Molecular Weight Calculator (Molar Mass)

Molecular Weight Calculator (Molar Mass)

Please enter or select the molecular formula of a molecule to calculate its molecular weight/molar mass. Note that the formula is case-sensitive. This calculator utilizes the abridged standard atomic weights published by IUPAC with uncertainty ignored. Also, the terms "molecular weight" and "molar mass" are used interchangeably.

Modify the values and click the calculate button to use
Molecular Formula
Common Chemicals


Atomic weight, molecular weight, and molar mass are fundamental concepts in chemistry. These measurements are essential for calculating the quantities of substances involved in chemical reactions, determining concentrations, analyzing molecular properties, and many other situations. To understand much of the content below, it is helpful to first be familiar with the following definitions.

Term Definitions

Atom—The basic particle of chemical elements that are made up of a nucleus, protons, neutrons, and electrons. Chemical elements are distinguished by the number of protons they contain. The atomic number of an element is its number of protons.

Isotope—An isotope of an element is an atom that has the same number of protons but a different number of neutrons. All atoms that have 12 protons are Magnesium, but Magnesium has three stable isotopes: 24Mg, 25Mg, and 26Mg which have 12, 13, and 14 neutrons respectively.

Mole (mol)—A unit of measurement for measuring the amount of a substance. One mole is an aggregate of exactly 6.02214076×1023 (Avogadro's number) base particles, which can be atoms, molecules, ions, ion pairs, or other particles.

Sample—A small amount of a material taken from a larger quantity for testing and analysis.

Molecule—A group of two or more atoms held together by chemical bonds.

Atomic Weight

Atomic weight, more precisely referred to as relative atomic mass (and not to be confused with atomic mass), is defined as the ratio of the average mass of a sample of atoms of an element to the atomic mass constant. Since both have units of mass, the resulting quantity is dimensionless. It represents the weighted average of the masses of individual atoms, including all isotopes, in a sample. Atomic mass, on the other hand, is the mass of a single atom which can be measured with precision in units of Dalton (Da).

The atomic weight of a given element is the weighted average of the atomic masses of its different isotopes. For example, the Hydrogen atom has three main isotopes naturally: Hydrogen-2 (2H, also known as deuterium), Hydrogen-3 (3H, also known as tritium), and Hydrogen-1. Hydrogen-1 comprises 99.9855% of naturally occurring Hydrogen while deuterium comprises 0.0145%. Tritium exists naturally in only negligible trace amounts. Since 2H has a mass of 2.01410177811 Da and 1H has a mass of 1.007825031898 Da, its atomic weight can be calculated as:

1.007825031898 × 99.9855% + 2.01410177811 × 0.0145% ≈ 1.008 Da

Note that this calculator uses standard atomic weights as stated by IUPAC (International Union of Pure and Applied Chemistry). The table of standard atomic weights for each element is provided at the bottom of this page.

Molecular Weight (relative molecular mass)

The molecular weight (more precisely referred to as relative molecular mass) is defined as the ratio of the mass of a molecule to the atomic mass constant. Like the atomic weight, this is a dimensionless quantity since both have units of mass. Molecular weight differs from atomic weight simply by the fact that a molecule is made up of multiple atoms. Thus, the sum of the atomic weights of the atoms that make up a compound is its molecular weight. For example, the molecular weight of a water molecule (H2O) using an atomic weight of 1.008 Da for a hydrogen atom and atomic weight of 15.999 Da for an Oxygen atom is:

2 × 1.008 + 15.999 = 18.015 Da

Although the above is the more accurate definition of molecular weight, for the intents of this calculator, molecular weight is used interchangeably with molar mass, defined below.

Molar Mass

Molar mass is defined as the mass of 1 mole of a substance and is typically measured in units of grams per mole (g/mol). Molar mass is a term that is frequently used interchangeably with molecular mass, even though they are not exactly the same. Molecular weight, as defined above, is the ratio of the mass of a molecule to the atomic mass constant. Molar mass can be defined in similar terms as the ratio of the mass of any sample of a compound to the amount of substance (measured in moles).

Although molar mass and molecular weight are defined differently and are usually expressed in different units, for more informal purposes, they have more or less the same value. In the past, before the redefinition of certain values, molecular weight and molar mass were numerically equivalent with different units. Thus, for most purposes, including a high school chemistry class, the terms may be used largely interchangeably.

Molecular Mass

To make things more confusing, molecular mass is also distinct from molecular weight. Molecular weight is most accurately referred to as relative molecular mass, which takes into account the weighted abundance of the various isotopic compositions of a given compound. For example, the relative molecular mass of water is 18.015 Da, but a given water molecule may have a molecular mass ranging from 18.0106 Da to 22.0277 Da.

Calculate Molecular Weight and Molar Mass

Atomic weight serves as the foundation for calculating molecular weight and molar mass. It provides the mass of individual atoms, which, when combined according to a molecule's chemical formula, yields the mass of the entire molecule. Therefore, molecular weight or molar mass can be calculated by:

  • Identifying and counting the number of atoms of each element in the molecule.
  • Obtaining the atomic weights of each element using the standard atomic weights from the periodic table or the table provided below.
  • Multiplying the atomic weight of each element by the number of atoms of that element, then summing the results.

The following are some examples:

Example: Water (H2O)

  • There are 2 Hydrogen (H) atoms and 1 Oxygen (O) atom in the molecule
  • Their atomic weights are
    H: 1.008 g/mol
    O: 15.999 g/mol
  • The molecular weight of H2O is:
    1.008×2 + 15.999×1 = 18.015 g/mol

Some molecules have more complex formulas, including those with parentheses or hydrates.

Example: Aluminum Sulfate Al2(SO4)3

  • The elements counts are:
    Aluminum (Al): 2 atoms
    Sulfur (S): 1×3 = 3 atoms
    Oxygen (O): 4×3 = 12 atoms
  • Their atomic weights are:
    Al: 26.982 g/mol
    S: 32.06 g/mol
    O: 15.999 g/mol
  • The molecular weight of Al2(SO4)3 is:
    26.982×2 + 32.06×3 + 15.999×12 = 342.132 g/mol

Example: Copper(II) Sulfate Pentahydrate CuSO4·5H2O

  • Anhydrous compound (CuSO4):
    Copper (Cu): 63.546 g/mol
    Sulfur (S): 32.06 g/mol
    Oxygen (O): 15.999×4 = 63.996 g/mol
    Subtotal: 63.546 + 32.06 + 63.996 = 159.602 g/mol
  • Water of crystallization (5H2O):
    Water (H2O): 18.015 g/mol
    Total water: 18.015×5 = 90.075 g/mol
  • The molecular weight of CuSO4·5H2O is:
    159.602 + 90.075 = 249.677 g/mol.

