Matrix Calculator

Matrix Calculator

Matrix A Input
row  column
  ×
Matrix B Input
row  column
  ×

A matrix, in a mathematical context, is a rectangular array of numbers, symbols, or expressions that are arranged in rows and columns. Matrices are often used in scientific fields such as physics, computer graphics, probability theory, statistics, calculus, numerical analysis, and more.

The dimensions of a matrix, A, are typically denoted as m × n. This means that A has m rows and n columns. When referring to a specific value in a matrix, called an element, a variable with two subscripts is often used to denote each element based on its position in the matrix. For example, given ai,j, where i = 1 and j = 3, a1,3 is the value of the element in the first row and the third column of the given matrix.

Matrix operations such as addition, multiplication, subtraction, etc., are similar to what most people are likely accustomed to seeing in basic arithmetic and algebra, but do differ in some ways, and are subject to certain constraints. Below are descriptions of the matrix operations that this calculator can perform.

Matrix addition

Matrix addition can only be performed on matrices of the same size. This means that you can only add matrices if both matrices are m × n. For example, you can add two or more 3 × 3, 1 × 2, or 5 × 4 matrices. You cannot add a 2 × 3 and a 3 × 2 matrix, a 4 × 4 and a 3 × 3, etc. The number of rows and columns of all the matrices being added must exactly match.

If the matrices are the same size, matrix addition is performed by adding the corresponding elements in the matrices. For example, given two matrices, A and B, with elements ai,j, and bi,j, the matrices are added by adding each element, then placing the result in a new matrix, C, in the corresponding position in the matrix:

A =
12
34
; B =
56
78

In the above matrices, a1,1 = 1; a1,2 = 2; b1,1 = 5; b1,2 = 6; etc. We add the corresponding elements to obtain ci,j. Adding the values in the corresponding rows and columns:

a1,1 + b1,1 = 1 + 5 = 6 = c1,1
a1,2 + b1,2 = 2 + 6 = 8 = c1,2
a2,1 + b2,1 = 3 + 7 = 10 = c2,1
a2,2 + b2,2 = 4 + 8 = 12 = c2,2

Thus, matrix C is:

C =
68
1012

Matrix subtraction

Matrix subtraction is performed in much the same way as matrix addition, described above, with the exception that the values are subtracted rather than added. If necessary, refer to the information and examples above for a description of notation used in the example below. Like matrix addition, the matrices being subtracted must be the same size. If the matrices are the same size, then matrix subtraction is performed by subtracting the elements in the corresponding rows and columns:

A =
12
34
; B =
56
78
a1,1 - b1,1 = 1 - 5 = -4 = c1,1
a1,2 - b1,2 = 2 - 6 = -4 = c1,2
a2,1 - b2,1 = 3 - 7 = -4 = c2,1
a2,2 - b2,2 = 4 - 8 = -4 = c2,2

Thus, matrix C is:

C =
-4-4
-4-4

Matrix multiplication

Scalar multiplication:

Matrices can be multiplied by a scalar value by multiplying each element in the matrix by the scalar. For example, given a matrix A and a scalar c:

A =
12
34
; c = 5

The product of c and A is:

5 ×
12
34
=
510
1520

Matrix-matrix multiplication:

Multiplying two (or more) matrices is more involved than multiplying by a scalar. In order to multiply two matrices, the number of columns in the first matrix must match the number of rows in the second matrix. For example, you can multiply a 2 × 3 matrix by a 3 × 4 matrix, but not a 2 × 3 matrix by a 4 × 3.

Can be multiplied:

A =
a1,1a1,2a1,3
a2,1a2,2a2,3
; B =
b1,1b1,2b1,3b1,4
b2,1b2,2b2,3b2,4
b3,1b3,2b3,3b3,4

Cannot be multiplied:

A =
a1,1a1,2a1,3
a2,1a2,2a2,3
; B =
b1,1b1,2b1,3
b2,1b2,2b2,3
b3,1b3,2b3,3
b4,1b4,2b4,3

Note that when multiplying matrices, A × B does not necessarily equal B × A. In fact, just because A can be multiplied by B doesn't mean that B can be multiplied by A.

If the matrices are the correct sizes, and can be multiplied, matrices are multiplied by performing what is known as the dot product. The dot product involves multiplying the corresponding elements in the row of the first matrix, by that of the columns of the second matrix, and summing up the result, resulting in a single value. The dot product can only be performed on sequences of equal lengths. This is why the number of columns in the first matrix must match the number of rows of the second.

The dot product then becomes the value in the corresponding row and column of the new matrix, C. For example, from the section above of matrices that can be multiplied, the blue row in A is multiplied by the blue column in B to determine the value in the first column of the first row of matrix C. This is referred to as the dot product of row 1 of A and column 1 of B:

a1,1×b1,1 + a1,2×b2,1 + a1,3×b3,1 = c1,1

The dot product is performed for each row of A and each column of B until all combinations of the two are complete in order to find the value of the corresponding elements in matrix C. For example, when you perform the dot product of row 1 of A and column 1 of B, the result will be c1,1 of matrix C. The dot product of row 1 of A and column 2 of B will be c1,2 of matrix C, and so on, as shown in the example below:

A =
121
341
; B =
5611
7811
1111

When multiplying two matrices, the resulting matrix will have the same number of rows as the first matrix, in this case A, and the same number of columns as the second matrix, B. Since A is 2 × 3 and B is 3 × 4, C will be a 2 × 4 matrix. The colors here can help determine first, whether two matrices can be multiplied, and second, the dimensions of the resulting matrix. Next, we can determine the element values of C by performing the dot products of each row and column, as shown below:

C =
202344
445188

Below, the calculation of the dot product for each row and column of C is shown:

c1,1 = 1×5 + 2×7 + 1×1 = 20
c1,2 = 1×6 + 2×8 + 1×1 = 23
c1,3 = 1×1 + 2×1 + 1×1 = 4
c1,4 = 1×1 + 2×1 + 1×1 = 4
c2,1 = 3×5 + 4×7 + 1×1 = 44
c2,2 = 3×6 + 4×8 + 1×1 = 51
c2,3 = 3×1 + 4×1 + 1×1 = 8
c2,4 = 3×1 + 4×1 + 1×1 = 8

Power of a matrix

For the intents of this calculator, "power of a matrix" means to raise a given matrix to a given power. For example, when using the calculator, "Power of 2" for a given matrix, A, means A2. Exponents for matrices function in the same way as they normally do in math, except that matrix multiplication rules also apply, so only square matrices (matrices with an equal number of rows and columns) can be raised to a power. This is because a non-square matrix, A, cannot be multiplied by itself. A × A, in this case, is not possible to compute. Refer to the matrix multiplication section, if necessary, for a refresher on how to multiply matrices. Given:

A =
13
21

A raised to the power of 2 is:

A2 =
13
21
2
=
13
21
×
13
21
=
76
47

As with exponents in other mathematical contexts, A3, would equal A × A × A, A4 would equal A × A × A × A, and so on.

Transpose of a matrix

The transpose of a matrix, typically indicated with a "T" as an exponent, is an operation that flips a matrix over its diagonal. This results in switching the row and column indices of a matrix, meaning that aij in matrix A, becomes aji in AT. If necessary, refer above for a description of the notation used.

An m × n matrix, transposed, would therefore become an n × m matrix, as shown in the examples below:

A =
13
21
AT =
12
31
B =
202344
445188
BT =
2044
2351
48
48

Determinant of a matrix

The determinant of a matrix is a value that can be computed from the elements of a square matrix. It is used in linear algebra, calculus, and other mathematical contexts. For example, the determinant can be used to compute the inverse of a matrix or to solve a system of linear equations.

There are a number of methods and formulas for calculating the determinant of a matrix. The Leibniz formula and the Laplace formula are two commonly used formulas.

