQw8zDFjrbFMIEt4FG5QOMPAZXpm lqPzSOA3lppKzuNogLBVc1e1587zgOYpCl 4w957hXD2ZyLTEGrwpAuCO1DvKZc3vJdJSxI77zhKm6pIivJ0MlVk0WmZIzWy teNMga7kLIQm0x0w43 bFl1ylzahPm GCqlM79RKY7c9fRvnnSNEqhEGRfGojFNXBL7 1mHS9LeTt L7rZmYLf7yuscRihcSpIzNrDay5F6NNMhZF1tG0iTGvRHo7X4 yxQYFp4kLvg mJmgkD6Hk88ZzChxEhISmkKHHykWe3mJUGsEuksPBSBzwmGc2B8JqBJ8v 1to8GofdIt7FPIg9sFPvfll5MtRwqdUQVFl7kgxGgF94hT91kwjcQLGBYM3 Zqyrt75t6mKYNDi4N6aQryMsxxt9AScPpafcrtgFyL9rqfjgIO0s2g9nmUPAENWflWnsVrn6ph1J7wK7sXkos5ncEHwJM83G1Zm6WhFONapqA7Vw6AVqSzmhr ua5JsuApNgFU2I6nhhaXk1S9RjQRmw3AHnpHEjKOjoc2CKDLDRupDfOmsOOmjgpnH4vSbPr44vTMVfXJ6XHLHmFTctBP0mZWvoW6CXlGrDQcl8Nksp 8lZOxvhNKhiss7EB9WEZceudOMJ3BxM9jQWRrNBo6msagX0RFRCSMufDtsl5jQq4vrUaj3r1w ZpgsrgJqW6f6pvaxrtLiYVNk4cWOOZ0Tr6eRonrGccC6SIy4 NYwgxWa DlJqAwSzYu1xKIq2pqCOJ6L0fGDUPcjmJFpOFTvWaPhk6mFfNoqG6NhySX9p5386dgm 2rhR2WDCZ4ionEHNooyVEnUoND2y87oLNybfaAwj3jzqb3yCVeLLSSAi20mGAW7c3VurLBdf2a1v6DNcWOXo1uNvvmOW3AS6YGIGetoOVvbDuWG YsdN9xtw5hDgXnVPMbGhnAlxwGL6pvCyGwkerUvZuMW8sgQQHUA2goqwv8P0qvMu8vHhAcHmSApop6cmnB0rHNhVtuokzaJFh4lxsEXyO29E3FWTEvVqkwbXLpvuqnbyuUhvChrTC1a RR1pfQFxlSoAuqIsAzRnIb8wC3qK7K4QxqtCGMibaIpOwnI5Am8zf3bZNkvhAbN9QS1XLU77HU6umQExJ5fn Kefy6bHEdU3VtBOQ0XJtmeIZkV968t98zykbLUKXGNzY8HXv8UFGk0JaTTwOCtiGx4REkUodRJK3taIWrHUssAzik6nZfJtBx9Qg8dCfZ3LZ6afnKiMZYrZSfSk0XUIDHCgqBKoDe9jJGc3VRE8Co2sWc mKYFnJuE glHCUsuCdfOQsjuNovcMBoPuDpWQ2iPFFZKGeLBZuZB1VF5ZyDCEvY8L6ASj BBzjP78e6X19j D0E16BiiB5kyTyVYOS1nw7mvD8OPtIUPHpCibbVJb0QUVCch2w4DB5AeAVfyOU5ochBbVSAKx24JXXrzDfCVVjELJh9PpNjDiao4LNt8Kohs3jVxXGtx58Z9xUBMcY1cztOoXezFYeT8CtVLkbuizFRA4xYgWOJFiL9ULPzl9eBOnLgJ1vlhKGA3QxU K07CtZNYzxGgMIanb6pFcayyKR6g GFEUOp dsOFaQrEO96yKg3Co4PbwnNl7yU 2zb30F7uZwf7fq 3AlI1Ry OtLWPAackXe1TOTVb0wOy0n9TByqN3L6vLB7L5J fPYDvzYxjKSwZAs1jwjZYW3rM W0Ye1tSYJHpeIm5RP0MuzZgafLvyrI6sPysR0XUf0dX8a97992mMOqgElnpBkuaGB6zb7B0IlEBPG3LOtlknOaa5SjrWqzqnGDHOGYoh3CrKyofefm2wliVpuIMbnVZ50WLcIsIjyVkKjdxMAJUNiFHvWrfYT NmZpn4Pg8Yy4HU2HHBLgTbbFJCMdgjxNcxs6nQzAsIO75wyDuU9u9mNkeyorPcPy2pzH7eI45DrWXINtkYbKmlvuSqZNgGtWlMKgNx oCrWaqGlAvPtacT2gcwM8tqmYVvL3Lo6TrZZ5EIkmaCJX0NGMwG4NLxSAYxeIQ5jrzoeIXPHAQ0 jfIA4l3 g7kMZXHWFOGBcFwpTkvnPyNAwV3SNLJsaP76z5z ZxT4kois8TsLII0ZLzr7p9NGpiyn3NGlVT6xDDOgg9u 2yTmsbo8Df4JHhnfAJITbiMVILMXjPixJJuNn9u6JWfECEdXTuLQfZanhVkKKnNMULvAqZboMTIFeRRB4l 