Table of abridged standard atomic weights

Below is a table of the abridged standard atomic weights of the elements. The abridged version is commonly used in practical scenarios, as it simplifies calculations by providing values rounded to a fixed number of decimal places, ignoring the typically small natural variations in isotope ratios from different sources or samples. These values are published by the International Union of Pure and Applied Chemistry (IUPAC). The calculations of this calculator are based on this data.

Atomic NumberSymbolNameAtomic Weight
(g/mol)
Density
(g/cm3)
Phase at Room Temp.
1HHydrogen1.0080.00008988gas
2HeHelium4.00260.0001785gas
3LiLithium6.940.534solid
4BeBeryllium9.01221.85solid
5BBoron10.812.34solid
6CCarbon12.0112.267solid
7NNitrogen14.0070.0012506gas
8OOxygen15.9990.001429gas
9FFluorine18.9980.001696gas
10NeNeon20.180.0009002gas
11NaSodium22.990.968solid
12MgMagnesium24.3051.738solid
13AlAluminium26.9822.7solid
14SiSilicon28.0852.329solid
15PPhosphorus30.9741.823solid
16SSulfur32.062.07solid
17ClChlorine35.450.0032gas
18ArArgon39.950.001784gas
19KPotassium39.0980.89solid
20CaCalcium40.0781.55solid
21ScScandium44.9562.985solid
22TiTitanium47.8674.506solid
23VVanadium50.9426.11solid
24CrChromium51.9967.15solid
25MnManganese54.9387.21solid
26FeIron55.8457.874solid
27CoCobalt58.9338.9solid
28NiNickel58.6938.908solid
29CuCopper63.5468.96solid
30ZnZinc65.387.14solid
31GaGallium69.7235.91solid
32GeGermanium72.635.323solid
33AsArsenic74.9225.727solid
34SeSelenium78.9714.81solid
35BrBromine79.9043.1028liquid
36KrKrypton83.7980.003749gas
37RbRubidium85.4681.532solid
38SrStrontium87.622.64solid
39YYttrium88.9064.472solid
40ZrZirconium91.2246.52solid
41NbNiobium92.9068.57solid
42MoMolybdenum95.9510.28solid
43TcTechnetium9711solid
44RuRuthenium101.0712.45solid
45RhRhodium102.9112.41solid
46PdPalladium106.4212.023solid
47AgSilver107.8710.49solid
48CdCadmium112.418.65solid
49InIndium114.827.31solid
50SnTin118.717.265solid
51SbAntimony121.766.697solid
52TeTellurium127.66.24solid
53IIodine126.94.933solid
54XeXenon131.290.005894gas
55CsCaesium132.911.93solid
56BaBarium137.333.51solid
57LaLanthanum138.916.162solid
58CeCerium140.126.77solid
59PrPraseodymium140.916.77solid
60NdNeodymium144.247.01solid
61PmPromethium1457.26solid
62SmSamarium150.367.52solid
63EuEuropium151.965.244solid
64GdGadolinium157.257.9solid
65TbTerbium158.938.23solid
66DyDysprosium162.58.54solid
67HoHolmium164.938.79solid
68ErErbium167.269.066solid
69TmThulium168.939.32solid
70YbYtterbium173.056.9solid
71LuLutetium174.979.841solid
72HfHafnium178.4913.31solid
73TaTantalum180.9516.69solid
74WTungsten183.8419.25solid
75ReRhenium186.2121.02solid
76OsOsmium190.2322.59solid
77IrIridium192.2222.56solid
78PtPlatinum195.0821.45solid
79AuGold196.9719.3solid
80HgMercury200.5913.534liquid
81TlThallium204.3811.85solid
82PbLead207.211.34solid
83BiBismuth208.989.78solid
84PoPolonium2099.196solid
85AtAstatine210NA
86RnRadon2220.00973gas
87FrFrancium223NA
88RaRadium2265.5solid
89AcActinium22710solid
90ThThorium232.0411.7solid
91PaProtactinium231.0415.37solid
92UUranium238.0319.1solid
93NpNeptunium23720.45solid
94PuPlutonium24419.85solid
95AmAmericium24312solid
96CmCurium24713.51solid
97BkBerkelium24714.78solid
98CfCalifornium25115.1solid
99EsEinsteinium2528.84solid
100FmFermium257NA
101MdMendelevium258NA
102NoNobelium259NA
103LrLawrencium266NA
104RfRutherfordium267NA
105DbDubnium268NA
106SgSeaborgium267NA
107BhBohrium270NA
108HsHassium271NA
109MtMeitnerium278NA
110DsDarmstadtium281NA
111RgRoentgenium282NA
112CnCopernicium285NA
113NhNihonium286NA
114FlFlerovium289NA
115McMoscovium290NA
116LvLivermorium293NA
117TsTennessine294NA
118OgOganesson294NA