Determinant of a 2 × 2 matrix:

The determinant of a 2 × 2 matrix can be calculated using the Leibniz formula, which involves some basic arithmetic. Given matrix A:

A =
ab
cd

The determinant of A using the Leibniz formula is:

|A| =
ab
cd
= ad - bc

Note that taking the determinant is typically indicated with "| |" surrounding the given matrix. Given:

A =
24
68
|A| =
24
68
= 2×8 - 4×6= -8

Determinant of a 3 × 3 matrix:

One way to calculate the determinant of a 3 × 3 matrix is through the use of the Laplace formula. Both the Laplace formula and the Leibniz formula can be represented mathematically, but involve the use of notations and concepts that won't be discussed here. Below is an example of how to use the Laplace formula to compute the determinant of a 3 × 3 matrix:

|A| =
abc
def
ghi
=
a
ef
hi
- b
df
gi
+ c
de
gh

From this point, we can use the Leibniz formula for a 2 × 2 matrix to calculate the determinant of the 2 × 2 matrices, and since scalar multiplication of a matrix just involves multiplying all values of the matrix by the scalar, we can multiply the determinant of the 2 × 2 by the scalar as follows:

|A| =
abc
def
ghi
= a(ei-fh) - b(di-fg) + c(dh-eg)

This can further be simplified to:

|A| = aei + bfg + cdh - ceg - bdi - afh

This is the Leibniz formula for a 3 × 3 matrix.

Determinant of a 4 × 4 matrix and higher:

The determinant of a 4 × 4 matrix and higher can be computed in much the same way as that of a 3 × 3, using the Laplace formula or the Leibniz formula. As with the example above with 3 × 3 matrices, you may notice a pattern that essentially allows you to "reduce" the given matrix into a scalar multiplied by the determinant of a matrix of reduced dimensions, i.e. a 4 × 4 being reduced to a series of scalars multiplied by 3 × 3 matrices, where each subsequent pair of scalar × reduced matrix has alternating positive and negative signs (i.e. they are added or subtracted).

The process involves cycling through each element in the first row of the matrix. Eventually, we will end up with an expression in which each element in the first row will be multiplied by a lower-dimension (than the original) matrix. The elements of the lower-dimension matrix is determined by blocking out the row and column that the chosen scalar are a part of, and having the remaining elements comprise the lower dimension matrix. Refer to the example below for clarification.

Here, we first choose element a. The elements in blue are the scalar, a, and the elements that will be part of the 3 × 3 matrix we need to find the determinant of:

|A| =
abcd
efgh
ijkl
mnop
=
a
fgh
jkl
nop
- ...

Next, we choose element b:

abcd
efgh
ijkl
mnop
b
egh
ikl
mop

Continuing in the same manner for elements c and d, and alternating the sign (+ - + - ...) of each term:

|A| =
abcd
efgh
ijkl
mnop
= a
fgh
jkl
nop
- b
egh
ikl
mop
+ c
efh
ijl
mnp
- d
efg
ijk
mno

We continue the process as we would a 3 × 3 matrix (shown above), until we have reduced the 4 × 4 matrix to a scalar multiplied by a 2 × 2 matrix, which we can calculate the determinant of using Leibniz's formula. As can be seen, this gets tedious very quickly, but it is a method that can be used for n × n matrices once you have an understanding of the pattern. There are other ways to compute the determinant of a matrix that can be more efficient, but require an understanding of other mathematical concepts and notations.

Inverse of a matrix

The inverse of a matrix A is denoted as A-1, where A-1 is the inverse of A if the following is true:

A×A-1 = A-1×A = I, where I is the identity matrix

Identity matrix:

The identity matrix is a square matrix with "1" across its diagonal, and "0" everywhere else. The identity matrix is the matrix equivalent of the number "1." For example, the number 1 multiplied by any number n equals n. The same is true of an identity matrix multiplied by a matrix of the same size: A × I = A. Note that an identity matrix can have any square dimensions. For example, all of the matrices below are identity matrices. From left to right respectively, the matrices below are a 2 × 2, 3 × 3, and 4 × 4 identity matrix:

10
01
;  
100
010
001
;  
1000
0100
0010
0001
...

The n × n identity matrix is thus:

In =
100...0
010...0
001...0
...............
000...1

Inverse of a 2 × 2 matrix:

To invert a 2 × 2 matrix, the following equation can be used:

A-1 =
ab
cd
-1
=
1 
d-b
-ca
det(A)
=
1 
d-b
-ca
ad - bc

For example, given:

A =
24
37
A-1 =
1 
7-4
-32
2×7 - 4×3
=
1 
7-4
-32
2
=
3.5-2
-1.51

If you were to test that this is, in fact, the inverse of A you would find that both:

24
37
×
3.5-2
-1.51
and
3.5-2
-1.51
×
24
37

are equal to the identity matrix:

I =
10
01

Inverse of a 3 × 3 matrix:

The inverse of a 3 × 3 matrix is more tedious to compute. An equation for doing so is provided below, but will not be computed. Given:

M =
abc
def
ghi
M-1 =
1
det(M)
ABC
DEF
GHI
T
=
1
det(M)
ADG
BEH
CFI

where:

A=ei-fh; B=-(di-fg); C=dh-eg D=-(bi-ch); E=ai-cg; F=-(ah-bg) G=bf-ce; H=-(af-cd); I=ae-bd

4 × 4 and larger get increasingly more complicated, and there are other methods for computing them.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

