Matrix Calculator

Matrix Calculator

Matrix A Input
row  column
  ×
Matrix B Input
row  column
  ×

A matrix, in a mathematical context, is a rectangular array of numbers, symbols, or expressions that are arranged in rows and columns. Matrices are often used in scientific fields such as physics, computer graphics, probability theory, statistics, calculus, numerical analysis, and more.

The dimensions of a matrix, A, are typically denoted as m × n. This means that A has m rows and n columns. When referring to a specific value in a matrix, called an element, a variable with two subscripts is often used to denote each element based on its position in the matrix. For example, given ai,j, where i = 1 and j = 3, a1,3 is the value of the element in the first row and the third column of the given matrix.

Matrix operations such as addition, multiplication, subtraction, etc., are similar to what most people are likely accustomed to seeing in basic arithmetic and algebra, but do differ in some ways, and are subject to certain constraints. Below are descriptions of the matrix operations that this calculator can perform.

Matrix addition

Matrix addition can only be performed on matrices of the same size. This means that you can only add matrices if both matrices are m × n. For example, you can add two or more 3 × 3, 1 × 2, or 5 × 4 matrices. You cannot add a 2 × 3 and a 3 × 2 matrix, a 4 × 4 and a 3 × 3, etc. The number of rows and columns of all the matrices being added must exactly match.

If the matrices are the same size, matrix addition is performed by adding the corresponding elements in the matrices. For example, given two matrices, A and B, with elements ai,j, and bi,j, the matrices are added by adding each element, then placing the result in a new matrix, C, in the corresponding position in the matrix:

A =
12
34
; B =
56
78

In the above matrices, a1,1 = 1; a1,2 = 2; b1,1 = 5; b1,2 = 6; etc. We add the corresponding elements to obtain ci,j. Adding the values in the corresponding rows and columns:

a1,1 + b1,1 = 1 + 5 = 6 = c1,1
a1,2 + b1,2 = 2 + 6 = 8 = c1,2
a2,1 + b2,1 = 3 + 7 = 10 = c2,1
a2,2 + b2,2 = 4 + 8 = 12 = c2,2

Thus, matrix C is:

C =
68
1012

Matrix subtraction

Matrix subtraction is performed in much the same way as matrix addition, described above, with the exception that the values are subtracted rather than added. If necessary, refer to the information and examples above for a description of notation used in the example below. Like matrix addition, the matrices being subtracted must be the same size. If the matrices are the same size, then matrix subtraction is performed by subtracting the elements in the corresponding rows and columns:

A =
12
34
; B =
56
78
a1,1 - b1,1 = 1 - 5 = -4 = c1,1
a1,2 - b1,2 = 2 - 6 = -4 = c1,2
a2,1 - b2,1 = 3 - 7 = -4 = c2,1
a2,2 - b2,2 = 4 - 8 = -4 = c2,2

Thus, matrix C is:

C =
-4-4
-4-4

Matrix multiplication

Scalar multiplication:

Matrices can be multiplied by a scalar value by multiplying each element in the matrix by the scalar. For example, given a matrix A and a scalar c:

A =
12
34
; c = 5

The product of c and A is:

5 ×
12
34
=
510
1520

Matrix-matrix multiplication:

Multiplying two (or more) matrices is more involved than multiplying by a scalar. In order to multiply two matrices, the number of columns in the first matrix must match the number of rows in the second matrix. For example, you can multiply a 2 × 3 matrix by a 3 × 4 matrix, but not a 2 × 3 matrix by a 4 × 3.

Can be multiplied:

A =
a1,1a1,2a1,3
a2,1a2,2a2,3
; B =
b1,1b1,2b1,3b1,4
b2,1b2,2b2,3b2,4
b3,1b3,2b3,3b3,4

Cannot be multiplied:

A =
a1,1a1,2a1,3
a2,1a2,2a2,3
; B =
b1,1b1,2b1,3
b2,1b2,2b2,3
b3,1b3,2b3,3
b4,1b4,2b4,3

Note that when multiplying matrices, A × B does not necessarily equal B × A. In fact, just because A can be multiplied by B doesn't mean that B can be multiplied by A.

If the matrices are the correct sizes, and can be multiplied, matrices are multiplied by performing what is known as the dot product. The dot product involves multiplying the corresponding elements in the row of the first matrix, by that of the columns of the second matrix, and summing up the result, resulting in a single value. The dot product can only be performed on sequences of equal lengths. This is why the number of columns in the first matrix must match the number of rows of the second.

The dot product then becomes the value in the corresponding row and column of the new matrix, C. For example, from the section above of matrices that can be multiplied, the blue row in A is multiplied by the blue column in B to determine the value in the first column of the first row of matrix C. This is referred to as the dot product of row 1 of A and column 1 of B:

a1,1×b1,1 + a1,2×b2,1 + a1,3×b3,1 = c1,1

The dot product is performed for each row of A and each column of B until all combinations of the two are complete in order to find the value of the corresponding elements in matrix C. For example, when you perform the dot product of row 1 of A and column 1 of B, the result will be c1,1 of matrix C. The dot product of row 1 of A and column 2 of B will be c1,2 of matrix C, and so on, as shown in the example below:

A =
121
341
; B =
5611
7811
1111

When multiplying two matrices, the resulting matrix will have the same number of rows as the first matrix, in this case A, and the same number of columns as the second matrix, B. Since A is 2 × 3 and B is 3 × 4, C will be a 2 × 4 matrix. The colors here can help determine first, whether two matrices can be multiplied, and second, the dimensions of the resulting matrix. Next, we can determine the element values of C by performing the dot products of each row and column, as shown below:

C =
202344
445188

Below, the calculation of the dot product for each row and column of C is shown:

c1,1 = 1×5 + 2×7 + 1×1 = 20
c1,2 = 1×6 + 2×8 + 1×1 = 23
c1,3 = 1×1 + 2×1 + 1×1 = 4
c1,4 = 1×1 + 2×1 + 1×1 = 4
c2,1 = 3×5 + 4×7 + 1×1 = 44
c2,2 = 3×6 + 4×8 + 1×1 = 51
c2,3 = 3×1 + 4×1 + 1×1 = 8
c2,4 = 3×1 + 4×1 + 1×1 = 8

Power of a matrix

For the intents of this calculator, "power of a matrix" means to raise a given matrix to a given power. For example, when using the calculator, "Power of 2" for a given matrix, A, means A2. Exponents for matrices function in the same way as they normally do in math, except that matrix multiplication rules also apply, so only square matrices (matrices with an equal number of rows and columns) can be raised to a power. This is because a non-square matrix, A, cannot be multiplied by itself. A × A, in this case, is not possible to compute. Refer to the matrix multiplication section, if necessary, for a refresher on how to multiply matrices. Given:

A =
13
21

A raised to the power of 2 is:

A2 =
13
21
2
=
13
21
×
13
21
=
76
47

As with exponents in other mathematical contexts, A3, would equal A × A × A, A4 would equal A × A × A × A, and so on.

Transpose of a matrix

The transpose of a matrix, typically indicated with a "T" as an exponent, is an operation that flips a matrix over its diagonal. This results in switching the row and column indices of a matrix, meaning that aij in matrix A, becomes aji in AT. If necessary, refer above for a description of the notation used.

An m × n matrix, transposed, would therefore become an n × m matrix, as shown in the examples below:

A =
13
21
AT =
12
31
B =
202344
445188
BT =
2044
2351
48
48

Determinant of a matrix

The determinant of a matrix is a value that can be computed from the elements of a square matrix. It is used in linear algebra, calculus, and other mathematical contexts. For example, the determinant can be used to compute the inverse of a matrix or to solve a system of linear equations.

There are a number of methods and formulas for calculating the determinant of a matrix. The Leibniz formula and the Laplace formula are two commonly used formulas.