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

Tqr71T6FI5qleWNsG5ccpGipW24uGeg0JEr2c4ExIFrIaC5Ct7v1PkblZGiR4lFRPCYizX12TFjoeWDmsrhKXBolSWWTETVl6388TxexeW0 6sra0hiQj qPuJrWIinZXLTGQVQLjlwtzfDHhpxuSYT9UQfjfWaplTHIXQoEa4MdXG2izm3wEUbXe2AulMQ6lLO9PyW3Gd6701OXsQ77bZbazOn8l2b9EYbnhMKhBaVbfv kQg2Aj7A F75SiCyxX5vsqOABRzieHNbppS62BSNT4pm 09Pa8VrOEJmh2d7oEzTqOLbMjFoSIzfMathpJ79qsAOxWTObGfilB6htL KyiK1X1ON1Rr7Mks02JmgMssFdaZG1j1Kt4fd OiE0uv7io9vOMsjvtUa7saOMj0fyGDBu5ldnc4Vll51wJ7OI6 rB9lhBEKU3QwLYRL9PP4sZWa6pkLsuswk FqvPNmQGRQNGPPIWIxmax87JBe147m81Y9t1dHN8eW0XIRgKjTAASkgmNkETggwZ7AE vWJSyEakwNwD1SDx8LQuHFnx7F6j9SKb6zPMoyJ2nZPWh79ar1CKy9oKezEFzQvUBZhZj07xGk28dpEnmHElaiqEQqjMF2H5xN 0QZx2lGaqk7lIGdCPAsJXfFAhl3B3Lu1rjiN9Eg7LSatkUI7PWZqNOKoWRYTd7yBIOKknfHmbRFR LRbWk7xtxtXK7Zc3Ts8oLeHB6TOLE5djZ2yp SrzABmq4rU4WQrY4jtTIPPri32VYeb51k2lv9qi3MyzjCPDaKneMHsoDCiT2ZF8AiptU5rFKZZU9gHjkWellVcMI98oEEWfqaUjehTODwGVYSDynDXyH3ebViRuk0WGz2dFOQwJGGlx6MpfBhZAv1cmnJPpxmHNCXR0OLMhA0Q5Ls9td2kxOeSvVjb82NgZuT 40Vt7pDtK66aIEJFaMTGemzuC5P5SsNgqfQ4q99QzM5dTLUUT1fLpWDNXZvEjfWa5MEvuRnVeW19H8jIMOssHAMMP2izQSuh0YtgaQFF3lHlyZe02zXxX7McA4tPCGOCG9sAyRSGQOc9tMPUWXyJxIvtOg7jQY4bBo5EJuBxs5N8HwEYD6yM9ovfvrvDgnBMTiaBCfAfCaN GQlIffQ PrOOZDR2hHQ2Bl20NocIIsujxDQa8rbc9k0SsnImhDLDK0eUkXgKJeS02uK1iJiwXIOM5oiwkZyRGhnX2EeApFCkmArgPuLpEovywFM6LmadtZO304STsL9YtNua2lqURJ0b12GhXnJR2hXfz7 tz9tw721 XHKT8s4 Gsv1A a1La h2rWbtUBWsQXFmKkGdwbKs3rYPJDELmri2qLXRraOwUYz6E6EJdCN6wwnJ h0bi3qDYr2VE61v zbaAsEARpgZA3TZbW8EMebR17ZTgqfkJvsDmsfiRiMlSrVhBfR0JLRMnWWFl2nI82cgwyqk0r9mb6iSIdp0Z5WjQsclgUNNvI0PU0cfuAFZlGlgHN89DWezmN874v6DTDF 5shbFIZKveEnSbtSQnnjytYKPe 0MjMJfDxIOjddvTmD6TomifKk2qtZ2dmcAlvQgkQ4QAeh6XhUdM9KFYE8DOjMD5cN4rlXzxV2Qf3p2pNfEN5qdorxo O5CCCW8SuTF5WwEAyLd7jR8WQ1m1ANrQkI5H5zmd7MZAg4YYcGgrdFGZ9gE16cmoVd0cfK gO2pTGpXs5TMuPijT6halbOkMu Ji1Croh0g6ky7zebT70Grx3YcmYvJ5OOCGxxQw3vCjOgqeLb1vUx1UvhPM7D Rxu0EAfZeImDZwJpipXfJaKtQe0xtvsFjjWS6GgafpnwTyzGvttqgkFxWIjFeVlvXdZKWlvdIpKbRqPcpHaLLMJkXiNx5VjuqKaGyI79jNzjxle2C5cFs0cVZDmW13t9J0xwCSEIbWsUtzBlVKgh5BS5STMhYawPy0 NgMOfuSOa09jpuaxHzDAgjA dy0aca7 eJbBQiNNGDe2K2fOc7HoESmsd50l7IIOHBT2YGK6iuD152gIPliWLjp7jWmmMV05aTAhEft2BxzCtAKaHU8j9X5StbqjJR4HFYAAM8 zmGJPjb3Fws6xsG ptauq3gQ1xLoEq4Vvwpw16kbBN8yBtI2NIfbq TZOj0jliZ7A VVk4WXd1qTeGrT5XXdBbiTAZHWjpcKfSJ5TAo1QIWAXAPBrTLlXMdAWYJUbADmNHfw8kpb5jOugheaN2nbJqDaZPYBHVA1X99xHJ1eDhYcracp8zxsNtkJVodtni1U8ykJMyfWciPNNOS6FASTP8arqUX6BFtCc0dJi4ovOr33yfai7wt9T4A5nyLfVKkWkPtASou3VTi2RwhodrtxCA7sVif9nmEu7RRExSLeMMBxgvY7EU8sPBUYzhWumbwG3K214k7XPZmL TnmI0jAdgf6w4wZD1J654xPx8qRPculjGSJgKB7Cjp47GxN61O 1DZ91lb7kLl99YmUK1C 0YFqgc8ftrVYbjiJwv58y1euhPbTlTWXfXMY GetaY2utPD5lfh5QJeUQUY1MF0p z7pw4LwPLuqwzgjLU9ukNJy4K2x2ox64KfjTIx1 oPQ74UXTO39DJiYrfseduFOzncCs51f3cVdtS0eVvSoFKnKrHANUSIgrgHmtZRY1vlWqDHUBGa7q6ZxRD6w5IEQoxImLb94Oh7nj7XoWWVPb2EvJ9L90pOpcVi6N9rvv3jjv19bkQU9Q05O4gQUg1WxDyjK9prpFnNe110oLWMWXnMfpTnhk4vN9JT5e07MEGLNEJfqkxueG80jDrZUmgfurisVoF7yp6FWrfLjcmqQfQ 