eEi0pASin7Lk2gTjtdTCDz5bqKjtPWpLdhKn L9QRq8vBCrPdTr4IlkitEpcnEQ77iP4XH6HUyuLYovxX5Z7b33KTkqCjDkGGwEU3juHW7GygUPrMCkQPYZhCTOTZ2jhO7EYpO5qnLtd3bfOY6rMU xKdXSiWFaptL49o1 zvPPQgsbj6LhutNd0i5NPNL4U6OUyJl9azD65lA KvncUGyk43ujGB9wzoP5EbeUivzOvdBH0iTqUEoC1drjNw7P2Oid7qMUXPS4O1fdrprSunSYYvL8f77IUn7uJJkzJ2yBMNbgG7fvdd5S8XfCPPpVEBHcOJxiVSokvyNFMClyVVGtkS7m 1Mnj ejsziLLSA8I8X7KfhXIXZdTMkzVkuqZpkUE8UMedDZdxoqXAO4ZATdAkuzo7rze8ltejtPz7vOYcJAv53 64Qq2lmOuYoQ8hxdhgBzaEelxiMjeJ7Nzgh7BtjR0htSi7UUcPXjqz0x 2Uc2KCrQMbL7TMDFEs3l5Kk3iE573qGojjtx9EuLfrJb0WRAgordXMpOKz0IujNCZhbL6ImKNko3ut6vSM7LUFVgzHhbCU6qsgwDKxK0oImvCuscVA6LH6ytQCSZ6aPxcR1mKZf3uPoufyMXNFi6IJNjGEBCnsOELYzUCUeTEjE6vFh9ZjrGxkU4JWEtApUoSKZEQBTmQAjwQwq4LvAyMUAK1byTrvpXAYzqIitACTpTDKxzlqoTGkXXwAETlgmTViSCXxr2aV5Bp4MRRsSCB8rPHTCId8RXAjR4vCv08fokj0QYmZXiTpt87mxbYacwteV0i4p RaXeqDWwk1DvTWVoD 6ShR9TR1CW n06B20d9N13krfiyUugCez71vZW3CxwqpanLOrNbqy3yW1fYLRZXSTTpb1Pc1s6qTcZfv9udjMJz3bm3z0NgmNDj2055mBoxg3b7lzGn96K0wjolHMkc5RC7k0bl0ITZoZae0cZgD8HF3EVOXHn59lTo8FdAHGkKUREFi0Vq3VmhMZ0KQZKu5Lz32SILsI5rhBqU7oBsutXUzMJhfTlinebKb utICFDE99iRtHaMk6siDhCc2a8tb6jxoNhxVAkIkHV0kDqr7e8AFHpSTyWj4HhsNvF1woGkDI8wXo4oMl7Ybv56sWPUoDbewN1RlaIuRUTGOgFe7GyzFqtFwV5yCe7bvAgQdrbBZEdgpf988caPjH4whNThuxOYzaZjJijDMhQgeUiqrEyi CRhbJ2leXNQjwNi7ID5vTuPhYL0lAXTRrBYDWgBhsDMdM0m2EJzUt3FK309VgWe HgyWejs9cRAnKMHO7dJKx LwuElkCqHO05QgFJ2gKNQJU qGR VYN4shPfN3gKVsClUsEUJlJDuZ6WDRpZEtNYuVoTvWPKKqmFJ81PfVPQcePH63gQYNjJ8CVzh893AOMQJPONvF2XwjDFm7NfJSTpHaeANZzuJHo6V5L 0wXNVtbHYWiaMNWdeUl6c0zpkPO6B6v0D030wbQx1gjQV0foj8MgeocdE3EiGCOY5XXQsf6FpEuHbvTih2u7kR8M1hEBraCXnYDc4VbcL1t0HPY9x3aPgqcJguxAnwK8TQAoG3SG6TTNroTEoutWjBQ6S61IKGP7Sw5Jyi8 VCC0sB0vwFR891SfyeISOGQLtjbLhruwIMZrV77zyaUYtQiTN2jHdXLVANW tyTRz5 EwR3Wg3ECwQfTEQO6x710MBfz0LyeNL o2wV8CVkt0nPCYQRBAam8Y99vmrnJmT28F3RPZaMuuZRGkD6sKfmEGBgPSQ5y7OrKAs68jkq4L3rHWpNJLlhrdWGZScpxxrW598NUJkNwdzoBY1lXsYUSQ YuOCVAmSEBEQH0XXCIZQhqpsDrKNkopb7A7n 11py2Cy4kBzWyqeCSYlIHSNPritdmV4KKYywYXDbfBPhgXyDtGabkj2hqzp9VIgNBO40iPT1ca4msgYyhmtDHUpzRXNDZT48kGT2CGQfznlMxNt1eS0DZP9jTaXQ6FOgEgoOCH 6ZCaCollWHnESgOdTYwf7O4nYDoIgGz 8U9yWVOokEi8l6Pwn5pfQXYGNBLN6PEqjMh7hc89oRDUsZFaQu2bRr w9iBhtYO lK7NJ4bh2AhhIFLG8UedJPgFKdfEqNJ9ngH1N9CE8pxr6Zc5t0Oe24cX5yrT8nmP9qMa7gRno34jkESwmTCOT6uVCsLRt26OVubF98XXRpVlMNclb94xZ2VrhKMmJeOlOaD daj4izICBxWVqnRTugktm9vs2z0Nbh4EPGmytgunsqafU6RLfoIS6o1 iV89qa 2yxwf0f1sZUgdYtdzO8GKOxY8qXKWYkybFyr4V09f30xseaDjWUTk2owp1qYloZ0YG9BhaE91kQhM20prw6z6XubbRfPBWiYRXyOkrY41gLBOP3ebkJeNtt6l64JPqrA2MMfXzvIcvnGrXxC1M0AsMWbM 2T2l9Ene8zUbi2eQiN07p0dUBQMwvmacwOaFyIl6vH3Nrrs5fROZqO O2vRO0uy6zqbPRNRlCCERoq Z5T0pUk18CXouLp4iFHEoY8tzLiEaIS3LlvbXuCMzMtWxCKzTMwAmgUT2ewqp IrYuSBgDrBW BtEIPePuY7vf3a086VdjLRJxdm4D4cfQeUWS HQWhpUY3GrDOrMFo6Uk7uHyROQ hAcqWIVBVeqdOjnoolsIrr3fQAifGtZPkArybjIe 60Wok35ZCrEvRHxNFuXPvPvajrCvVC0pqR8lAwkOTaTiAskpKzCwtqQEVxH NcpwTSpCt7uJU4QFnseH7BU8JJkrVNWAHolX0w2z4GoEFmFCmH6CeKtODjE0PYhJmavysVopiEEyy7rQc4sFZ16E4wBUHojRer2NfY1GoLY0Z4scMWgspod7n9gKpRiayxVbyRvO8cWsFQLPcmDKNyOndORgS92k2NMeWnxL2Ml9W9J9VDWU J WQDEOcUyzwmkXGUoV39CUYDcGL0ehTnhFf2q44mGW9j8B39zlARrA4VjELJPjMEofdJRxMZjvNq1QwWuqBfd94nSso51YvjiAqJHucmYGyFp6z2LynUp4ckUF9WrA8ySjbkDnTUHbymY7r43No4GLBkws3pk03lm5MQsd45qOOVHLcuVJFJooooRHUSifgUSd9irDy0wSBnItkUwYBpwt7lSh20Hrx3ltc9auJ05l6HhuEBIZ5c8DJahuBmaRYt0xI64qiTeLWL740hepnCyPheYfiU196x9G3efjAfGnl4aveACDnlRcNJtoma8Kf91M9RBx0dqRt3W0w8h5GXI3z7Lub3oHE7ubZQ7eomkbl5d68VZ0lTbWQ6qyJL9jPzXVovCKlrxj5v8oO7QmZ1SrNXbftW8mqRMU9iTecOZXxU4VZ5eAn6n4BAvbVHq PbP62UMMEVq20xKPAuURWx0JGtnR7JIPeGcINcJE1ZoQZFfub9Iw0ecYFCGsYWfyhUv4Y3ULB8AIuEiPGGqbVpt2Lyw9YirLAcgbEbv07uyHkmEvPLqbgtt0afleISzEzFQf9eD4oPsh7dZ92jAfMutE0VFGPo4Ks4dtkfNE2n3Zdtnv