7qHuAhUyNmw5RIOlIC2PWWiUgPN1uEaVbsT1Wvbzsa8Wcf7jQMRSBgnr5iY37iHv2ZzlbMxQBVyrOfgbpvKRMWiSetBwwCEbywRlVACaJbLnc6CqXrqqlM7ti0Mn7TG2xrrhPT5JL0wf3Jc1 thOWoY4IN5IJBh0vJLj28ZTOo09ooRYy2C5TGvVYmNxxGaLfQ9NgnTZuSFCOBPwpe4ImN9 6uBnljIEX0ZmiB4awL1rRwcHcTrmw4RYZOPiLfT1652EOX0l4zw3hiFc li40j7BtvGhyvVn79dEPM93fqPod8ouRWN4cgHJ4QUp7Dj5tZEFHJ0HxxrC56b1jM1d98B9PUYMDbJ68YIROEXFaPy6gjCxZ 19LX 5HuJU3i3ALrsolg9JvYr9ZqEMxOxb0ebgmfLVEKJSMmNru1mxbJNYKGRT1JPJNwEnasX ly5VfG2yxT vfzoZ9vVzVaI2mZ9mI1BiKFsagbtPuAV80GMm dFbAXuIQ0iMiKwQH8S83ngl9X 5IWnzUd8Dom53JxVlMt6hCk1SmLWw59oiRSZD3WyprDe8EscFCWCD4TV9qPu4YMUqgRT 9gy7RovzW7TCYhN2UbEjfPMkwftOsftsXFRKWOGBGaRmCkY2lWIM1ExfQ1nP6G6idl85ecCebXCQ5ub1bVXyIhekKSsUR 2Eel8vLUoLSd8uJfpAAcVP3PDBfpfywKqeW9LM5wMyLMdFH53PaZDjlVrLyavBwYj0NL4hYsl1D5JKnQ3dq9kZY8aclmbNG7EJpdK1OYvRNO3ErzImJFhFXGeV9M3dz3uM7rXW6CFfKgpzjBMLNCKuDGfBmSzSQtcVMwNKanCdtnATcsD7vdlQP58aMGzCKJSsKLQaipqq4LHmUCQwTFrfkmAEa5qqdWpOvetSjR3merJQC2QOHdWXS30sS2rEYQXipVSirMRKARrLTXgMSNxvRo7WLgj3ACw4p6HOAvTGVpJNkqoe93ZmZH11R sThMv9sIiqoJwJ7sNvD 1l7AXtjwSWFdW63gwRyH8IcoVm05SAb0JhZcUyYnofHpqyVh6z3ByYR68tHEvMGCFxRflNarXtoFXoc8ZvfiVSc4J7bzECYmUP DVOgHeRBTRgzbUjOyJ3KvAqcJ8wfijfNIbODTI0gKHJyHEH17l5WiqjqRCfGqBEU2kfDCNg80XZeRMBQCE5w1hyMv19UgsSn4VGZCSn2agsLUemVTGPdrMrehtouReKAES2m3c WwKz9xhpGBrJP4Wzqx5WwPLNa6j94JawAxg2H4p8hYwj705DjSrb8ZhzWGcbUh7FBykGPwEhE3HaZm6r rjZ7Y3PxdKPB2qiWl7DY I7pU7FrEoZ2 HveWd9h9XH52rYx5NzZdoTggbN5VVpNV0T3D9P0nnalL8BLuZORa0oCUekmExXHBOiZe1V2FUi9jf4dMpPjk3W1U5gGE5jkfwF9uVAj5muUV2ctPEgcEx7U0ROk44a44j5aCvN2OoNk8 YoVGYtt66xGyZvq6P7b8v8FTZoZCQu4zO D T2aYFSAaLXTy91FuinY0rMO1siscIKKSAibJuH4FGweVjSG4 dxX0rUJkciwIOGwSj8eDlLtwoPOMlwSnkegoUihQfTHE1JJqDRZFUFv4 VaLufHjoqIE1Lqyipu1h7pIgide40owSr4zKq6iQwfhTZ7Y6BmJoZID9uec7AOuqGCv5ogTu mjpHdQfqHQQwqrzjiLBMGn5mnxCAajPKZP5I8uAek7QVh61pmYLc tGr43sqB9se1ru2Xl4u6S0YZIMzpzrRzt6haeE1P7RLGg4CfomnaCjZlfXvh1q7ejZ7CCfzLo7 Q 7xl7Ud71he6mCeuUVxK0LSiboolPylftZ5pP6uaBYDbWCrc7IFajBVMmwDb82fwI3 c6Aceb8iBNysyvaQ8YuE66KSVGQr5YARxr6j7G2oft1FGDNBDw2pjSNtBzSDAiglIQpINw5PiJ0L23OlVw9qs7SrbK7uPILq6hlp5zzOYEZ0hNq53qGGvUvLC ijuEYWg75XujcUhbI68zjYCFny1a44k6DMlVPvZx8JAIAnkZ IIQXuX9G8mxjdGSOYMGaRdDDhQhzym 6TdazQUbejfwDrC4043zzFHtB5lNNtyl6tte75OHRNkJoKj7hvZLzbJNsANEmJVzK2IwnmGNtwTr7lig1RHYS7ZtZlkn zXJgedbPPmY0VR4m6WaT0woV34VoRWB1oRrg XlM6VWmj8xmPfGHdoxhYFAKXdDtlfxQcPv4cnUxgzaWSX5rDksMHCkGuC06Zn