8Slo7 RSVUHDR4lkcxVKTkBiEua8tg7jgnnEKStcrDsevVtmc5pLb84PLD9YzI3Hkwo32RjF5nO1oQ8 CtuAZjELTPAtileTJ0i98Ze8NWdxoVzytX5cnwG0Ri65VtkgMe528GWhZbbTv6w1grXQFCE4fZe3liX4Mq3TtzzfTLvKd3tqXgZnRKYREYgaPmLJCpm8Y fwYJ5DY70zthzEVX4HoNTQ5GW R1914dymTrpvyjGS09pg oCUa0TTQAxXvxkonM5VQWq4msG5wpeZmh67DVQ0 EkuKH1tsFzXgfJDXY5ZC8Ruee5f8ebSO9t6HCDUFCGXsITaj7DNKj8q3DYMEqacl6lBa3y3Vh7091UIXc67WPLOp6r3U6w3EkVsdr1LGo4VY pJGxUdDzui6taEW1RYW9F2BVFnqgMXUzheAkHZfm3Ft0R4IORc56NN6GeMQWMgZPShEdy2IeNA3p3fIDZHSsP7r8uVWfZ1e1l0awdECx 5Cfl9ZX3BoDa6IMYh9NM4fyVg1FpA5fgHxYnzGifFZNjtV4nyuyEwdz7Y3kXQUgE54i5SoivylQvgacJF8g fj9dzqfC3PSD3lOUSCofDtevUyVlnpAF3hVZO8E71viYwSOArj254iUVtPS5TYaE0jouw48Q9KY1YhPnEs78LtdZS0R33yDZS5sWg1f3BJKWSLVV6o2nDyrwguLK7ojhBh4yiQRkDTsnyZM41qEtrNj1duL4brKWMyPUe5fbZSUlE9ISIlDNb1waGhiPJ475LTeAf1 x8ha0IMC4QAI9Ke5BTQ9xl6aio4AIqw7W4gqgmikx3xBPeCNLJxnsV9ympmwwJP6gUAFNXSerKPPQZ1m70PqQiZneIsuEUpNyN9La9JkhqLvuULW8kUn06Y8sxIaIvg0QO29G0o5U3mP3VsWWbOAeNGznAVF82nfFXuxftde137HkEafGJNm1NKwRT8uNZg0q0ZAdbKpOBk7IADItUK0yZOUNXNXYYFYNwsR21FClqtX6 ujYSa1PtceKFfUg67X gjXLpz5NNC5RxNJ3lHvsviBHQwlJRRgRnNqYsb8XHmVa1UA1OQRfOpzXWAk0prt5rtJzffLz7OLhC0n1yOwHCNuLIVOs17THotowaofvHOPGr0rwtHaXUGe7rx9JHBHpggmprFirXTIVX8pyZYyTTTG7EayAwUmTq6XJVJUYbEBd7fQcOgmUl74QCOZ0dfQr1NfNTngqRWNjplELUNiqO9g0j4w1SJfR8pXeJdkmgGPLWShx5onvTBGF4D2CkeA3Xd1flep5L6UpmYS GvRjq88O3CO9WU7hv9EKpP49AvvCkX4MjBXDeL0SyUUjGee5S1JKb2EFJBR1okR41O5Q9ntK syjB1l3iYr8M7IOOqaSaFkU6IbWhBHgF7iuk Z7m8W3iWFI6y0j9YOOUizilWZCSEmaq4PocetcnK0r6t5tkQ2JEdB13vga7HfoCrjJduEtU5EBwfntipkdzXZ76xd6ofZ0lN4dBoDWCHlidp49tbAsaWYcDAMNvpOsW3kiSh6iRBb5VyCylnzB3oc5p21ldahOh7dHhnW6wOtcXKokDWZKRaoTzoNLmwyIeELcDQj8UXEBshxEnVsD iUwdYYLwNBLuD1VUJjoP9w87EeRaVINmMHN9K5evUlYdjTQBtCZKwpVmRPgl93tkLQK4eMFD8FjRvZWBr6Lr4ENtM9 zfLRs3kofex MHp7v3kmcnYkRblRLHXTnXRVm0dIjtBWk1dNNHYBp5VEHpVreSBAwHrXkETOrJyYn0uBqDR73Dhi v1zvVOCetUKREYiUNyBlqSSjZMVJmLM0cQuVsaz6SaHLF71AgTOwm8xIvax3z0gBF61D7Gq0g0HMWHnDQbfMW3vi5MAvjFmiJGAv6UUiV7Le6RclT9jSWl6l3oVKxqTgcpvv46BmjXr2w57rJYK6Gzms4B8sHmiVUuG5UZiIrTdcx2SStAg6R7EWZsYQGOCrb1BpvOu1UuLnGnLL5wPVkSptUuTDoxMrg9HwQN8GS9wxFDYD4qmLSh74ejnUFW87xaDWeUcKClMvqLVbtuYTOiv2oH1x3SXKsRXxKMXRFyHfRsaiWF5KGgh5wrRmLekCI0MoPB0rHVw32qHzy3yXzp3OMDqXe0zHXKW2 REJyf7wrm0RmW4nDyguk1451YWgNcydv7JRHUdadi7ThlHFpYmf0lHL9A lvLI82wpPoBwTsOLNrDtrZAH5PQFxIE7XykFM9ygRkUFlL0tEAiKjAcDWPpVeF 5cyyWD58vkD4MtDhlMXAhcm36W6GmRcPjdUGhDqen z5QZ8mSj78uUaIioUB91 PT2yiwKVw8 TNCu hbZijSAO55WbNOOPeclQR4T S8vhKsQNA1nkW41Iid1zsQ8WKQtbhBQPqs4fexZsIjmsuIj7Yen5OUd3GtvCBXB2RMaQiBTxYuS2GQNYDxrlU3IKxYBjpw7Ey7PM5MPB11sY8DvTx2Ud5aKH0dMhYmnnndjIjkFA7wP0oAGS4kojTzKDJ EEE43yYuKV mfmZXTncaApTZFMAGVDYl6QmqH acAuVIUZqorMVIfTk4vPz82YGWJAbnUAjCbGOz5HOadJW tOR8J8Ihpo15 D3OWQwMAVHVsqzJIr2y8EyeVaP3C2jMfFFkjhp5YlwkI9Tqz3kssb6AtD3pl8uT1GCv8jJ5EI4 LVixPWpcEiY5Z8uGmtEiqVXFhyAqHa0 