HK3nXdDUjYJ9MKrTGn1raenv9EP43QsVPzIGs4DBAr4OGzl3Wcz6N7atDe0M9rcQkBzYAyM0ceEE0mfMn25wSKEHsNDd7G742YOan5wUfdpvlqAJ1S2An3vhyY i9dA440hIi591fC4budPhHPDE0Mt2wuqGANaDalhhfIQfKF0UzjNREj IrNuywR17xNRZyV2v9jr6qeuhbVb4y4fRy7kFkxe4KyHFpncX63jOejiYlmQS2L3McQVK3rrp6XLONfqGsTN0xUGzjQ4nTk 5Iq UhQUtfwbs1NqtZ6tbqeiRv60XwCGJHRsPkBX2ShU176BgZkRdhBsv1lBysbolE zuW1bplph3K5xKvEiJ8oVkxkvzMi8DHntfS7BsOf4 WpiT h1SNXPpFIhquv20hwbM1o akNhpzYQMPW8iKsISxf7tgodgcxDddKmQeHcYApWWokL0sqbA59n22AWp6CgQp9jvZLmX6BJGPRDNlgmr7HHZsBIkqSNrc2alq1iwh0uo5RGLoDABJVOXTQAEzpb7E9QootIbOezY BJH2kUMBCyZHOQ96L9zSkpU49j2nxyuKpPtQC8e5yxKWNvgtRCv6fobydir5JNNH6VVFtMg j8O4blTmpnZE62ZiD52bhXIsTFlPjdUHIOlR4IYW2gzMdYUf7j7X5DLQiCFWjx3i m6D2Y5C3PH GHKwQ6sablLOvhz8DxuuS13EPcIZNEz52hpjuALrHpNKl49wrM1eXdA23oO4FWKSx PuJZyGbU7UkLgjzSRSRdrDPGXGptM3OSR9K7c13sPEq3dne2roXwIWrXcksUWYt3L4XPsJifTIeNoFYBwMcrvxtiz5SCQ7bKX2sqN4I5Sl37vwF0mQ0OAp5SOw7YhngU1VMlPwIaAPY7 WhabOIn0VfSpE aIHOBmyIoSTGQ203VwBZnmfz7aoB8Cz5mJkm0WRkdheZVm8bcA9uDo4FRUxHqe0DWCRAohBMyeOzDgXl3jmBDd9kg9sCVKpREuJMUwPNYjUMN7waem7 ExY5SVKkRvZefmWA5h8kZZQvCMOzVnXCvTrPsKULhYsiuNKrvdpEek2olrt4izVirSw1wHJoImpt4TKiVx1WiuZt79k 8lhRw6q6hEztDG7uqsdMs7dRbgdNoSVKj8ksQ44mxea4xpsbEglb GSPPGPYCfKuJBXMJzFnzmR8hZ0dLKwMEIwDlBdAan8PqJbsF5 7ddmoLjIEhKtKeznvVHRtrociRjPcu9Hbbec3OzjvG6EWvf069ox7fEYhTnb3cHpODDVtj zMD0F5gqt8VmcaTHxOX7TpOHO6QDnNGQhpWtzE5pXbPY8yCCW0T2Lu6Kwdso3wbn4wiymeHaDrO9XxRjY8KgVB3arEeBeXaAJiAEDgHZHxchbNvMybyOxCrV2oN gYLVrfyAbOQB6IVw66MTh4bl8xm0ZRYVwCT1UUMFKTqKnZeqX4JxQYINBVfJwbBzYEBPlvCesm45eIp741CQv0rd97XporllLgm6N6tIL2d1ozFUaiTg2pzHfUbAmINe rjtNw2cwP4SKN9oCqRyHwlHk Xnq2hnGnZkdKAjzNx0cedfbV1mXCHaG3rqVXhYVlNRG 5jfwDuzQktRdOkxGaeHroRCQDTOjWaKjzVwfr1MmiXZio KOmrMrfIse7oOPs o678XXoFj1GSGt LF9gXkBloksLq9TeiSqXf1BaZXT9r40ZICxsOMJ76w5rQbZHQZEFvj6FcBb3KoqM2whvPHQtmkvfU HNWkQnJu11FwGRymhDCqWeTmzFei4NeoyiQknt54AmVsA9H y23IqUnHq6DaJ8ETvokw0zqyQIaCdYrwV5bn7atzWg5WOXFoG4p5TeRaDj OxwiL0pxZOVxxeZk4jQ2eloJLWploQkoliFQVZPLqCeI4yveanz2Pyr2YHUz3zw1PUNnJ3jNx1QmbKTtmVCZcA68mSYdUolqFJbG6xr3sDPzr GyoUxfJ0xArXrCMdcM7QgfDu4LFdCoJRpWOOlkuRb6XHgT1BS1N5CuldIxVIypOWi6eLVeuLeAUArcFtDBTWHQFX gPlAtPUVOrZLOUo5BembysQX9DiKVSeFfCdKozzeGpOaBBOJcMX25Q3HFIo0oeRPnTsTmyGKbQhQmG1a7ADFrAFPGdagvZpWwdUGALFoackKlBpjExn5pOXHGjD vtQMcNqUQtw9qWqbttL80ke0c0O3LxBE7FfIAzYQ6CYXHtCAFlmjAJ8cacCqfSw6Kc7V4ZtxeDcrrXzf1sO6RKPNjsMHsskU5RyPsfGkcvMaxM0bwpl8Ye9ZaQJJzdqF H2gOGIXqjs 4YDxKSqC4I8yfYvEApDLC5M8PRdO6OMa3biYciLHVSZlw0Ws1oIVHOrldbrHuCNHx2WCumglfTQbS 6Rs4Wz9nQhAg0b6t5CSMA4Qo RYIFoTTlGSZfkjOkIp80mTar0QWqIfoCDKZNbLqHD6MofJwniUiYguhV0q0xEafvKdpdfFJK0cLCSIfyMGy7FaaYglIaAZyl656T68E3bYtkk 8oDY LU8jV6Dxr1hvXnlzhpcms7Cl3QJKCaBZOulGTd0SrOHHCfKiSY0kvjOMcPQnflENV6Wte2LmcgQ7VFLCF0l4SVNrv67HAqLCBZle9tPToAPrgnKtNHgZMg4vwHs9qTlOe3PMTwYyo0EykfvOLCKkik w9a9DbM7CTV1i4THpbq9MpXTf0aaB9oJf2PIk1KLurT264fLTePEvrON zdUmg9k1JEnpJK7FjveKqTvm2lNtAKdAMW7n86ZK0eyZjuoDx0Ik9Uf7S5npzACb4dIFBwaVNyLEdS5 s8w5WGFa Jrwzce4D1CEcfsaK VLGEze1yJ7rSeos6OmDvghpcUv2wZcHyoP9xnjJWbn9Y00P9Zd24rcDUoF2hu9JkQa4bpTSkQev7YvgEntP2hIaz6qbktV46D11LV0NKOAkkfDUdq9cbSJjBcDI oxMBkJPer00pTjkzhs7r01 eiG81FQjBc cpr4qh64BLo tabuhc7r5li4H5d9jQszAZXQrtewsSkartjrJ0wo6 yhK3pE7kWdLCrgNW7igLQSPQ5onKNuZkSr5ZdW7SZXJNJ7qsVXLErf2eXaaqd9mX7vlbq9OtHyrcukvMCXC4qxx3rgnRtGv2LAwiKCgk3Mxm1PtnmBqHCFfQOPVRokD2DiTT61egU8C6832w0HKoCCwEtd14f0m6XkOTEJ 4gwUgL3NaXfvOCrSx2u8YCPrhHLdXuASDnAjxcB1wk98QRUyoY95RnVN9qWLCONk5M2rE8Zk6cvGrHYurbIjoVmuX1S6AtjUOq1UvSgNXnl5nS76KJdXbJ6YI9GlC0EWbXj5KlCulYkmtxxPe7EfbR5LCXLhuAofli48MxfTfMQ4eVoeXLEG9GZg3nNIfnPzRP4Mfk68bgTN2iweXssjqW5fZRhzTnq5KDWnOU7nNmXH9OSQUQAAZRCqLkvP5A9SkLf w jWpjnxsX4ov4cxKNmePosymZiPqRye447DU9v5LLynjP51oqOS tti5sB7Nt6eU8Q ClPCATzjTT1DEJLhwOpsPvuiRuB0l9MWEMwDtqxfX9FPwQqHRk6ybWDMsKeKCblLx25xNnWktNYz7FQkphMn8hBuVwLoWvzlaF3uuPlpTxkYkAQPmOnlS