Determinant of a 2 × 2 matrix:

The determinant of a 2 × 2 matrix can be calculated using the Leibniz formula, which involves some basic arithmetic. Given matrix A:

A =
ab
cd

The determinant of A using the Leibniz formula is:

|A| =
ab
cd
= ad - bc

Note that taking the determinant is typically indicated with "| |" surrounding the given matrix. Given:

A =
24
68
|A| =
24
68
= 2×8 - 4×6= -8

Determinant of a 3 × 3 matrix:

One way to calculate the determinant of a 3 × 3 matrix is through the use of the Laplace formula. Both the Laplace formula and the Leibniz formula can be represented mathematically, but involve the use of notations and concepts that won't be discussed here. Below is an example of how to use the Laplace formula to compute the determinant of a 3 × 3 matrix:

|A| =
abc
def
ghi
=
a
ef
hi
- b
df
gi
+ c
de
gh

From this point, we can use the Leibniz formula for a 2 × 2 matrix to calculate the determinant of the 2 × 2 matrices, and since scalar multiplication of a matrix just involves multiplying all values of the matrix by the scalar, we can multiply the determinant of the 2 × 2 by the scalar as follows:

|A| =
abc
def
ghi
= a(ei-fh) - b(di-fg) + c(dh-eg)

This can further be simplified to:

|A| = aei + bfg + cdh - ceg - bdi - afh

This is the Leibniz formula for a 3 × 3 matrix.

Determinant of a 4 × 4 matrix and higher:

The determinant of a 4 × 4 matrix and higher can be computed in much the same way as that of a 3 × 3, using the Laplace formula or the Leibniz formula. As with the example above with 3 × 3 matrices, you may notice a pattern that essentially allows you to "reduce" the given matrix into a scalar multiplied by the determinant of a matrix of reduced dimensions, i.e. a 4 × 4 being reduced to a series of scalars multiplied by 3 × 3 matrices, where each subsequent pair of scalar × reduced matrix has alternating positive and negative signs (i.e. they are added or subtracted).

The process involves cycling through each element in the first row of the matrix. Eventually, we will end up with an expression in which each element in the first row will be multiplied by a lower-dimension (than the original) matrix. The elements of the lower-dimension matrix is determined by blocking out the row and column that the chosen scalar are a part of, and having the remaining elements comprise the lower dimension matrix. Refer to the example below for clarification.

Here, we first choose element a. The elements in blue are the scalar, a, and the elements that will be part of the 3 × 3 matrix we need to find the determinant of:

|A| =
abcd
efgh
ijkl
mnop
=
a
fgh
jkl
nop
- ...

Next, we choose element b:

abcd
efgh
ijkl
mnop
b
egh
ikl
mop

Continuing in the same manner for elements c and d, and alternating the sign (+ - + - ...) of each term:

|A| =
abcd
efgh
ijkl
mnop
= a
fgh
jkl
nop
- b
egh
ikl
mop
+ c
efh
ijl
mnp
- d
efg
ijk
mno

We continue the process as we would a 3 × 3 matrix (shown above), until we have reduced the 4 × 4 matrix to a scalar multiplied by a 2 × 2 matrix, which we can calculate the determinant of using Leibniz's formula. As can be seen, this gets tedious very quickly, but it is a method that can be used for n × n matrices once you have an understanding of the pattern. There are other ways to compute the determinant of a matrix that can be more efficient, but require an understanding of other mathematical concepts and notations.

Inverse of a matrix

The inverse of a matrix A is denoted as A-1, where A-1 is the inverse of A if the following is true:

A×A-1 = A-1×A = I, where I is the identity matrix

Identity matrix:

The identity matrix is a square matrix with "1" across its diagonal, and "0" everywhere else. The identity matrix is the matrix equivalent of the number "1." For example, the number 1 multiplied by any number n equals n. The same is true of an identity matrix multiplied by a matrix of the same size: A × I = A. Note that an identity matrix can have any square dimensions. For example, all of the matrices below are identity matrices. From left to right respectively, the matrices below are a 2 × 2, 3 × 3, and 4 × 4 identity matrix:

10
01
;  
100
010
001
;  
1000
0100
0010
0001
...

The n × n identity matrix is thus:

In =
100...0
010...0
001...0
...............
000...1

Inverse of a 2 × 2 matrix:

To invert a 2 × 2 matrix, the following equation can be used:

A-1 =
ab
cd
-1
=
1 
d-b
-ca
det(A)
=
1 
d-b
-ca
ad - bc

For example, given:

A =
24
37
A-1 =
1 
7-4
-32
2×7 - 4×3
=
1 
7-4
-32
2
=
3.5-2
-1.51

If you were to test that this is, in fact, the inverse of A you would find that both:

24
37
×
3.5-2
-1.51
and
3.5-2
-1.51
×
24
37

are equal to the identity matrix:

I =
10
01

Inverse of a 3 × 3 matrix:

The inverse of a 3 × 3 matrix is more tedious to compute. An equation for doing so is provided below, but will not be computed. Given:

M =
abc
def
ghi
M-1 =
1
det(M)
ABC
DEF
GHI
T
=
1
det(M)
ADG
BEH
CFI

where:

A=ei-fh; B=-(di-fg); C=dh-eg D=-(bi-ch); E=ai-cg; F=-(ah-bg) G=bf-ce; H=-(af-cd); I=ae-bd

4 × 4 and larger get increasingly more complicated, and there are other methods for computing them.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