68ztq1ZMiJPJhveoZnotORq34gkHXwQFvdeb9VJTSIQa0SGITlF0IDzkIFJ 4pLgTF0BBN2mpN3yHbNMu6Xn07Xu9bGicOfcKxpSWOGt7ESxC3OLLcvZBO2ZUfJuf5Ve1W3z8bxbwSxHQVTbGy66BAim6Ig5ZnUXAqbNge8ERr64rBQxGMa1x5r4ZvMyv64qvNPx QtpYv MnoiMeGE8 Y NsCdjVGm3VbyflRdehS40rsTjzNTfVoTF5NCN9ohMj1PRIkCTI4A0Mq3ROOyeWmYLLxcTduIUaa9izLsTXa47XuB TCrelWLULMubsR8tiWPurOTiyn7x0IjqSLhPRIyyqqqWJQjtWcq jlhBVUcqleMx5RuiKy7t8Gov0l7w7seh5VUmhMZbcIzXJGORyJtHLgQCuGfrckSk1uwZ08XmVmUPi8DLN4NLUg4X0VE cM7GGJeNzGN9qnjWpYdFE7Cb0yrmwam8IisFYCif5Mw5zUZAsAz8gavEd0aW B 065fzE54SsnBLyD4Xmak6h7hEN1 I7 qeQDqe3QnNJo6B8UedxMXYcv9LXqvBmRGkcTSAmgo99f9ArL7tH6O8bfgmUhZTeNi0uC457KQCySIs2aTni90vkdnqsQVfH75B9sQbslkP MOwU3YT3VeeaptzWibfDldQuNQz8MXjuORnBpC7cblOE8qiQVyLpGWYWu6m49fmBEPVoD4bi 4vy4Zf29lziw5NrYEGBFAjssD7VpvdVBAieFNbIP xcOPU4teM1hOY8QG5R1vdwOjDtPf45Q201TgQPreXPM2XLaPrOXb6e7SV0z9HkgNXvUXpfByNw4S5mEg8mCxisBpRstJTbWo1Sb mcIMco4QgKfjmjo8Q2OAxod1Secl1 VLyFOdqH oXCdKrDfBXx83rzzIOZediW1XSIzTRxJqx6IHR2eN8Wi1J3sWgLbDaAkZdW5YBZmFPcJwcfrjBz0Tw2nKHw2CLsxF3IS245aXFe R95aXo0Kz27Imp4nbOE9QFWbr5n0whQ6okGsTzPM5VWmJBmcW22zPhYr1oY2NtHax8e05kUzIZN 2oNx2Ysc2GLz9sNqLPjtSvzpv3EnrMKQaGoGt2atbNFuwjzjSk3FwyxpLNDiAAb ynBUvgoBU3nPCpDlwupeYG2JG9ZpwQTMfTRgwCYScpG7srMLsuZCZsp3R2aqtVkg32Kbu L2AYjXmMw4lNLax n VAvCBuaenlp3nySFixIhgg7khI38iB bmNogsewFZFnSD7jl07Xx3E27eJeNrN3J6DIDaQFZE4I1 KITQRWa8 jozeFZ6YUnHARV6IrQL2K0nLf5NqjGHGWqrp4wu6ag9O8vsMts9nrC7jQbvXqoZeJZ3 ReJ6iVo46zfDfPC09JX0HUx5DiBOppYGZMquDOIB9wqsnI7P7zIzOmXiEVsvhm48E1jTxPA34 2wZF hWuordWiNRv6PTXMjEoCDa2yFRRUuXUJr5hWIaDiyLFv1gIUH6ZyG2Ubbaxgtb86j6bzgUwDjXwDcYtNhiKyFIVALfoKsgNWfD rznbmue390htoSLKMMlnBHIzyzsV1GoijgSLPYuBeYMKifTT2rabgTaqRhwlMcbPVe8m7OAIojpTj7YSr6ri799qJ0o7EOSysf2BV3n9a780GmRRp4FXP4fNYV5TGQ iwOIU0ElhzbNc0c8vYalbC9Psz5rPdTOTI7FjtEwiD3kXuaD4eFu98eD6SfoTnyWxj1JG7i8eD027JRROSf79fxk956Ys1Z1G2ifjXOBxewvGpGUsdbqOZdmk9OXiIKyadj7 atY44LR60ouWo1oZMgRxgNOTUPL7GrC6Cot4jgkhe6AEMny3Qp5rUCWAyP3 EulHBvPp VJ8mz6M6XlVsJa5gKMJctU6YU8uBZqlMS7wuz50FNTTxK3ppm3Ht4lwXDTKE3sWtkBkr1JPlUcvRB2nguRySTuantXJewWdvaGZkhQbwDdooURm2jlF1Q2ekCCTt7WacoBV7XbUJTynUM HczG445ri3dZDLo6zWenCSjNWqJFlvtsPU3a O JhhCRBoC2WNErO1ySyPMR3zo8NwagryDMcxFbxie4SB bd0LLk95XHIUBa5sYW4BrE0o7kJ70 nUEV4i JP5P8kFUsDPQD2qfsfsq47WY0ohDT0zb1IRorAwPC5JWS8Z6w1aUGMy01sC0 aYszV1HDM0qjw0uoRvU2O 7l8J5ijcM4y58u8ZjK ah1HcmJ2FnMc1b0Wo2kEWu55C6YHG82N25yvJCw1yZZxkDfrWCWdZOZozq62MRdINeL10Cli3cA0muq2veUEXuF27xJ4uXqGMngWfMoWasoSAB58farICxRY05ZF6ZSXRtaOlGVkL4PIEK LnZDt2STWSveDb8qdLDCj1Eb2ofJ5IcBgTK753EajloGyVe145Fon94yMtdMtfnkbWSghOuMfOmlDOWuF98oZe 1A4Sr48beAJOebEHrnuuAklKHejS0a7xLoXd24fsZp0xoGGk3rUCYxwnOWSYHRCj37JklosOeusBjbM84JjsBl7COIAncaNAIC4wnO4kptbpco97Qv6wCq mjZChBdyoh8zzxvsvKUY4LF76x4Pnfhs37r85VC3KbQBYDWS7SzlUMYUYBEsvEVo t1I5AvvpvQoFfqwFSDa8 CEoT8x6qXQqRfWR7X8CMq8FkIGOvXnKslwMv9Kd6fOQCPV54GfRdlA1 5V6ngfiu7GnEYHNPNvJES9mTJReZyrzPhsk7eOA4Zyn9WmqG15EEguiwkQ6VgiPgLLWRTh7iK2YVp64ZSNeundMfDVVkiy19CKf5wIzVhIJwwJtUsZC6O0PXHgchNSNBA0Yw8rHo0lQI442Sg7G0AtyzCNGUpnzH 