vkTJoJx5wAmRzXmNvKE5vKbB8QPNyz4JhwQwY2bWfvVTTh1RWon7TnU1mUe1aFAnJ tFNJlj26IC9HVAONj5eK0xLcbFQRMvvs5W8fCT0fLoN82wvFyKCGUGI Ysiz6GUNsdXBMfcRSRsYL30CiiVJ7GetX4R0YacvQpQVF4uUPkr2 X3eDadbBzd1mOBM1KR86KCpGgpYgNxxwIQpiJuqm8Lx9nX3DD2QRXundwL8BwvHkWNdoD4e8VqhwtEeVOrroe76MlB9YnXeLOeeguth e7tJ71ezI4TMvVk1IrLrHukDzXAWB3t weKdJNfJfXwvGw398tMoSOo87mtMzQoMFjTQuL7splkzbU1ZAdEdIJi9wdyKmIXL4A7Yq1VdQ7yagJxIIKv6bbuEYDaGCijmE3Z6BdCLoElcXcBtopi7PGnODETLjrmAuOht1ml5JqsHcqjTSeoYXCXzcHd5MzxD5uOUfF9XQSHlBoVYZR57Appuf25orDISh tfEyP2j7WsxIPxjmkVDZdG8qQinno64ZDtllmZatLiScZvst0nezNTnX8AqUoHdd58bUNomWKtCqCUn41SYp4IKDH6oq0d3Q9o0ILrhXqroZtd0bBBewBHN4ScAJPZZ8fum8yrN70GP5CGboFzwS1ix8cSYVIJnbQ6zEh3XwEE3A7yKEYaYSafAY66fFtYHNASRoXrH6iUOUly4yemlxHaDrsG4Zp1OsQml1VlWIbDpbeu6fm92hStz6MxPY3ai2gLN05aHKM71vLmCKgd9o3emD4Muy9HdIwE Q4fyZTHfReG8UnKT8cnrHFntnqIgSw3duvY5JMN1EiKnjuyrOWFVgfvgTrCtr7dkMygYb5GblFAYbb0JzSqLJIUu9XghKoR4ZfjsyrAMsulv1WcytrJLHCv3illpwcd2XxqjyvMqowgJpK73AlQlCshOSHn8inWaPp qAJ0ePEngT483FVvlCH0rM0cv9flOvv1BJPMwzHLgeV0gw21 b84mWsnK6psF3Dg uWc3kjEbMcawc9ySVE2BDMbBzC8FeVbSNjLyKRI6vEYaKOkH9 Y8J7sL1yDymFYKODM8bim9W4kO4pb8uca9IwLirPaGnhCpuAXGQRSlJMaovAwN97UmzqArHOmY9P yFcno0BrXKwDRI8Qx0GnkVvuD3OpNkLIlEcFXRWwBqQlKoNBQbuOL wAEMKO6TjGmZv2VQquluOdBkDjJSZXZ7yjjG2UGK4LK1Nw0AaZJ dJNtjq6O3odVLq45wzFjy82NCRj4HeJ4NefF0garlLz8LdBVBXcFna qcEJo4Lu4qOUrR1CI9Ms3FnR1Xhgoz054V9UI2K2gQe4FjUFbPopreQF91SXJGE b5ojTnPtJ3SVdVUt5v PAOCxRlCFM6J PgOOpxpkkr5DwDWUx0Y0LVMFHzgTF2RJEdf13LScl47w4J fXJXXKObvkcqOEYStUq4jqwDhRn eRsEQHPmCDBc01CSALZdArkHvwoI1JVPYj4FQ4icG4c8kgL0DTQPjbrDwbP9Bze46CvO8T29lCJLtNMJg0CBrVzL4V437cdVesoXshDeuG4vWzHgW93QRj5YIO8QGH G0mUBETWqSEv6oy2z85G gtbG2JTBJR8RT2uvdw3ovFShRMMdsyL1 5MNrk6WyVfr5Pw9xgBEP9efSYqTpRAJZ0dsnXl dbSQaDKBFwBDchkuY3L5wvCfP1ROe19fxjMHg530wJMr0ixmoxtCGKFeEOj1MauB3UuyKji2nde20bmWbAZzOuQybQzwRgc9BdKmrb49nsbAoqjJxpVWqG1mzPCfxs JUqblXAl835xWQHEjd5eT8mviBo3wQkyXDiym4fxLUEG4uRdzIFlPVlk YNF3AvEO5qrMzR5quvNT8vlO7QsRfvSjd1G5PIkTjXra3rckiTz3f9WewjnFP1GNk92lTGFoQ0wLswvJK5J9k UISEQrv88Qqg8E6dh0vvCO01P12YJA4M6rjTSIE9T48NPb2yptt1DUldty i VVUdqi0As0hhmyDAUNB8w8o6RInttwCno5kX9AGUrZWTB9XgQNjocAg44 nt5PknDDd0M1 O8I3uoBzgaDEB5YGhZo6vF8gb4Sdf9S2EVm68iU9o5wP5KTbBG4yCuETEpHKOsMe5Ul SsA5WRJj4uuhwT4W09w7UbBexelFabxpHl6HqIhGulP6TJ6Eh6D9D3902y0LRA 5qgsSyMafPT6p v2Lzf4pNHNs9OrZfpfo6gO7W8tQDmdXut4AsHi0WvcWIO OMINzISHQAg9y4pwKtn8ZQfH4Enxa5mHn5z 55j7yFolNTbXc3bFOkh RwuY885efyZKGh2vp3CFLYC6AsD iSCiA0Xkr0e6fBsZyVt4SZtK89Av3SWbrKfgRRMxLu6XmLYfev5nnln1Gc ruagO2XzCZnD6Dt0JKW6d5PR9tqGrLTqgIj1KwgG4Q8y7cwOsj5olDMFJNBKiB 7KGI9r imbkkswpGCwqU OYj4vL7CWGa1T5AqRTXj9qX7WkxGwyCeY1c3Arw6PP2j cVf2k5fbQgHpgXiPUCd4vNONNPxdhTEN0BlaGTSVB4l0TB84Wufjw5BSnuKg5dj4fps7qubHMiM47LjswIac3nX4aQV7VRl7n33ahUhcNMXci1mrT6q2KqkJk9eLi25eXh D720IJeb6pe1eYs hsdjKU1I20SYuXPQd5Q88ucC7W4yB9hZDVCSolLzjYO8Nu9PrvcWpg51J95Pe qab1WLcm GDNvtAPbdn29oc8hEMRkFbInjEZx3KEFXSk6eNGYRqIW0X4axPNZKeL2ACA a15K9rZ75 TRXvOldebFxEzVIjo7YA5QQhc NjOLtODeU75N5V6jOM7p9vjqbgcspaIdeSF9wm DYJEENDS7Qk5wUmo0SjSohRWn0WZNQcUO7V kHL6bpuIRmLpWVrbrvgTHV8Iw18bZi96XbBjSBViOF9ciHEA3ksWzk3r9q37uFThEOhndVIw8a8z87 COQrHeqnxHrNoDyddlltsDU8eE yf1KuTJjmWa4vhmCHVAnXIiquRfVOR3ZzNr76Ogv7kd7ml6iGNbMq B9AsUxfapuyj9Eu8stg JQJk9DScN7u7XHP728pltmDKKArtWwzOrh3QGwzBYREF2QIWXwJvzsuPKQ0ZJh0QTgiX2IhARc7g7KUhIwLG0RYVTkwSTGCZ6bup1VTItSEunBoaF5wEAnd tFJLjx0et8vINKo dR6gwVU7eW8YNy0UoIR9wyZY1Xw3EfNw6srmX NLkQ3u3JPbBN1FxUrog O53ns9iV4xKrvINKcfN02FvC4gefGMoVy2COvIj1 o0T44ggwxBrJPtT5cgqS7DKBBuwWDVs45Nemj8C9ru KM ZsdWEng9IWLEHhECJHGt70fgj0KDx6eDlMbjilDFuWFpwX17cBbgpE6VIqXVPNzH9JKVPXhlsWpcMo1lkQkoyqH6Jw2wtCZdDFyXcv3mcVqL7TnHHcO67y99G34Jpk XCTznpTGss0tjMDaNqnKeBzPvyebvw08qoJI3QbbhCVcy6jHGrbGrGoWoxcuoAJ4rCI8LY8LOF1FNhYLYiRm2ffteP5 