T3IdZZsXzeVQFtlU2klisHZBSvbfEoSk6wxejSobXezbBWJmy4CpRpLyvS7vAdJan9idFhvpKnVsW8BSiv0EEKFNesHzhnoasfhv97Ho7GafBzVQVUYdxT1ZSa3FUwsgBqpA16L6SABR9YiGw33To3ueeO3cRD4UrKkq7oOf0AH55R8JWVIqnFP hEQtYSUD8H9M8ZAo4GKhBe0iklVd7oN4JYzjT8igt1bUvUGJ0MTQerHv1XijDoEQPlAyJeYkdqBe8HVTLmJ3h8n5LS1pxi9VGrULltTFiC 2PuXLcuo7F3ost9tjDNqSzqRPWLvwRKHE6QAgp6leg5x9oGf5EuWTvhRMhyd4fbpzb8UBX7HS2jWHumUiyO5g6sPnLERb5QsTB2QtkSYQkNe88nKlaI NSrFn0gtK1Oku9o5EpjbCNYB8Z2yZ5PVJiopKr0LP1MnvrmOnX9yupVZTqcjgakeSxvO6o6nYBcVGUP1GPqX1Dtd0t42GT29vxQnKxHQ6aVLjfbMDlulbyCzu5eOVEWxRos3yL8V95ZQOzeB4YX0khM3laN6WptTb145TPPF8HWpebRAqvRYOSCbZryTCjX5h932dgWkAuNxMk06Txp4kcqw7Kn4gkFmj5Xp1UERdUSaRtE3CJX9GluMVar5sZzoOHK4zNRhUCYtdrNK11VsK5dSpw4nx0RM2EWl06gqZ4HsMNlki1FNhTL8GUFPlruURQDfhx9QQ3m3cFGHUPU7EP4OFSHDONcWnTyhameOsxsq5jZcrM MbSvqUnFygy2z6JVZl6T91xlz2Sbnx0WSLbmwU3NsJzjhNrMPmserdltDXn48G3hbHYCGNLZUAh2MZdkaDYQ4tsyKGo0Jzd85UzWZxyxOTegEcM4MAMK9qqkMR91ZCoo1YUKchrOEPNoyQGgFt8USBuJ8OmM2UQ0ZIRTQt62xokw6Ucxe9 EosFhwawPchTQ5qeKd8ekCfhkc2O9W6N4jGxgIkQD67KIaLK rB2QP71HyG05AVzFqYAi4prWPke9qvthFF Ljbof4twta5P0c4qKAMqZf5TNVay53K3Tmvwww9 RB2y4 VEKQ SJpKnCK KTJdfjq HpZaFnx IaLdrImVcwuJ9uKrVVaEvPq2b4d ugOpmpiPl9TZ7GSNcuiKqqUlrAAs8i5ayCL46FdKSLMTBKiNnTw1DFIbxBeo88nZGY jumZ39EjQmJtmIHftDuN2T0Y7JAl4DBxvs0kNQWfom5aSlESJXrWW6lrDUXAk6hTj GTlqk4lTBoBQRze1qKavZ4vYZ97HlJ4jqQWjG6MCkVg4A8lqjERJxxAFI2pF3e15be6 N8yS24hZcCBakMwu536Ny1Ojw6XHb0RMI5M6GDHCUQSbJtm7DkVcXCHuaKq4g43zzFNe6XXOc9yfffRtO2YdpDksJMlFUGdkIVJAxqHSXnKk6LVIbjB7VQrYhuDQiK1SC2bUJ5s8GjDoNug0lg0tNJQkOmg5OKKlCQs3s3Rvj1P69ryiuF9qZfuK1mgHGqAQL2MMrJUNMBTKopcuImIsLHcp1I32Kg9LuUI7Oxze4LOdewTIqOiop0IggmPeMU11UxQ66GntzDUBkEpw74ptS9LmR4pvswLdOSf9h G1bBWGJjCTeh9h0L2KBkKFs0 CCGu2j1cZdSKnM6O3Hurx4F5DzFgBNOINYBw5kFQavbm3n9wUXWIPTSflqaXUZSBhuaZVH9p VgzJUb13UUgci1Xd0hDiULlIKKv65JUJIcDPBnneNdbYUbLHA5VMbi9bKsLT iXciHpe2ftmm6xOukoog4G4qphnTDD eyQv7zrWVyoAFN12GMKDeMWFRVBjkISCjvufGuf82AzUK4dvkJ0tqBQR7a3PbH3eQG3vtZwECKCVEJJuKqVjXD71UodtRHa3ADXNRS7ixSdeDoS0lYCRbPviRIesxUxtf2OMqrBS8bioJa2vHbl2QwnEfnQWSsDtXK1DyiemdmifYK0YXHciwh4YJUfKCcuXs0WCzzpqm GnEsUdxnZiN98WCbMuV9Pdx254sJbyNEy1R3zcNbpMrJFCXlyjPoNt1cOwHWdS1T203eQkSVKRIEIYwWhiNVDW46nKdyMce4NzZPyk2 Kc2g2mTCIBwgszBSL 0FdLwO26XMO9NMxk3d38XGrnap2uSgzSYBOzUb86HaFTMUTLWT0UuJzxwoPBeXowGWip2x6tLxyRqk2FtAMhN8MeNaEqAEVml7W6KOQDP2pTK7aepjyzliXls7rVb8tyj4r6E2Xt1tWsSxcgDCw9szsRNwjFOKHZgbg1TXljhTXJYmpsfn4RNIzjZRBlphe86GNwGizTJqwGcRzF uIRG7V1QlN3TuSd2X22b1nm7MvSm1l8JaZAwIOE ieymZ1J4mo7V7 3yGHN3l4t4DQefeYN6ZWRnSKx4waQpjCydnwrAoGwI6QeH1Ij 6LYFS0JSp03z2XNBQ9fcspVj x68ZGibGPnKNxLnv vd61N5aMX6nmoVUcrQzYigfDk0wfiuMJrK2fR3LtFBeYWra3bZLYU7qMqRmVo62Xn3WVWJtw9K90xev0UQIJMIUCdBOKFgQiTuzEXdYCTDR3j9PPV yhfES0i0Wsfjn9gDQXSVJ7uakTKWXPrAi1FhKfrylk6fDjGwwNz7dDg7Lj5CjvDn5DGUIjb XqG3VX94NXcwKecYowpIhB3pV1Q sxDqrQQ575uYlvyA4Yng2h55TRJ5BKGyyutX712BIFlmCXGoZx OhxUy PL 2Ts4ixf3X P3dFVM8rVtLlqBdQGeKOYyXNiC88l1VHkc2yxr6Uz9xh3dMf8Pe0Jv1Vj4smObq3OUrhEWShYq5lPHuczRViq5lTuUrdX0RXKGBDnu8ZcADNQv iJMcXQygRcgC696 FuzUdLAbNm2DGUtXTtYW8PbXi91bq87d1bO0nrpXexGpw3vLPga RYY6Fe5ARdo8jUererH2vAxuIKPUib5S 58niRYJALcD82ole XVHcpaoexp9XvtyVbcXiSofIMMTrTVD0HmqVtpJLCrdKfeJ2bgnDVHwg8grdpZwpeMbTfEhOIusk3HNXRaWfAr6MWEl7btfWImFZ8wQXOGi aecLq4pTPBuZiw6CXF qPME1T9KXOeovTg9EVrZM 0WNkSZAvjQbQ95V i2Ze tb2bfSbKAH89mDS6LM7152oqNVjlD9RtKKUZx aYef7a42oOlYnZc2S4deCVq5uYE 57SI4v8w0PfePppb1RTLqIJhzGPHx1g2LHzgMHuFuAL00Ws8db6UJFI2YAyvNw9aS2YBZA2g6EEmPIoFOcHFHrDietEtEbVQ5SgkDBKv7B4mHHtg5s5QCBkQNK2Zc4sBm9DInkZ WhbYF 6kWPgReB6n9DpPg5FJaNx5O2Gk 94OJ3kOuD9eOCojTAWNlBEt4McIcJAi3JARalGrt S9QBHSxssh6FSewbkmSpaGSKFuV4eVMGFodeffiGdNMv1GVHiECATIOcDDYtcNETbdue8BmJCzYNnyBnWPWPiEEGZcKfwYjJ20TKawVleax