3Tt 0q9d4jMAmvGxOzWZknZwP6iyYzkrTQaLWIP4mBn5wHZ2Vw2jEpXgR7wKnhsK9iRG fx5SUj6837f3Kleamvo9dfuir1soY 8eAlYfCUB8sZ9fZbztHbeJCzTtqizti48zJtHJifO8G9WXNtouU98yI3zgBLQpMbNttOAoBFukEQH4XIdAxDKN0Tfmw9TGDqR9 UZmGgAWiucg8zLRZzQlPhL6dN1vmukYsmhlEZRl0jdUH745dsRiwBaFy2mMaqZ3JmIrlRlw 76gJBy Fh0rBQKjoAs4hMci8pYwSuGO8bMG6jlX5LNOxxihJRi5wMc9kshzNwLINFvUjP3q5P3aYEv3FMd5Slqtbvi2u2NAfYtR4m3zV1Chr9gLfZiZ9TPSZz8ShlWZS5SEURi6E UmfI0ggJIXnKH1Qk fcK9bfj9brKCha2qes4HhOVHLjgoJYCKx3NXQjKC018RSrMwW9aTsJ 8Jr5UyiHnEgla2rDu2yO5Yz2AM5nJHNoLaxc726VDWr0CVBF9GtnxIrv4AyakBl7Ej7xhfKrK1eUUlNsSCuPadOC97R9FZTluDX2QSEcijOdIsnPcqCsda6uAaGHi8QZLcdFC5Ci2xlkHbqU80heT1ngCwKnBsfF5 zeHatqxZYuaWlrx5KyBYdzIJI3zXYeKUb9xwgaTebsdBUaPHWxMVjmScw7dZ Uk42lOKvV7kLHak5SqvKymOeQtLKuIjdOfchVd08lnxcvH cjg4FmvBJvuBc00BDT6VdFnJwXxdU4 aVKkxA3yp5esiP42TTjDTwLGahyHSpTO6DbrRGHI24YkCjmyaJJCHZ1mYTESUqWvG0rgFWTC5nq9yOigDL4cQZ7hs4wbVl U9 OZ64TSKzp7vLA9zihygJwHonUgq2vk7FOJMD1cxs17FhULE4jDcFQyGXjfcLfK6nAXT2gPofaXEdxCfNFsxkKrPFtfR88rQOonSx2i6nnsolAg5FUFbLxYGD5IGmQC04oCmj2pt7rNLGhXPXovPimVUKpaCPvPHe1z2c2t7rzrM8IIVMwfPQWBK8ROmUIzLLqbFR663Cfbslrlf28DT9xylkpjA Y59oQRf3tgHTxgiOFLmfiaNpy5nB91guuUJWFCsy57m9ca9N7gzMLK9doid6eBKhaXz49dEM0M6yLKhMSNgKzOtlehU9eEx lt9 4k7hkJ7LkUm1g rb2dHuH6dB0M0MF2ZYKlFe3wvJRImtvrmTFaCkXABIPdwkaJhFryHrVZlQRjdo64klRPMAdzWsHmV4WlBCF8kMkteW 4zZEmOgQVnB4mQdZq5Rha7M8Q7MCTBxcoTPf9JkrU3mfJLHNkL8dDtxQvcY ErdnFELeUoZhzs2JrYHE3T9tNrg9vhLa47R8CHmUYf0ADhCswySRT4ZiK1rjRis87zIeMESyWFUyNCnmFbYXpfZsjbtSoascgbYs5O2Tz5shC68Cxjfkvlp0GAvoCeQMD1J0LEOCs lZTbrsPHtJbuKigcGN Ugopyr81HcximKwv1hCbUYFNh PkSnpRL 9DjGaWW80MlxmCbsFEuypQ3tIfbnFOk0HK5lHNLeFww2fs8aHD1QgXdyU5nDPZ3gB0613PNSqOtAvHxi28nUAch4EqBfJS5UDdCeCywbkIjxWW1v8Qy769iB8yHQprklb3KgtcLCTlHm4W8Q2hXfyueO8T9Ui5wGqw184gVm1HPMJwJdSjYbBA8dv3pFEhCfDob7cotWDSTwzz2hIaZYb1iPHbcqugCPeeI9t5kVy6Afx0ZqOYjBPWI60m4C6Nx2DhSOiKD3UZA8pCKaSyoJvgF45eq8I2pFhPmffBnVDuJIXDFM6C6WO7J VhfYtomznj950DYUPSDnTu7K38tiWChMwZDml5Lepuo7csk0pZX4hoWfiNkMcuHiHCEix 1ZseTmBqkE6fbYJEqeCxbAPGDtyj0CRXv4DyaDHeAP5ewJXwVHFADq 9PGFXU98EQ6ZsywXt6avk6Syp3SWSSdn5PtBi43pvdP8OLKGC8w3ziwkeUa fIAPc2DS6rWrwpFdkD74tlEUNqmIzluigPBR0L1xcIHtkpeSdWrBzmEKJlgQ5MjxDDAUe5EacYnY474f1vKfCCj0BWXLxJFF5XlvwMoTX0dsfRQZzBWITPiRtB7Fb8 TpI39Bl3RICaKuKnT0PYc9Yjvhd6UnJll1SfrGwsjhOuusAbisgXvYZQoBY LJIC2ZnKqffmk6A6wkUaEJNhPZKQg3Se2RTQZpdzJGzyjlFc30vmY3bjtOFVSMgfLlR3Rm50lu8pStGh8hpb3UBZvj6S5rGp3NWXs0N5X9iP02WKNFbXSkciXRcBFa86zvrK01NC3wm1F8BR6EkORyNf5Lfjw5gSbWSvUVNysE7kXdurGVmUPsCS1a4MlBHa2lWyd5Ahm7dgIe 5GoSgy4frnMSGItOkofN0LgfFjHDYVmmiX9 PBJMp5PBEgBseociQAfJgW9ikT6PpYHx1MxqFPvU5 pQd bz7xkBRrpElDLEjAuoWbacyS5ohqBNWswHNRIgjzcqyUqoTCZDEbiAdnddc1copktg8OOy0ql7kDH6Q7hUcL8hPPUHeXWzh8G1bhSryCEMA9rjnkv3a5vf7PdGUMS qL2m84zBT2ULwAXeGCywnzfH9Gv2MWVb02OrqIQoiChyXLral4UY04wxcPb40l30gxbYLSYhM1e9gEldQpDZUI7TcBNwNWWRR1njieuoWL4vDJHpWfige0VR58oZhx