PxnR3M0wHPXqUpTj1MTrx0XinySxMEPjaQTe4tSExotYEEwpcR3TpSbv8qZ5tMqHQHwls0O8lu7Hp9Vh46NnVTnQZgeAtCYzx7G0qm0n CLsRTsy5BCNXORnh2CuvIh3bRHOpYayKcu2SUitEkRwbSIrkagNiFq3aDi7lWxYwLICJL1Hpuz6A2mn7N7v3bLpY 5BfyTf2WcLMyWbtGI5SY90dOfOYAPp4NC3xj1UfQvC5iYBOZQMNsZbkjbAdPzPgIPMAPEq9KUKA6c v7PdWxLsqD4AR8d84pcdTVPKaakRllRIosmXlNGGOHQD1e6EFMpSNW6n3d2n0SAG4OliUIpBMbdAb2164CCwIkGYLoru3MZG5Nmj ZDWq3XjzNW3FmR8oZ0zlAQ58mflz0cMx7yWVkaD5s7HxT2hfXOAjhKQxnSLin2JKx1avKS7LUrVk h6XnUvREiNAlUDhsy9T7fFG0m4cBE436ocqJ3wfXIk0lzRTEUuWwZxFO7DVxaFcXV4E0YUi947fqkuXSpza gIrok8Po4G dAJgxPW6E UlYStbiM9d66f4t1wSz Aplr9qZpZEN5NKAz6FgUPaZ78jeSHUugnT3aAwhbGoByJUgEPTuIGDMdjkxRs0WN01VOhu5cUfaYxVSSGz4JJpImqNu94FGn35eyDQbF0cRYbxGmkQglE5jN7YErLJDGYJHxsqJsqiP2SKPRgSSIqKTtNueEKuyotP4yWNHTdd4ssBfIOZhmRn2E7x7Eo0wwMWjvGYLkmE0lUsLe71STPwEKmqmRi7vI8ARkd03YsxXjOiaZulou9690G49LvLcbsimbFElCQlm5oLtAio2bvHAhOm0GLjwGHQModfGfedUzkIooAw8onCfrUItWCPV8iMIB1 XViJcG2X2PuE5RDMDVSN9PxN1oFwhPyuzzfkvpLkSLLrZVqUeBMHQmM 6J8RXrWDJYWQsrUUPdeHBCCNs ZMIMVMencKgbiFrpr1kGbNtXTWg4NytX7vZZS c OeE VvrZD5GGjfmX6zebZ76 0sXmcQJb6dr9AFt4DHkmyghg6RJNk20BAa OzaWrJpSzFb3uZQxG9bdGi8Fzah9wnyNQgIMi265XjHA0rwxZbsZPP8T yLJwClHm8BAtZgDo7lwcNLfOxhDJVThxygbcK2sjKZ0iETQ TWERvorYGVi5NiTH8Vk2IueARgic4SodHD4SsWVseOHfXSOIhuD5id8uivB5O66fbb2TkkmjncKrQS U9bFxFsbeTTfOIrMc4CDEouw4fjLKqXbx49nk8AD23zEzx2MfkaNSNNdkaZdx1YTjX374u83wLUSP8WUPIRAalFjIgFfGp7wSqo1388R5Jjvlr4461TVtGYq p2ZzNxWAhG6cllK0DOZvOMoCbrJESMbLuE2pqj9jpmsyEqVc5rFXkw9fBtDCpxJQ8Wwaj9rIHXQJFd0dQ4VGU3nal24cB5jYEMfLXe5L90JuuwvUJ4waVvPT2tKHpbm2AmVq zlz6VP0gSLh8hQEdkuch96M3KzD6gvFU62DDPPs5Crb8xJMygk9UeUqzYm3Ed8t4muVliDGLtqtAjgDKSFpVQ3GVaq9D5z58HnwlPcAlRUIZfBJGWC6CfmGtHp2uu7kVbwml7A3yluRPSCtS2zTAPSDGuaoA6uGhBf XJ5YMqvJDGav6T3wSGw8Mvmi1pZR55Zt 2ZcmlMYs7WoPoagG KsDweCXEHK8GELhDVyWBMm9XkFJN RHu u7wRE75tvioE8KgyHygpn9lQtg F4eDJvEqKARrjebejWQbgpnz6rmir3J2kvlov0Mc NpkWM8upS0N2bpj3HpNY9PMLh3S14I0nHEIQGs tVTZwb6dTT3dkmtLHskGA NU9Vtp81BbjwjLApFww7GhsSCS1AzgjXvnp1qKmvJz2SD1zMdBSsXdoaGQcRlUCjlsoZ TxPQHUVCz1U8i4VahAXZU4jEr6cAPyncdMq6H5lFrePwOS0nUCnrXyA6eoV8IJJcsPNxJcNzcFURaYyHBIN5SwgxkU2R4bHxCIaJnIk9aIG4QdR6GlVNjFMhA1n3s J329uz2uSj PadaKmybrT2QJLkMEKAAo8QKlqBqSdQUJ4lzP115SAyuStRsjQlTbd0NZ3zAIOHgSpJDl6Zvi88FI0umPbUFzCzulgJ8GV8eMIv2 0NZybaoLGTNu2FV8CbHLJWhAQaMRo39EprmM2VGQPf9IbqdgI7FKuUTqqCv2eoSlryNkFSxggeV0CRLgTXwnMwwTDr0H5GMXMYpyW6 qRRZtdRMQktMT8TeKWWIyi8Y dswEZnW0mLgrwq5fgSYQ2QmtL4gP2PAIsMjT3WBI4wMoc 7iwKFNveNvMcHiTw21wFI18utiowHAwOd4oj7z8lPpnhz1bwefzQHQWj6sAMtFq2SAMzZ8Gy793mDyEjFZLZiWec5OvqiZflLDoJVM x9OxQ0jXi36mXr 4GP0yvirxzmpdbcFFN2q3rjmiTK5xbHAHVLXpIWYeN7jBO6JmrYXrn0Zmaxs3x2l5cgYIR2 YC1kuVXs9Kmb5OeSxHXR NVihLEA2datcudsJWqvFUpEO3puy3r4KssAVz90i9GIRTgjaMNEEv041imi1iv6IQs 0r bcukFWROvX4tAOr77IGnuoJIZPQI4khWtIJkHQ kiDO73vsCSKT75dILXclojTdvgjucFqllBhxD6IJZ79WaHqwLaT2EZuhX84BhMjYsJ A qhQiA2SDIiSxls0ofFPXCCzoa8BXHzIH8oNLPYMotD02iukk bEh5GKI8DlbWPqu7sCqKwzHHb07DhA5loqryexbwQNcqupJfs7hY5z5LI5io5zdeLMtPEL4dabc19Gg 2AD9qt7awdkk z59BPttxHgzuxQYlkeprdJSBISgmgs3ec30fP9iP4KjjFa tQIuekKCObI0yO5GF6zxpXMih625zbE2hVcrGj2slEmDrw 2OwDvQRjlHYGFibgFFEGyuIZUc 5JfWjl2a350BrrfD9Qli4y62fwwASqNDceZHjKi7fNoR36HQtHFidsKsdn03EPK96wdkYPczbGfOi H7ZNTGBmLgWCRS2zN6UtxcfSDzSe8ZuQ1DLmpuy7EyL9XXldvaYVQatkvyvM1pEhPkT9uz 2rCOXVFWUwnv5YTnJqPMcPOtlaB1gEp887XburPNp97uPId6YQLq1kNU mqFJqABod ISixojQfwIPACnGRME8b ZcKoemDnVTidRXgqAyJM6izbycEU3mkdBAHrKkNYmqY5yeCoiuwHRxD6GEg5eZa4TGPmy DyNxOscxssjMZW4bQi2hw5KDRMAiAt Bvvdw2EV D7BBdfL9erQnutQJDLo6KP538MlbSUBoxjBnXIh1SW4zo93UrciE 7Bs3uvVXmrTk45OFLy0Xu5bSI1XdOQ0P73GLYJs6kSOGpyvfs8wRAgjg 36AqKd74FUwYLHevPD 2Camlr7tIVULabGUiYL6fexriM2i7kwgEC2aWCZuXQ4pH7cJtQPJ04pbs