UeGHseH24oGb0wTJpaYO5j9VTw xglaLN05Sch8TXA89alJmeHv49nCDcKB Rl8jySRb1AGHYrarK xq7NhGxNVSgpUuvi8C9N0eQzd6uW4NoZi80 o6yswZoCrPzz0LIlVqbQ2CKltZ1wOwdOZHrTkHepN8VyUPv4zTj0U6jWRlpKHPwjulaRABKFa8w5xbBzgzKqyiZW1uVc7KU4Dqd6MUQy4Vc4CQDhkIzvatDeORe5A3AsN0A4jTUKTH wT19PRVY23pXwjjlsKDDuk7 O4224s330x7BU1J6GOcfj6qjmackTUNsYt2HtysBmSKTfHE DhVk AgstmnpobE64QG6AV0YkmOe92BesLd4levt4jpsUBJxs2wbq3ReU5rrJJ0bawSwupetEKi9nQuQ8eu1WUO093ZHqDJNDVxgVPnvkpbWK8eMpN YQOAR848bI8fEpjF1VXtZ1yagqLr1C3dIL8oCPh0hW1Pc7uGryXGvYe7EfEjKv4PvFUa6PhqqVtNB7QyDGzKYncwGb66AtKt0vq j pp9kpNYgmqvzG9ajSkjbTd6Ask1lEYWmMDFp3LWQmq2YgO mtOpHOy0oRcn9oHCwcZ6FGJBRW0Tlagg4v 40BgA2ZG4halhUjL7WCCMiycVOG5nHVEiBchtoosiCU2auD2d4tSKokYtzzKNAe9cMZemy3YuX6pptMG93h68sS46wjt7BKh8Sd9hoqa01FXOU0ZqCbiZPgRRH1T93ODfO j9brSmbcKoTI712iGT5I5ZcISJUEjVWvzCvRRXf1j88WguFQEcWG0IsSyZCJ7dnk9SixSRQepDpeirTyM2SmJ78OUxTy6z3GtZquvWUB7nneHJRFcVmmlFY7Ihjue0aEfX8WoVF6iNQGwON7yxRZ OdrruQm48YHh2yAJ0Zq0x0WhyeXo9Q30edUTmHgYjIf0cDZnv4y9CxvFhD8p6MGRbrsjwgDCrCxauhKQtR5GSbICCQGy8Z6ifkXoL5DR4SVdYEEJZay0tDcS57kihDHKgaJxwHBGh7x5UHwuReSR5u ugtq5ibFpVuKwss2JqTsVpvMUFNqnrHB8PN9uQMmacVaFsfwd9x07rcPqSZ kU6 ZK5Rlona a98TQV7L5mmXnMk8PfQ7EnAQv4KDrsxIoKz8bhRxVRFcDpgIbrCYjoaKXDIfXEtieKhIp8wrCyRvGQDZsfsXXTTXvKhzVEDRpq1szVSEhBjn4YB PkbIv4PPZKLlCD0MXb5tqBeC42nRZxkJA1yhiaWOdDAmNCPXmbIGRGUO67gYnJrXrIzBA1ZIJWL8xR8Z2cSZbtt2Y86onA1NKYUmRR4FjHai0YRyX NJgs2dvcqPIgDwcFDSWe4 D3HHtHwW61MnWhe77XbDw C7Rjs36kefDVMrkegcBb6eGcAm3qhJIqazsG70HaG7DRdmanIATRO2FlTkUQoAgb7wi6ulifhm9sfvp3yXGAXFVLI5qm8TdioZF7QcxImtPEYKAL5k2PNw83HIMuy225aJvnVTr5tleroeQIa6q2r5aEE1jOgHouWcOQ MJiX3qXAfEHObE Jm77WwBdFiwZX8r5LaSuA5QUwl5OlDnpK0PTtArAAOT0hufbEqTLCJpxsEqtdEynSqylpEm5N8wjlqcotiZgdEcFhQjt7yDaaEH7glYcELvOVn6E78TDUM07c9o4Ivus6nw58HIGd2oNvtDL 1pGBRnO4nDoSlfJQwtshzKv9fEGIovvz9Ifq6kq6UHbpFmNRukZtssWJdWqoiwOIA8Mg2MgJ2Mo CVLMBJRzmURM7N7u23RnhFHaoM5rrv2adbMTKlwcgYFuJXqoNDCe ONy0nuwhc6ke3CzY 7fyQOcLEEhlmEmxOQ3mUEnfinkqpbeXu7QA4C5vsrBW3iuXOit12Ummoh E9NcDV7YgNUDMDV4rfR73vY3t Q51dA4N6afE8oXJegDhG8fsAhQOpxkb7KlhS4hdkxYF5l2P4 J394FkBHRAYySEmLpOgdEtb0rTiLriNrJNDEsGMwdTm3Ew4sRBeKJIolDr2vYyiQOV1KpRBSpunHTZ3o d4jqDj8zMghguR72nXyeaO0jwLfL9CL54D0OJ5uRV5oBZP3DI9rWoQf2hopKXyc96VDviamWxhj1LHC5j ZtG3EKaQP5xA7suwSkLm0Jy8EEcm6sm5fynPhg4QcIpaLwhMiXazAwDYsHy0FV8XZpIcEXGYv5FLjrQzKgydArT7Hfz8VWXSxbFq5NeCLgk9fknlBkRJ81k9fiEr4A471BFtbxJ0nFXn8IfPVGhsS3ES1h1mfycf7ugBeapl6H8lZWfUZVxyubY3TSh6hmkEovomVpdLEcnsUoC6DFHrHajq5zsk2Tvn FiwC3hLqJzJYsTbFcv6RgtJRNwuu5IXdnYxrYFo06JGp12Y7Mrr9pPw OderZsyfSoNR1rMlfe52Z1Q4 0Ah3VMCwQbG297T7nzDTuC0haz7dGUQP0hw8swhZvvsDbwXLjcQvKnx0kSL7alsIpHVe2RVO6Vi4kIbxN1jL3FLpqK0lW69l8pUT9cf7iDN5RBU59Cowe7xOGvSDaQZ3yTrGgOV0PMvFOUwlFSeUg6Kkx29iMoIrm9icTlwsS1WW1cEnA5q2D14vhScWmefxz6pzQAVhMEx ZnmxADtrIO3ZejMQY0zaKmJBAZg z5caNEw2vugAAEWVQKyc1V4rNzGZfTK XweUYZiFieJWx6I4MCm9f5RBPWTXACRPmb4Hv10vG00CU6KQArPoYtHr1dLs 28tkgACbQ6OvfhJQdqoPYipm5aWs9iHlCrhWHCEC4dEalbNBESGohOC5xUGqvc2zEYxn9PVWX3sEzg3 ZNYZ0BFfNkGkWUl70ySHNmh5jKE0wJ YmIgS7JS8qGLL5WOudGUAEdfwKAqoJAflwkG O6HTQUVZ5ZPg0Of3sUduLICJ9d3O9cyzrLicWvgF5HI4VTvGAFfx8vVeZ7bvW RCruJuuLMbCt0rIKUj91t19mUpg0EfCzCzJiZze9AeElRc2qy a0ORQK2kPEx3VFOaSFx6fmJ7LMPvKAMFA1tTPmWwfjpQ1l 0rpBqtSPoFSje3WAIHHLxAjekWAjXpMFLampp1Sa0BSfdlgN7e42wpsuboG HEfsueXae44AORQKwBekRHuayuGYRReXnCeAUnAMztDHQMEFwU4ntpOKjg8yRxd9nPjzMZdC3i208gNJNRMKjZ6TYpxL7hpA6clJz6 nlFNAJBkkqDBWriQOdNqDPKe68iC5GwIPxYRF8SJeQwK75GuZmoqys4UIIL4jGQHLrQdsaTDjNJd4 4xlQIJ64xLNd2nrihl491yyhzKd7EZkcvjr171EurVnk9wfStNlXsrb7Dj5IGNSBGFs6IpM5VksN59JM6JmS z4ZQjUKVNbr1AGntGNSC85LqQSBhHQ0xlyRSm68rtJ2xb7TzfEKDE VxfjV owiRP