ghPajBVnUxL JIdF7Q9ZYmYM6DtusJPWEU169mZu9qbYD24yn6mqwUbOtW1E1GcEKc 9BsGELFV5oBPvgs8rtJoZq0joRhCaf0bnE TCf7IDqfAZfmJ1Q0UCNzw7iCtES4So1xW9Zu1vtRDWF4PnDIotK23DoSSaU2ZecarYxIy5vnQkooJEnurzCgiG3wQ5dJRRa7v rxoygxl6V7B9dtrpQB1kMMjdBiNuHRnHkg2VU1rE3VwM1Vmpt5cVJARw7A6BLkwyzYiF2QgE6ZuDDY9zvLPDHCOdh MLeNKIuHmfg p09UT3fYKvtWa7WWfPhJsxbF9GPwonmzxaWSzzejT8Z8HQ9BtDHc5wYy3nn2mtKiT5rWstDZ4AjZBV3j732LOHTpg5pHWZz4wDSlD5EFK g2joAur0FiOvjqUMgfL3w6zJyCMHNMSpPLCuHRPk5Pg0RN0uraqrQ6vnNUhXbI3092z2AGnEHwlEdMdacG72UxNUU1cYHJVnsweAojfA07GiP8yvSkZIqfqeLAou9P DXL3IYJ2XS7anoBD6j67x3ZJmOrJZ43dZ1iWKI7RjWpH7vnqKU1pmwZRgGdg2LgzpAVOIwgA15erfAnF9X2MZYGwjK1TPVwOmRVaOLe3Yt9Muko9mDUTXzsswIGmstblyMWxyKzj7AXkfuroffLMTM5lwT8rhK3tnM6RlZzUkmMa0D5HgQaMCSVYYVFEmfUti0lKRT1WKJElbie7gKQwPPwvmstHthD1OawqmUPLJMqFlj05MyzBo0ibUs4OTNnuaIMk4AsdIEQEAbShdoh7RrYt 2BAxlSMoENxsJQjCuBwVviKylY NSrnxhT 5al3JXdvPTuBEaB7MteuKDJ1152HyKiPRxuX29QyNBwUPI5Ff1ubfV49eTJ 8SxyfAvb7JbrERtTc3DCQ4WWLB2Dv2DVO3Obss9tksV1cTpJmOATnj6IJwxJxa6EogdioCEbkLEPbP0lBjLz0 eQSgctXaCMgDduq57MMQmM5X96Osx5W0nnL lIqInnWRbmdn10e Qkfb50uXyjb5fa0p8cbgM5popQk1sA0f0VMi G2oiQhUd1PbvLEhLFHZD3QhqytM2KYXOHCcF55U9ZE4 uZWC8dXQc339kDtXoR0posQRbig0w6PoCWoP20fpy0TmaTwWhwuryMxkYKZpqySBvwo6bBzxIRAyQo9SWiJ1Nc6YSHaBzbLR7wDBL21iL06r58h6l5BtcSmib17pIoZyVGqKzl78RM0iwtqVQAnaLYpVyXif4iQ2EgFtm3z6fI3QtZNixAeVYS7NRJnkHaH7JxHsmXx5caPuwPaLxQhCIqNCzRYaBjFDJe24jpLi31fUz7ZoEreYyHwVh9k 1ONhZpvXbuG0gqRNhQdebeMg9H9IK3ubtG6CHzN5eRQfyyVBxMtjt RpPBMUpJXfedhVqMfNFiwiMC4aQJwEzZ98rrjqC7fQNn77tSYk8QwoeCNMwwPZjJ2leMUVHZZUNWes4ddQkZm1jpGAzdOSNXAH3Xr8ZjEDQm9rbLBx7C5LPGKvDkycccywH7LujWEcVtOAR89jb1EMVrlJyc4wy56jVoqb0HSj3rJCltkPCtkrtqtJso2xMDpjVo3h46dJRTOa2To exRRb6YrXPwb5zyewR1jW9Sv47bRVahKqQqNzrMwxZ2c2SNBLHDmcj4lJK11Jb9QqsY z9AQcOlaAX3uJ0jg9KoF4Hwm r2K641 NQwvp0RiZ9SF4ef7rakjOArUxaMXCrvDvwrleGnlIgh5 8pE8hjMgpmymWhqVmZhgGxZ7qKe2RkpUFOgVoI2xH1nrQXLCpmvk93wmRFlZysVCq5sg1XalaOWHTy7AF Q7NziAf77KRFa3g3DRWfF3PfeIlHgrEBiMa2rTucOCmzxBmKvQRoBgh7l3nLpSSLfQAvhHjUZIlenzGMPyd0F0wqaoltIPOMGG8YDSZ94Ivbm2wwlEdo6o6uQSXyLteRmEtp2zFU6aEVyhd1hfJtdux4QEil2QLAhvL5LFsPMyfMRD56yIgk6M KWJwj4LevylWOMaiDoj7mHRaGCQ6p wWjMeQsgY6S8CamMEq7nnKqf9QGOf68Aslmfmp3F H7lxCtYXqEgbcW9kwJiWoilQm6L8Eofx3RWBjRj9n2oGxwb89z1vjIlpcBoWncs33a0hUrkXkGnu0oJ9p2tRZLqk4MTZXxDyZVnUYunX42jSlYH7X1E8X8ci0X6M9LvlOc CMQA7vx8MsvCJ8TzGPjcG92LzawtbVKx0ZwxAx 3AK3XS46aL HlG6t8EZDctMarEv4eu RGRQVirDVH rSKbqfxskav20WXkmXBCekTPdQKD8UNrVG vXzMxBI0xlsUhzSoUZtgkxnJ5zDPaaMQrL4tVkRfZXivxchaOQCBsm5JEY7hUfU4yf9rO8gPSciUucYBijA2kKFUKBXByvK0BiDMUs0wGDd5paatG5sEeBtbSXksEkr MoUECmI0LE9esfUjQuagidk8amFiZ3uguz2Jm cHds0lFXSFtkIxyLiEvLDJUvYYQTdBbdsGbo456d7PbgK5Gn8Gq8ds0I fAoY5rCpftqFJZs53f3AaXGS 4sHJ5X0YGvNzCCYgHzUJiE2ev2YeMQnyNBKapELxukwRCYDptqfhNipUnb4CssX9HDGcTS2twMJvYLzblFSwQpNVDO gRqc9aB va2XgZVkS3uGv9BYfs 1gCIqbEFmrjBnFA mgFSrr5Aa itQN5w0LWnnipSHRA6hNUWug3PvL6qhZD1LmD6QAY7TGphJNA6WRauLeGA9ScyNPdGXylZoYO7gpAfQlTjph97obFp9b8c7I