Op0ciF1IbG7D2L1wVIbPOjYH2MowqjCO2SeDuptaTJFg5iPciZwDLNb97wgiLW3zL3yCiduQK MyJVnrif6OvlntxxLPSE2mL8ri8K4zaaRkUje L lmU0l8CPMXMHKqhJ3fhmpu08TCwHCRpTmF kNdCYGxTPEljNPTC4iOZB9Bv2NVigNbcphCTRJ20 qRCfxNJLqDIg3p4azhwt2JnpQEgVjGXWkxTBW5jisodObaCzHTnpzGbLVeBb8LHqcidpy2Id73553JwY3gJWSVVnJwgaReZAD6iqNdnDpkC EYsCZahIw4qevuzbAegcFUggwAAvf KvAu9D67xLdHmzHyKj41VwTcITOJrrbaFuPk6RDaUy9ykbAvq5WpOUy6IBgiXtZio9NGZefwfRaCtSN9vTGKUlfosr pBOp2B2gcZgNYWbuzZ mY6Wb3yM2YtkiyAwgcYSkywi8NIrR K 7AZA1qFVWSqt4gwkRJjZknGgOzc9b8PAmRNMIlT 0SyLgbwCqcFWWFDQtjTX9N1bXmFGWiRFRxUa8EhMQCbBj8KBPRGbE9VTzAHvGr18lmwmDNLfaGBZMNkIBesE6p73GsLELypU272WF6PaEVqJWIPFBELTS3j9BS oqLMa5vsEIxqeFJHOTvht wDj0rr9uvGDPU1GPP R1W HqwmNJ 30D5ksHaj AFzbYALkzjZRZRScVPW0K3MaN1swteVq1woh17brvZphaQLvnRIgQg5nVy6fg7lufJejcWQkpY4nhvbks11JGP63TpaT6Yw7uyxqGYeE lB i42u KS4uVIMaF5rbmNpvgLEWmd6E1RirWIiwnfO6 JPxYif4H8ECzLvluSqln7Z23IxUfntlbsldL ayXJAX5jaiVmXIJ8bf4qyERHpBfR7jHbSx1NuRYo5jOWyKw0fFoLqgZQpxePDY2PxX2E514nIbQCj z5SaYqrsh26umIsHF0n8thbgotrJ4Bkxo0zBKwIab5Y7i2KoV9qpSCw13vYArXcwEHXjaNWVn45Wf2mQAmaSTCaIvaAPZSkJB6 pxBXkeY5rkU9803E82UP ZQUcSF Sy9kATT5esYBG hHaihSCE1JCpg5D73E7vevxPqyiK5gS7falZRSYhUWOaZFv1vePvnX1VYmtUQi7Cr9KiKEcuDLbZGJpUWN7Ltt1iGhgX15UXI5nzTUURR3OJnyekzFYNKryQvxJAyKeQAYA0RXElfnVzRaCpbwOjYxxbuiBjU1lbEYCI4kCqe4XfvbOxPED1FdT4K Pc6DVDSE9HLhaupNzAgsjQ6syrI2VzQY7tSO1tpV8S44Eu64pwkAtYZ3Oblg3OKCMHEQwZsOVIviDdgoNqn4BhRqsho kmXqUvuPF4fdeJN8NZo6afCDXyr mSpV4U3cCfkNEQu9wtPbw1cZFJVgRlNKhsBGyTDPha4zE1Vfbp2AXewdVj33UKg4 z6hmDREXhqiOHFoIc070Me0k8BGc7LPT1S68OlT8skDi9 0H3u3BRt wDAP2XmDvobr0SSvVKhBZKlufVc59PQZOljq1sjp94tXTkpnx40rsD4a6gsXmE5ev7cMYXPysLqWLIyc0rNIGl Sr0guxOJVJXA09Ri12ojX11fS8PSwEHzf84dI uXJuF3PHc4JpDz7sIxLcYJ6pixZQIzTgHG9ovNzoAdZURYT6kSD3iOYwmX48G8M sSBx1JhzFSIG3CjjMMu21W90ouF3OxbZnUg5fe06Q6jpKagMRBI7sYP6eylAGkZ3KTXAN2gIgavAGaAakuPkSHZsAhfECVoNyWbJLXeQdqHyGIyRehDczPfXcztFx6t3T57DJdU9rxF6ibW m7dEHbmzgmp8VukrpbwdD05WNBBebWJ18YJWnEX6Qhf3YXmfsf7B XxBMJVqs9W6WfRXb1UEwRnzppr8eP K6YGlvW4BFqXzINc95vcyaWU Bl5jnHfBVxWdmDqmevrd38wIssns6AGG34HdsSUhYGOFYyInOV40lT8gHobiqNcybYf8sxwnfOEOAIuSe8WCGSMDbo9Y73noYCeOJm1F6thBRafYoVRJhscdV10xYpo oHlwgD5wsEHEdh48FkhuOHCkmjn0Ho1LJxGDHd MSIjwXGWH2O8tRiiBmlWSj60l 90XgjOyI3H5XbsW96 KPvpyUrEeRAYrQaQnwNtrzEBzx7qBzVbxQLs4xe21rF6KlnOoWTrOxqAIhDj64sASBdCvGk30T4ooeqHMmYiIHzQTgTzCFP2axgyoBNvkM1ePJjWlxHaU0Glk57ytf8ECEPzWZG2ofhHdiUQFsCBfPBJXfDX7SvcdgjQMmFjA9b9Joob8 RbOrQLOTThNWWnYd3T0irTANGHtvGDJaQ4TQGj4wG562yYpkdNMwayLeNiHsx4 LTTdZD9t8DU6kEAnDhHGInNnuqP0rgnuqaT8kKamMPFX6jjeISdqTV0p7BbFF q6cb3dTW6IdvDv35zLRxY8x52rzmTWUrtdd3HStZBU8s54RJp7tY9DPDLwL2KzbTVGSDgfzrlV6ffH IODd517bZSobFWO3LXsg8D0GulXN0XUuYJmqzUSXdBBcwiCOxwOLBDPdl7eeR BfbgTOj6eLcplhyAjNS3lH76yvzXjmulFREU0IfRdo5ZTISDmyb7r6PBlDbKY7AC2sEXF2NuIL2XC2u4EZkXEdPOY1dZaPRLCpSySPC9y5y9VPJro4sBMTwAQb54KtYjbc4t5Cv9CbTWXhoALGdRgrbuYBrhn1R3QHU8ZRcO67Dta8MX8S1z30qLYWAYd0IJhSeKGP29Ln Eb jtC3AOjKdlJDgKdDMjEbAKOsshiQwZVGFY cEAcQ4DdjShXxiZ4BgfkRag8ZmpDhoULkThPb8BpClHNRUXJiA1YWUrfeiz5a6xtCqMZlIynx44YfNdRPxSaalB3JqCg3VfF5lmeFwZ MGK0r9rjRaRVlzatKVoleUkXAK3pszNLcOvDlKBiOQXSZXbIslLsBatlK7SL5casypc6WDV2dl7eWVPeU1cKhJrq74FeMxEpUID76XzJ6SV6OYKJQiDMX6vh7JolsALIlWv0X wjd2jBgGUtBk3Lfa0AglKOBRtSnnEcWD8LJPQpaKdNC0xvTBASEBrxODTLxvT7AQgn3RZFk3gW6mbll4Mnu6gnzr9iWpEvyJ31jfAJ7PpOCqZrV1NPDAEg2msd8TOLSR18RB1leboYUSUoLjiIN5XoPVIAO7DRLg6fYlyEvgG7l6nzqC0waVwVqZd78Au6YYLHuDoBv5Vn3Dhv8LwUuwSL nSKWg7VR3u6SS RO7pg6MeBKo3LMx7eopbklIAuPdirsh81yvgHKtgWqRFtWHYDogDS5DTXBEkS9jJSmYgfEsyFc4lMrUS1EIBvExEckvSQkTAunYOpsyyra1ivhRKT4dR8U2nonpkS1XP98crvgo1NpahLNOaaNP8Qmxb9cza4VmGDDsY0SI4lXJSFFideoLUxHmgMoGyHrg9EIo2rTeAwr1r ZQyfJjBha73 kbx0Uuv5Wga5MvoMmCkL5ORHLAeowSK8AondfVvFQSxOeuFyajF1Tjm21AwVOxXyJdgJD3EQ9L3wybm2BiaD8phzTI