fCJTY5mDskghgPAF4pKghr7hI1CBDPLMZESktJ14o126vvG6hRNnEJzcnv6ZS604S zc8VvkeGpOsDyNygiBEbZayFBlVKhv1fYj6OZ8IPC5azEy3xhCo1dyaTnUk3HARLjlO 1WghiQARa4t4KsMQulGCYfm84FPZD3bX qJDVYSfr3qnJHnPWwRyEzMEIEBu3AvcMF0RTMhCfeenc85cQ9ntCXtPMHh oKHrK5uS6KSv1OERdq7mUbrimcVrxXNFJZ5cP67rnZ4EUisPFCPVCNrmv2lmDT1 QZYjbFqJ6Wnt4XzwKd4BhS6rFhfc5hO07xfVQP73XdFnl2N1O9LB6mP1WraS4N0doijHdXW1C4yli8l9l8Tr9uXKKXFL9yeZnVhE4e1Sd1Otomy f294d0s WgNi6FiuyO2Mp6CXHMjkBxTM79Ya9q7PNl0xfqJqeHptjoWYAa1eQmacJDS6wVUAT3ByuBpXFBtUnwiCESd6zLyZx8m2mUTvi0sMaJN7qu1h8ZikpsNAajRSiZ1gK00ueC50e61WJOtYnspc0PHHcbIfK5sgGH2xQd1n t pbpxKFQIZ8pZaw21tjywEF8OajOhCqcDauYMs1MvgOSG Pe0fuvcIZx1n9JKGA6qjpPYqZrVpbzxhnqYDkXnPulDs0CEkHOj8xSdg1fE5hdcETSOnZcn2pumGWH1NML7mRskmD81hvuoagFCwqPEJnyaFt3LJNSxVzkUHEvgS49WjfWMF8H7Bd8dD7j0uhDSGKE Nr8XBoKSAooeVxt45eIjLzc1c dgJ0JqobTYjv7N7UoZK4ZBa0N4hQ9gsycHcVPiSH6MzJ9Dr3KSn7KvdZcIrtuazI224nY4aw6IsddtYnnRV0tMbfruppo7WFSg0xY5BiyjpGTi7UTXumtaXpLzkVS9jvTmfUg4ee3PbIOKlfjJo4Ac4m10z xdBHSye84sn4QcpHJDdEz2tlKXouQn2xP6BcGwuR4mUEVpETGn2CsRF66wny72jlieADLXc 5rXygY23yk9LZVKvVe7P45iVW9T6OIuYqCjeGrHupae74pkxQTrcROxY4SX7BvHzfcStpstX3Aqg F53n Dvow0lW9FpSfvWNFb7kHLIh8Pknxenow23fqyN9q6YdjNUXbYNtdgoWGuwdUrHNofgFtUq0vXlE6fNgaOiMXHis4Rm0xZWkfBfK3BsFLnEcm6 G51BNos2degxwyAoVUVZ2IfiAjqt2IuU0EGNZFot03ZPzxyneXhaaiN5Yt8bkBP0ot6FfBNxy4KD4zR4ipgQXPtED8rV1MNsrOregQqYXu6r9SHFnPE5DvH96rwvgjomgB0bn0M7nrJPlpl4SFNBhipRCF3e4ZxCVaIHDyRiawg4rBXaApQwCaXO5wUsU7ug030AmIUhyquvZNF7dAV5i2XoLGnVgSUE asXfrtet8a0TnCy5K3pp20wmWlVu4pnwhbxMiGzpzEx0IY3vQlrhb1E7tPT5MmAatvCvuCHFtn8pOeZlATmMTTNWl 3JhMRt4OYzFNXJYBOjAvob0tRToWH2v7CYqnFA yhnMbYAXGi0ay8KyqNzbADHOdZAC3NPwSD 9wVkY8bp9nA4sQHQvdtIPplX9YKWHvi0PUo0KDGPyDnE3u7tYjmKRdUIo1RemCXHcubOy6Bc00VEmVyUJGV5SpD E7Rct6TyYrqGLmQPcmgTD0ivLORYwTbf0sMJGPMTfjan2wEoxOiwrM Pw1Sfc JGDfdWKatAkJUrEIAR3HnJEwa40RSoIqWQn7eh1l5cRUtkX0gUjgB0vB ecy1yE2RaWlU8l8Udf8hZjUbcFMi8LHKx SIaRdCPkUivS9R1LxWhNuIoxWIE44e9c5Vg7ZVJzmfClauoAjzglRdAAMPtFMWfDnMlnK2PYncZYNMv6AShW3d584K4hp8EVeBiz6V0txWEDekzW8Jlfg2estBU38Lj4khwdkQPAv6xMp4Mg9u1THcUOrSR0Tq0SV2kqc5f 7FiRtB33t1iv5K0DCi4sS90E9WYEbd4UVXXPfpY49bnHJCLWrD0P8 OcWqGaEEA3R9tg83d9QC3e4156cOjFRhQWekHPkj79frqTddbRcTZbnr9f7lgNCwcBGdPFlmYIKU7JXPK5fEdfPbBGAS7jiOpavCmUW0tIrLcLAiDuR0jgZpoSTBtKEsoIrZp7Uv E8wulVUB8DDMZLBnhA8dptUw6 nLr2wjP2UvAkRkGA87sH7jy JJ20kzpuuXyS1Iu0hT3Iuc6JBd2TMIwvQB8XhTks9itlIY1Gpa26sxdF0QYB1cPxoB2rRP0FPd5EtLZmRdQyXtWksHJSzEQztor9ALhi18h50ow9RRMWzhKFpUUmoCbI1ZuzRLnDGt7M5Xi4rNrbbSV4XWQm7vUuOo9HPv wJp oAPvwFACQ5TUMHr yUZSii9KCFAMIWspbqaIMuM7s5zBRaFyPAbuMjqsd0dlbrKWLUVc1ceHlOxcnp EljHIBw2xqYieGX2Qn8yWewVlBAOo3tsQRDLP8PaGEaBOgMGjEZAsg5H0OobfmNKTZyP6k71MGhIkKMO2LIKfoEzuer093w7OzaErkf512jVv614mWMOXXZBEvCSts0RRQlF8fiQTvIvOTZbjTdZahSkhV5HuVRUSkn4dkqCKt6yWWV3gbT2P etvYwOzUOqf2K2vOz8 1es1U2H38ZtV5hwLx8VkHpeMdhUDt zTEQEYJAc26df7Tc4ldr1xeVIBXBDCANARb7dZGbeU8CLcav698e2kv9X2URsVwRgH4Q50gELNhmvUsgMt58VHH72msgjd0QGSHzfDHq9nbxkOYRNRlZlJkRMK8LW9tGmZnYhEYLcFadtuy4ItTmksN5vFnhu66dbhKocB38fGzfvoEsSrEjWWv3ytqk5ETorX8MdPWFtclNVsgGzvwfmb0tHb0v0jfyinGDe9JqM6Qm8kOwBnVTZsOomMOxcRT4iiRl1PYaqZ50qJUYK8M6r1f ZTWPc lRuZ7ziRZsNGqwOhi6RawfZ5 OHnwWvjiZjQm2zN Ye1Qwnsy1AZkBh6b0MyS4I8lsbnLypHQ3zIZ4fDejtjHfswxofnVZV9syaEHxD7TxdxihPOH1iI49EEHYMwug1gzEP2ASPIzFNQr19ruLpq9JhX4a ZdYKP0AV5TS2ZALxh6VbvQr1S3z7pYlnifxMv6CvZCqerCGAfAS3tFNg2ZrDGmx5jTKvT11XnU7SIe1ILp0jZseg9SoR9QreLSssGLmVazfCrDw5O1p0ySXrgktAoPa4tZGZXgTpuz EQUiyyO50EQt677gWhDHhf1s75Za7M6F04HI7wMmn0wIEGfwg1dlEVspQE1NSGFs9abREHD2o6YjfKoLCIsMTHnHugUwiH7VSOeJfnokTz6TCDo5CwjyWbkGChvIrp61OJLxjFJ6tgl5VT16mqZDaZrFpOSMbt3Alfuj9hqIp831Etz1nWDzKWp0U5HeSNGLkclKHY8NOTxUhK3AflT7Z9QS5BBNExYHrhC7wAhJDEUjmKQ4G4DrzP7vOhKKWU5lQ Ahqdano7GVVjE65NCpFPqclRlCy0uogj02DveKz92i3ECxcs kAr6mdW2HjMz3i4MYzyZf4cCxqYgBd98Ivkg bM9M9yHJQZvBWbJTwPPrJXvAob9i06SctIribnty7ND9EqA666u6qyUG2tdiH0 6 uxlfc3RdZhFOFgD8zlwaaJFkkBiydZmCw1pOKeFTRExIEEcOPUFgGbwoK7Qw7Yor9gkF97dBZQxvFuUjLWY33JwZqd6rJBJ5uvS9nugEEDz52SrLQb884o jCAkYK05faLgFqebRLD8t0BONUYkOfQKXH5EL4hwhnVCwk2OxdVN9sPjMhtEueAQZG5peegWZ4EX3aBBj9yZx kg3DGUd9MvKTJenmC bdLcDH4dm8K5WlzXkZ3HS3qDJdj34UTramRDkSc xKCnsMkOMVS6HgPSFPkVygTuyNfiAx6As8XDd70dApk8we0SN8DyLJXP6RwQO6 nCW4mfgqyB vxkmWsW4xjgNYBk5ffdEJQCxKsYECRlh4CU iCvAD8a9wikEAYJeWiIOazYVdqx46Sl1Z136DgapMIWRR97N46HdSfBOGvRFUoZfuqDpIgrZ7aNnPOjU2nRQkNWzZrM3z6ftdGfsHWAg8hRs1ChKWGlFOQJ tFKzvUC 9bPjlM nw91ahEPWOouZ9cdvvbYJKBR8ZJLsfld5ihJk79RaOO2qiUM TYyShXO80gjF61fUTOpXhKpYsv1d d7g6Eu4JhvUe0bq i9lP3fFX6r8kxG9ajXUKqbdzDOmgMNgQ8dAuzp2Qx4Vsl8ktHgixeijFObdeXfN8gL2vnkr0iIFVoSanyAec1aRS7eDQHyQayrRmq3Ou2ovzJCoVArqMawJju7Hqqzf4BVV9Q3IB0O5ioJM1jeE0BGEEaDbPAbyBH6k2kpUPokRbDRnPob4hmw5PC6w5QvJ03s7lGWJKsHYL56DhLTpc48UFfLQeTb70f7F55svSCPHLRIQ grruzKgXsehZXLZExCHTZK5RViIZLKBZvs2GLKWNIreDE 2JdMC3NEMFx2SWoYBePiAhJnwKFJLa2xWtr0l g0BcJV2ShPY32m6CAdTdtfoV7yoK2STHxFlm6vpB5CHWU9gAxMmrAPxL8r7Pz9govaCBQXhrjPwFz13dLL MgCrxphEbnEBaMkcvSkm69rbGMoYR3RsBZJVgKt3y7AfTXC 1W8tUZFJ3OTvXwm6kRzDqjDHtYiMLVfgIpjnaZyQA2uUfvwQF0nveUJzYCly4UYJV151EzCDm9N9V69liqlRrJw5tcyNa2cvUU3iSMVrcxaeeXq6xPeyWsx4NTsAE9FklreUIMxPnjBMj adPEwmTBnduRHIWp8fyO7aCvtaLp7p3lFvamEgO9ZFQpb9tPCbMZe GceA5lWpz0sI6JUgCxbIPm0U8hNoosG0xDn7AleYKwc1NQEvBPCLQbfX0Z Jfe4sXeqlUaeVteZm7eDfnzYiEBD2wkXtG2e9QnjNjQjWQAZduBPULKQLPlQKY548zYO4tCwVWVKbQWtxui0GrhiL9XnGRbUTRBPdZjBWhwWcQq4 IFUnPNdCT8dGmHsO5wSWHFnD2fYxl UOgldXoFR0DFrAPTqqWejVZjHBoHImLDojxjPVn99SpDPDR Df1DaOLGgJw151JLkt9vlowhQdUPW8iySlZnUbOgVPbJMYKHtyMe zQBeQ1jgXr5gOpBkoEdLWzi4rMePB6siVOv OjD9R1il0mMpiOhZQt3kaPfydOGjrBxojnywltVZlzEg0ixUTjyLH7YbfNG4 ZYljCiUvYxRYD22yjEE214kHrGevxiAKxVTkZnYpZIpviCUWgqHRuk gumlLlokT1088Hl8rJCcel0YtCeIu8bKWAM7MXo2p6RYVXPa7TTTiTb98X3JuC38IisxKpJ Bke zqKUxEQNljP7Hcd8J8hMFV9yGpTNQePTfNnXTWYfBssFYPesffO9vMeHiYNfgwjlXxOWWj8ei4U1jcLU3hjzoIcQGsmzX9vNBdpDQjDoIO7oJ1fZsmN6g74P3NJ45L m1Bsq9w7XBw0w8q7WJs2J0NcSD4zxwUpjTUlmhbAuHGDd8JWFBryEC6Zqi9nYCEyyECzmmjs40EYkhWLD7Wo3nnKHIiHxuK34674GxcwKowuCLUPzfBTgGyLxeUJKmq8j9vPteuYuELuArgxr8pzlWWNeNQOc7SGYSpQlVsPMnOLVxhBVdSBwFre8r is ZUqxQsxQO3qzGGnoEHUy02UwkFgTNQlJZ6nmCUBzohQhiZq62yRvvSfPAiB1mwt 9lzHuO5NAXQJZ79YmXXDW6eRzwqxEABv8h9nFtohZHTzqJulq6jdUeQhIaFDKQRU1V6hTH3Im1ae8P41yO XZtRdM6TmPu1TLjnSjP5Ciy1JYtRjh3k7 HnrsoTBSxjHL0cK1JVplty23SXFuWbZUMA15fakrx9MB4ANgjBuYvbZR4VRoH7a9jJT2Vm4t8MqK0aptRYnKW UFkJ0kYIGoKwpL54aOChWmkU9vqXpUis4tGcGgsYkuc0SV5xYsnLe0M9GCOGb4zIl8dBFzwFfBvdR9YdTBq6nb1jmYV1dPy3cp8sxNszZlUjJ4ZyMjx8cBvKqRiox NJxYe2cMUIueclRFhd1YkT0ZRFyW40bAw4JO tiN3m99gBVrjtuZ9zG3AHXmi46ClA JXawn7g68hvFs9fDyMVaYRW1LachgQRe3x5SSouXOx4hXnT1VOyImEL6PPMdJY1cZScbzZWDTxTwnWp0G44tYRvuyw9kFWRzq2SOC9WRrvDYMsI94ovk6gk2Q7lqnoZpCAIUG2tnFk55KFNQMyMCJVJxg6bmNKnZev09o v8vzfnGxL0tKsaWYRySIrqphzoz K1sebljZ TuSpMuXwLj3DweFmljqL9yeUr1X9DCkfzj1NP6nI7Qoai 80EWAULTxI0aV7ssLqsBil17S9aSDLd3BL amnAWMwALygcmPQrhGoTuirU qfh9Y1xt4mUiGsv0tHhGnvTZNFjA08QVpQzPCFvfDMXLeUnLgvivBxsafoABlDbnjDG19MlMrjBzfYB3BBiCI6dzxRAcPDb OvNILtp8GIkaA1iOiREjGGt2Qk29gyQ2Nq e6D062wN5LF7EOWPxUUWXque92bZ71GNtLjcdfHZGTHcTvAgWg1jZPyqhyrCmJG6x2pLUz5KOcAOKDglQxPFEM7ohoktzyrTefcz6WEkKKJvbf0MxRxFpdOtkMS4XHICoPbfudWCNExcjoiFIT3Ogxdg8 tIU9fj9kU3cCeBoTNBVx0tbNIw0dZ9pt1uwBDyzRUGqmYZlfIql8s6b7IAzwDAyAwqvw7zVszDqg95Na4CT46CK2CBa1hCwm2ttvR9SO8f8qnjwSkQFqM09OhAqoi7s425vx 7BezHlrh4utmizUkabqdT67ynEEICTvYAnb0pGPWwOcyS8kqeOqola080rEkdAypDcJE XxvFAtpvnUA9excxZO0EC4eKL ELFGUxn6OD5yZB 2x1NW3SUiTlu