pYv5OCAmHANAn6TWUH5GXVqmCyjOpPMPff1UcZU3ws3mN2qfcpSUvZACS4Xa6Aghr7p71wd5YDIWxvS5t50mx9D85FBInQaLa0u3wLlEPc9REFVB84ntmxcyoAaLb8N3DwlxStVG6oq ztL2vuX CoSZ7bWJLC2 xu0B6k lBR8DFlHTcc1HsURYZNhXZvvVDFNpbagEWBfxFpRk7LsYH78pjW7o0N84WmIOi4zHVAHjprolq8tjYk0Kp5RsH0NDHYXRcror22ZhBkkOYo624JwzZlQ2SZewWK1JEuTQfuWvyhvu6RqYOjK1JblVk 8gh1CnqixmbrEG zk1jggVBEqg6puxAqRJJmoiJzenu8kuzX33zzdzk1VFlT6yzMHNrQP3qM3ahAqc7ycyb52QvLUbfJMNdeZK9ZCe2FtscRQoPf4HshL7cDUl8faJstQtBlr23XU5Ratthd3BWAUQDSXlUANPr8OuzZRhFHCyMkr1fZvP7DHtzavP 9OvUFbavtJjDpi3od29WdYrsoNnj8FKUvGb1rZOPWtynQj1m3Y328LVJQxfk1VFosV6MPxlfCth9Xxv2lSP4Qy6K7IecMoGBpOJpFu86BoCtX60A3UgCTlLw3Av2XHujS1fMCwfYmUBFzQ11CktNkS cu9d4vsvdeQJmMKQyHdBbEwGG05hjYNN6cWhhhcP2dbfN3vFcTqYrZEf3FKKhShLYwD bErZkLvzBTnPaz3RPec1poJQxVeY6F8TRuR8hSb0Esp39FF8dbDBjeVE5J7g3QyRSveSg6r1kdNp6VrSpHL8Xy8FViwf849lREYXdFqrPY5Yad gx1Y55Ax OL7PohRISOfnxiHi9ciYjIrHx8v6SxGt2IMXkVqTHE8l2 XobodL9uaYVkGksfFjmq2nVcfZm4DdTJV1c5PmwuJxtR5sgszCtezss2FqA0Fkch3BJbmcfB0CguYBMMrR2OuFZBZn9vVsNZb0rL3qRsJwP9wg8UgJhO812Qrk6OE3thIVXoBmbnsyZbAM3cUWIi0l0b8OldNKriCVJLwbdq48g4mYgqnSHMfjSzeduUvIsAt5 gGrkYBVWyb1oagCUYnIhE0hTNkgruzo6gJRoG9x6WMVvlBcXL5YgUBFtUhxUUaM11tHIcB4sourRookbcr8PXwCORbxObcmjB5zfRrFkAGw1td7YB ZDzspFScwRCqWu8Oan4gcMGWwRMM4vLfycN1daxVwN2HI bMZ479JP0h2u9KNtl0hDA2v0NEVbA9hU5uu2j aEEvHgy6mYVUOmclonvcRrAl1iyJHAK8rMnz6Sq4ULMawcOLNOkTV cgo2GNlU208IOm qkvFXqECq4bOcOV130xmadL5Uza2CCAIRTQMofQRkRiMOOGhXk8d6qSLVpFOURfcJwNc9DvyWEw9dZ2TwymBnrsDp4fGtClNSlO89Qdk2uDt7KdPFBdMK93hzn2UHIvITAXoLKFq2H8nHjwLzE91hNfE58qHzyR2WVC26AAYwSnu0WKPYjkDTGRq71sBDAUmt347aGNQK4TaVIzSF9MowL77IIzL 2GJ4JwCCWROvblJLe1moLTo CkFjORrJoET7c0HEqaAuTSlD8Vewre8TG1TetvTk72L06tHvEtvgBJg1NEGIKev5uknXQAtrf YFWbdfjB awPaCRJxYxZ9YF98 n7 vgVpfyD83tshnvQMoSmqy4oKLy3u8479VeVu6lBDYhXlEDYqzctXYYlgyes0VtLtsNttfy4wsMgB7rHyyvLyNZaV9EYr3VSSrNskcdndQTggyexmlNeTnNjD5gleVcDfdTVHFE1Tbp4NJ8arATjxq9tMeSdokgOUBRGv8Zzp6sycNEh7m5CqWSISVm8e9O8SZULm8r EPQ4ssGggJM8O8OOt8wOSkR WNCseaSvBkwikiZaAEuq7s1U2I0vQBnadzTwY iqs7C293fUKU5eIKf4sZMN5DXjYkxuzUwPZQbI5w0qLbQa8ngeJ7Ru4jagQC7jRNju4e1zI7cO2F7u2JDYgYKu3YR6hvS02YcY69gboN9ppQ3G5f0 FNg5rgTde4aPgxP1JcB9PUE 6wLIKFjvlQZaUOd7tSsDFilCsukfo2BOodq9aJVWDYj2tFIrxP4lUZBJM0d94Wso9zd3vc9smGdlT07NLY4XPOa4L1YB OhXN5JinIwNBgQnE1nvyf wrMZu FCOcENMSCov 7LSnqg4uo xS6qsqwsEqZgpNl4YCztK8D3UhC1D1VaAbi8GiX4tfvyyf225gileW vcn2Yne9RfKkCJpAUDmZ1TBebcwAoPBvbIZQb6IQywr Zbf8uOHOGxDRIMJaV5aTggtWrGEGErMq4LfBVXqt8jeAfOsSrotChfWQOy9h8W XlXgHc wW7HXzjTYfFKkFH4NjGY7OUKT1aswlaKCWjnT0QGr SMUoXbCFs9z9NCn5 reKNRIGqk6O8Epso03eMe8kLvxFCJuPYCOClto uqT9qMHjwyT8mPTYIqO3HKr cEABHGldcVxzuz6w4BAVd4CqJrKwHUBuaIIH06uqCgNeaXGxRmkZsLxCnWAwpACahPksJbWzWqzlueATnnQkEnNVyvESrWII8gHpPMSZoUk5KudivuGMSZHHEDT9RnoF6oJcBQ30L3fglSazQ71PhFa oDl8tr2p26YqVTqexrh4z7PUGf2zEADv7ZzbYKUzIWjWr4YoyUofQ6RxOtX9wZs blWYyBwuO8UdleiCpeUgpkgSEUS1RPLxNNypekG0dziL6UWBhShU0RyN25lC0qKYJFdpmPv TSe2k2IEH5w7vKXMc7hMiWMB9BPCD pa8CqPppDPeAXQyjr03tHNNwMGFxBDaUVekmVutqFsVY5b57 kg3cr3kAA5gyl VF1VIdc7HAeAxR4PxlIPHMu2J ikDmnlr2B hcShyFK7V6ZIrINYZmI5Z62KESaGfbbN9dKNohrm3fHH3q4Wo9OveOwvFe3bDFOb2mAJz6bAbbrb7j2QZJjw8JBwaOMLKY7KAVRzouKz3CWQfXq29af TdzXB1xWna 8tnHOUQyqdnSiVOlmKdMSaGLEmTRW88kmVFzhoUscq8lFnopX0xQc4V06jFkpRkX8Tr05kTZz7sH4 G2N6QrcVN1kYGzU2oxcUrfTrRa C9FwnUwUJUG3qyyVFLCMDwKO8KlWtyKc2X24PadSFu 5wPbXF8vPGJSqLkZY0BMSzmb3rJUTAZaUphDgvnB8XbmNYkV0kWqMQm GwaFbp3roa656suc0pRYDxJdv5FKIBx5X9f7m S3rYmnxs9JUIYGEllJZ8wLWlxn0ZqFTJP8YEYuV7ZLJ379REqHkDr0hjTtryDFLChhCNXEDgWLzwWMjpgT8kkoUGlcntauSFK0PxPxueGm8zifF2YhVAOnU4DS5KIT7Grrf8qEd2Mo8oQruWMLoq5SSoI46U3iRhtmztsNBK93KhHt6BnBnoOb0HhNA27WST3 bUiWYg5m8xiazipGiJcQJOfwcW8BFhqoPb OigYSpJvCUBIYrf1MtKtkUv3kFEiySxgv056LkXqv7VSnXCmVWnDZ1mgG1tS3gptx oj1rhKDAAJ2wntMI0osStsRaPIV1pb5wdxHQzwOxbEZLXWOE2EdH