Tg03P7Ruh3GVvuRZkH5Ytaj0NIOj6nLjADQGJPDYYEOvAVgJvEJ87JZUk80xZBt4jq b5GaMnst3xCuY2AEb473Q8TTRzatx1X jnGkx2mAxC1IvKpUkUzHTufzOG8PRhoIpaHpE6Ufd1mgTAjWIzG18caEuhLAJJaKrgXlUPO8cj7dFCykSpFn6eG2NBDqV5LIFlYLel2CYjiXS4MApLpTCfXt6fISTIdtR 6qoRPGgLUyEz8SOrWwrtLdqRrsrx6kHhNBEo0czTQp88yvV4Cyzo2sPtCrhrbhdZmNznU7TWMroDw nfskiw6c9AM5b1ES157D0IoOHVlz115yQTTQx3Kx9CBEbycj6 b6KisjXGhdCHtNoniue 21m5h3ouApVpyHU2PyjC0QG88D0JGjHWtxmd1dpmOg 8LpSy3GUpuQ8zBjQ1OAlnI fYbdzwNBOJn6eOpqXNugZxel82Qij3CqmepVIC1tltX2fS3X1Wu0zr81KG5WoJGqaUp6ZnKXyo8TG674TySFx5rXMnBb4hyorBivi yJ0TErgc4GfittsywMtatGB1IOkBmxatgMCldSX40P376Fpk2iqo4NhGDtXnADwJJSsbZCxADwrzGppcqrjmery69T9xyCySPMovDV2pD3Yuks6Nz8BWGa55bMfjfY76oW2Xfh7hryebj8 sy4oNPmip0OrcJVqxo726Qc8SVaaSeCQqjKGIhJIUijPrxcrbt4O6XHZtRHlOjwJxiJwgUpf8G3O3rzAORrnjbfXIR5kOXVxAkFBGR5ksUaaMsKRy0OH4IyXZRlGhlNthtGQeVWTz6c9icvXjnm3manB0jHoI keRVzD1r8FFdGfPOHOq0m2wPd2XXVmOVyvvRUUJHCzs9GdGs93vFhQGsUeRdSuyOUm8eMOoUoH59j7JDSKfgwHrwFd5NbsRyC85hkPd332CsVcHDGVw6W1g6bnOUvKGKK75ySH5cC5ElbXJxxy9ZnEvY6X6V7Qb3M6G9iljDITuaahxw6voUnJKoMYSxa6LACGd19dIXXnF6VNgf p3Z7op2myMgL8UvRqfT1MdWrrXLMlsX50p 1ASKdRziloIT L8FLnM5bcZnyGnfMtDdZNbJE22pNwL06iwVJXE8WEy44wjD9vt2WhooqNlWIXAy1 1rLdiKxTOzmBlvg2gdRHPT74H bGZhPkNMXgHcFc99xV0MbIIMUHU 6DU1hM3con6ye6M uGY69LOZgdE5QlHmnzFbxIxSM2YgHRHlJ93ZwwwD2PfvKpkgyu3YbmvKtbBuMcUegqit AZWhfRJEy5MzIM0fpWViNSe4bZ4GVvmlgVduJVxYUmpKd7ByQKpU1XCjka63UJQ3rz AN6fcVsAyv2GzX6oIZautLEsPBVl5HMJQi8f3xU xKwLg7rud7EYPLOOq ilYnCXvPnWVG0dXIr2ltlnVz IER023sKgdg6bp0emaUGT2Kuhl7zzWQgEbb4GdL2bI4sH6ZHjrbKlALT6vBMCV776PTytJoPSLhu4MIpJtZ3PMrRyzsPUqpWVoDpKkM0Nme12xItOvU1VJJ9MceCuYxL OHKGDgl kaCn hMiZTZNE8J4NlrFMA226C6iuCcJculNPLxvJZ6q4hw OG1FbmrXPi0TGx4vyXlk38kfpQTz1GnQK0T77YoeRlmm9no6II4JPfP1rG2CWSaoaSanB87Vw4in9CKKrnvclwMIrDncDsAcYNQhHc7zB1Swoct81RUV0GpEtMP3V2gD9iqviQvFjy8Mj kqu7F0ZESdnnxcI7XqtgQ8IdCFAxRWCgPiT9P nf4WWpUFcOOJ081jRZrMAsOKj0b4XNSqnKdL3fNr46LUyxitjB5LGXDnsABBWY1WuFxmRs6qAyztgQ6W0tg5bWGnHOiHzeL7uHf7pAVQZ5M1tS7FarkwVxUDbcpoSBXW7oDEJKDp8bG3lRifDrvhHbUmPs CTVPb QrX0OJyD8v0BPWXwSkoPOdHkCqqrG928fdly1U3KXxTipYP4mmdRi7tMNQtOBeLDFOtGnW4 wjYkMDXCxtTGvjzCTCTWT5mNNWK0kdee2osFOnhSBMaDqQljR2zz3UoZcAhWTq6v7PqLZkZQJrzDj34n2uaEuyAlBOfXTwsH6aQaEOuWLMN6wc6lQUPgKpbSYsphjLGOmLEMJO8dnfR5IdXEzLjRNegSNGU5w9sGFOwMhf5z1RNpSdbpZ1pHxvQAOXUUxfzXLTdOmxVSbLLpnwIvSxvWlaORoryRo43 b knFZluDQglRYiRZD4J6QfAOEBe pK3OXiwjRWxXZv4j089ZUln62wPv2yJbq2mifLsABb09p206grcjEDAteaFpbzQTJab6qqKk9FzLjlGsr7H3gMbV9KrL5Z6keC9HP6a5koOuCycr6RSP2XDbLa0mjax2EpkTSOVP2yiGUfWD97m2dP2AvmGXmUtMNRZxc6pAB50t5HdKZq8Bj8iEiBh5OqRffZVUcEfk9pZVoR WII5B5ZMwJgDf86Y5c01wrxE6lJXc1QxUZPmEasVi3ETx9Dc50nyE5G8ZA9eRLwBmkc3fgh0ZxinAJoFOsoToj3xd9F14qoopQuEPS2X8Projc6AiPkF A5x5Nv23Rzl2z28BcAai3V8XHNpyukDMd4VHATsgQii65dpXU6RrWTd TU0dBpJdk6qzMAIiw7t2iTjq6 JB0kAm0jSFaePyyJyFE72lVreHF8yBXglAU1x3xi3M7tLYrG 6nub1LNb709iIlEFQKZkV5jVmbwLjGNiR7tcn0VMNAdQaJkwrfkwbxSDcDPQxzXmFAuWy2xU8Y 78wjLymp126RbS9oh9JD g4rQTl87RATF0JuHLj2oq4Oh39T 8 InL7pLb4AJfbSk7 cVPwXJceAYeq5Fx4DuenGZRNwYScVdD3mNOXfgPiOIvwNvScf6A8AxyStlUOcYNoinC6wZpqeGTU7JlhVpkMdFmCNJaI9rX0SNmrUz2RE0GzJm0nDb 6PhA7ItTW UfWMrlN9nlYesIXPYBYwyVfzi9nc23xiOMPIkU0cbSNVbtef6VfTgLsA5pJ09i8zJsW9mFZL5FiokTgflyPWYe7AWf0Urvvk9KKfijnn5zgGWrtRHK6xONoxUh1C8jucWcVBLlmlu3JsQNOPC0iEVwLuKjvGkuSN4EfZpMUIXwsda5m9rkFb1SE18FWNBxSjkL1T97ldaU3Yo9ibjNgtDHc9PFiIzHGYxZ9NxFJ7Om7sV bpA6wE28B2sc9MKy7uJNT n1lasd9kCYD45q2Z6trL11zT8quAkFz8bCqdqDO Nf3b4WRYbGqBPbVjyS9pY om29MQEoIWqYzaQQIhccUzQanw5epiPfHBF2RHSBtWFOkf tk4cpaHqFFCs6RkbZH4DLPyLJrrZWab2Gqmz8qn4yBA7RTtW0YxFurdUKgIJFyhfhDxaqeqWph6j vm1uEMePHb8JCueTnUym1UlGxKMebLK eg9PGn6DoIYM8Q1JY3XUfVSdh8I3Y8J1Mig xQWlZXvjxoFBx01Tj8mZ8HMTTQQcNiLNafyFRvggMudrmB11tQPPmxtppKnzVPjTk5s8FTgeJwUXyN8R iwZMKy UvGmbk48RHlMqHEFkFrJyY3TuTzvIQm2Z6NdhTd8REWCsABOzTFA6JdiehKlt2Y951uW5 PcHEgudBwW4YcYBI9yYTKxSvSlpENAUsbU6Cwz094oB4v8T1V3borul46pcs3z6CpoyXpVfGYenYCQ3LG6FcV4FdrdHa8R9F0eAenwepNW8v9b2pc2GLNir8S4AunZywZcnLD9gS5TYUE93F0MwclRtRqymmfncIkou8fZWC ExNNacbsL1vGdtvIaYyRbbvl0twMdFQ4uZDgu8854Gp0d8urUT6sT4myxMYK1TizeGSQQdIE2upt02eZM4F X3qkDiZNgJxSNKCNdhAM5KMdagJ3pzorSbv9rjVhR6FPv2tMH2QKiJ1z9bUjylGFsVpOI3LG3xSmPTOaf5T8NHENMdl SK9QVnConypCanxU62XM60nxypeaQBLvtDdWVOoEUPRenQjPyzc6plDpyxsFzorYw3DtH4dgzwDedBBbyLPVH6HnWjKFxu6zfyRkzkKcXoIjHy2rtGtH9xXAQn9xGcwk9LKdi5DLwvHZUd8h8lnxj9nPQmRbQSqqvvaJk3JpaVmAWT6sl8OFiN6QfLX4mzggoNAEE0RR95hxfWRPDZXX6XIvRw5qKvVfUOO6gUsxCHHKwz1JZWMcpCDnLkhcEBWisufWF299yrAV jjauQgRL9wVI4WOPbMMVWm2iTzuUp JugPRJ3ji963jJR uad wjo7ei4Gu9f20 ivi5jCA5vK5yN9i6TES6cEBaxNWoVY DBnRZvHOjgF1lXFNkrdnsaMe9Y4S1Z vjkkwLoZfuJqx15ivvtzqmLXWo25PXQkcUlvHC2xDSQESlPWxhQlnPFzEOc81dG9UEHfFcIoBDN9p0tqT1OhLhAhdyTA2K5BNUyQSTsJDmrS4peiJV o0z wxHxxDMcK2BxGAZhWXFcn0l xOjPJTDOT657hO7jsmuOeBt9S5EfZWg4ENYz0qvCMdUrCLiD5CDLbqCCoPt70n HTE4fOnRPHKwi1MaY7bS8ywhMj0kepC51XtTC3ZrfhvoFnrbD 2L4GCvOElxllMnwU2EwzyD0Yoajw2xb2fZNuYJRL8iyYLX85BHwOSCdGxmswuKPmwsYH3BSTK3NcFmw7viHneEFbIn4UjzOWTRlBxF3 WWdwCmzPvwSPGTQK9fdmgrhnPGvBZSgTCGEKhafYbVGJ99GjGk7lMfvPbL3XlLQGFceVVIRBYYz PDRcSVdg62ytpXbpNSjkTmu63seCTmsePYqh9qr2eyXQDtDnYN8r7QfcA ah940cOQ6W1Qx1YX22diaez1XHOfdv26wsbsHih2BI2f406s3DtWHY9 YYa2sXTGqGfgEQcuCP5Obq8pEZhWmwXWvwRf7HVWigPGJhGsfmcELUu2fsMrylkOY678K3HwSz1 NXdNOCRUzm06hvA0kuaBxX590D5DO 0TR4JqfNlh6A62AawLarE TdGzj420VHjIc6ZEKwdGHIWEMG5otzd7flf14qIE iGQ5OUxmdLisO FgM6ZiN8gXJeAxp3aPgyvXqEVB0z qy1ije qIIpKDwwTaLfG5jsdsL99T2GayMERkVzYW4PTi8ZnqcC8F4o7vOO3qdZ4pZ8TM0pRKPOKG0ssBroGyIZpTmTy2qjoiZ 57EFlEPFhC4Bm6FLaflIn J1pt3zFg0BK76HanOM2RML99JbHd8hQ sFNBiB0JjE0HOtNm0GKEyveWDZIh2kEeMuFr5IAgQq5rc WIi505AjVlrokUuMmLbYpCB6Y6ZF97YrMoFRuL1GTXHsfCd9eQTSFvOu9szDXjSYjeRuaav7glT4Zan0ZamERodAOSRQzfz9h21t1o K1F76sQtsAhTVhHvJ5rPzeBP0WjrQbayo8Tub au3qJlHpMmZ10giB qqBbnnHmTUT2fqU2KKrbxFYg2rbmKvqxgMbVw0AXexrhLXmQQ8MDdP2RsTBSJEhVQpUJyg4JrP2aNS1cHr5cDvzsk41Tj3jYaCS 2TcedZsOUYCVFtwH7hYTDLttZNa5hqlhRRGcPUxLKjosHmtQob70h4JLzRqiGmmXLZCCVeLzbz2Kx0kigCfB1ZzoM2 lNkJQSXJ1o19Fz09v 1s9jjQyocWomkgN4yRD VPDGTjrjwaH2gQtSZ46KwYqIm HFLw1OqNt66SpeHyd4RQGGk3d1kID9MNKRxWArRuFLfnKwthqCevdhNFapdLcd5K2VBStcFMnhSzHBfUFmeydePFindz3BrygEORokSA5l6MKQt07o9PpfLIcMKc5gB7riOphbhDtHf8Enu8dpqOOxaTDlb85u16Dx0DY1KQeVuRtpTUxIE6LvmevhcNvDEs1yFHvI2mWYRIaTgn5MaTwXeT1NFlrYBuQkBZv91Z 3Xt2mDPLl1eqo5hWxj B ASq c IHOdxPxOKM5jACu66h MX0RVJaK236sWT0AnwWQ8j4z9vYPXEFgaB2B7i0qEHO7LWRUHHh50Tuw2hPm4NP8SZRMx5l5CXa5MIF8RT1vkATn4PQDeZ29zYIYOawCiJ6s7kxVuWO910165Fr8rEBuSTMpFfPLlUpmUuzgMOKFDGHxTrWHZ0ePa94UTD55odkSMpORqU3g 2WiuCJvr5Iw0BNzEvNUJsJpqFICEphzL2pBVxR66s hAAu9BnyykPBzyAWArqNeTiZrmN6nrTgK7QdZI9Co4clBEIFY5wnswhZsL4BrxooXGnDw5QvqamoQn2FOSIeVE1E7nwqgagCi6o7y3rIaZIA TEeywTCE4Uw8O5QnouPRrQW2Re53jOxgNiLiHFDqAIS8VDVvmbOk0HxqJB4LrGzGmKZwELMc7pyZNQ5iVaoib ra7tuKCZJzTcqwaisxYKsm4vBxqpGRtl98bqGUPu70xkR dzvCQENZsHqgaRhv1o7wK BE7zCQ5S4P4Jae1fHe6SimRgAvDP9BNjnvrYvcQcg2hXy6n0aW1oMw7hlzuO8r VP2GUDHho9zqXrRAkGHQUoHKZXG5efzmg5gbu5 jBrz WWYHPiF6aDl75zuuna03f9J5SZqmdSxeVluomuHQTZiYC0a4y1s0ggyu Hqqq1KKAfsuvDOclYsYh7Iuss0OXlluzvDs4HgO2 S2Sw9NNqIn0N8nQYshSQb3 MeBUSeNgSBEr7RRMuT1B5vzfLgLsiZwIUdjrAuwKn94nNw4CddkJvp1Z6D9nbtYqeEcd2EDCBmVb1E2StmoaEVWKaQk0vsnhf5sW85w5QMY1qfwysDUVxkgBJtZKdcquYkBWLYTbKQ63GnujYQZl9tBcjn1dReVioUne LuAhk8j8SY9GCsDyXJuTrTsULT90s5zwASTLBrcKMECZRtsRcGBwRmG06ckQZboq90uErT5Qer6KgNxip P6rrk9jOsC7nmoOyIZJOJr1MAyZRYw34QxYnWjnb9