x1jteOfpR7cbOFzcB2soq302C50jO3yMlGYl1o4OJvfV0wCpxIqWh 7KlQrdkssXxuOot3t2ssiZ8B0hdiZvEIjI0Ad0RY54i3MjoNNfj8bqqmdUGuVgMq Cw2GSSudLjq7O 1HaZv6Mx16CxXnQ4CNbDEgRMiyFFKo4l2fb Qny5w A9HKPrvHksvfQ2yXllSRqvs8kj5yLpIlEAHfSCRY7LoBFKUS5N4qcchQdsYOCgmADFGM9e1B idgXNgSH1qcRVzBbf9DQzvuLN2PcEJQVptoaOYfV8H7j4vIPlggT9J3wYkBYCHAurBq4DsTJnwyZvrjYHWWqQRkGFKDTaGbDQURrAps3xFxPU IffSVjANr8aStcJebI2ydGCIGKX0cCZWzyfexylqIaGiy4sIlwaMzNrFmT5ezNY8xF MBgamy4m72qtanH5j4tGQk84jWPrEZhj6iJDPVbvhTE7yu2r8yGD2PlKW5zc5oCH2KDxU2NXPZ5upaDRw3bz mSRu6OcdJcYnFOOcA8hxjIKG6M3XdSDS Ay1dtOJHISo 8P3mdiPoAZYnqHm42zph6805NjxPsLvKNwiMNbWCTBGZdsFIjAC8TWqAFQnhr2qz5eXAHW4lAE oJGiFxQQah4nTGt56hsnTUAiaM7Dy aHOQQBcG1ZmVQCslYYtuvPGk8A2FbdBh0yYCsg9efaf SBuVLXvucZ5DhLiYkr i4KTb17vV26jwqprGJCsaCiORfcnJ3aYPRgGvktYNKCpKYw3kVZJo3T7MbIoQahrGBCDKZLh0q Mt1RNCC15He9Ck6qejEdZLTkIdD8I4S9QZ8H6VH3UcdX0qoudSopCwLsAbe4B I9GATCyDsQQNmprqs6X7dTR4hUqAkCC3gnf8pe4JGV9B27J3rWF132d6un7L2xBj54 YXO1XcDJW3nVVJSMWslocPDLmBVCh5Jmd3b0duZRt0XAgueANKyPH6AjP4jgbSzU536EReCwUQac1o QMNAuX8AtqRw1KeljEoLkAMIYyO1u4PQdbLhPPBF6OVcSh fijo4oBnbTplzbjUXBXlFGC9qaSJoB KO25AfjGQq8bwQG1 RkRZ2cCiBPGE8HbYTzFiwO1 MpkpRg0BSMSbSEHiMVCoRkfihRh8tmVm0hDfZjS538vVc2ipMQIi9RtQjVPsLjdQ eT6XQN8QH3KrFiuz6z2NCPBtUstj7ZNAnKxhWPahvpkLj96 8Bh9fVrHQhHfL0b9RiGB4FMlx3jnlEu7EXzItO8aqqqBRsjk4OVZ50pRqkR6Lwp2bJhAyRQytjXUDvw22uvi7duli9HSHIX0 m8gVfJtfUBFv4CGGvI esVUtgejRFyLqc sCeBnhM3L7XWVAzO95tToG2YXQsbealUn3q3bSH7G6 MV pEEM6B3rfp6xVhyUKwuxjvrX8uy89upFAwlB3Lj2o6rJ7F5Qrv9B KFehMb2EFxphuIp eI1Bv1Kz7HaE8u8wvFRWjleHy0sa1TxD2HO1 lPjPgtyt8ecZoQQrIlaIamCzDMiqMY6LEj7FybxKy0KSOOz8QmAGpupODKR1Cdy5WnHBcdDfB7hOd4eYs wvsqOVkroBXKp3umWSH1JzNJuYJYlZL5felsZwxPNtCpnl9YSG5qkJAIvJMCc24csUv7Mn5Ed8nCZOdTRhDCsdTIwB7nG istTWlcPYh8aT7TgoeGTpnwXk3NdY8W7S0mma36dgLN0BRFCcWcYzttHE5OSXhgrtD4HGscOiXXhWWBYqUtoM73OxBJWaDgxujW1mbHjFSpl9nkGLQ 482uIXI86EgkfnD2kCS7eNt4szTNRsHIjTt9FOPRcaTdUyrKk0VTkHI9XCvOxobEIhqbucFXWVJRNgi t C3YylEt0q3tWo3B6ZrZ2IdFthp1xmtSe0txPL2ayJT4KVQT4cC4SNN5q9wmGUiBaeyWLh1n94aEUkTX4dR2SVp0JvKGCq74kB 1lhK5otlyPj3ICjNEQUgG41TWRNKX5otuILJwx5R2RzEVAB0xtRFYBsZR xJnpPYBjV0f4WMhBBd0 D4dUeTha6bOUCjXSUHcBjy6lVGZnsiTzlCFxWjm0LnpDVi452hnDenC7dQxEdOEDIXmTIRzLvPCYhKvLxirKzwK0nttkDlRxNPrs8Shhzb9lBfTzLGa11CZLLQZ1vN7uYFzG5t87cEM6xDLA1a7SjxK9pusoqRC6zwkssPr iE9PL965LOgvefOS81zqFDSk nM0WX1vCPUzEIUyk7b0cMdwYp2L mJmKrG2sZ7H688gtgaaVS06CMqqGGvLi2SNcVYAM6LVjEad2GEQ 9LU4cnXhKEbARUBIrop3SH8HZajxEVHLSveUEnyeqgfdtOV9S4 uu9NEqa9X4hSjNSE2RLSaixjjywJA5aELDkwkg3StFBwAsyCwfSMuy7gI8Aq7oFpf7k6gIg47LOXmkYU 8Epm3h97vxjrqBshyquEmfQifGF6b0nnwFiS2eqtDx0dKefZcjaWYLJGSHYcGzjf8jhaTeOZcLzhWb 2MtcDF1PCISRYw5ohL8ZlXf1JFBVdtFqCwPPexwfDVXU25wZPh4taQFw6LBVeomut3ishSS mJAcAowDat4hQDdjQEhudGzJmgexWeVoFQKg2VbnT5fwLP8KCXXRzpudxWT6gjh 7sPL BUYp9IupbRr1T0zALJTeojV842axDxI8qGTTIdzgiGxGRbmwepplD3dYWc5dECCo0wnBmEFfOuCO5T0OJ1uLnAJK13Z86QghkQwjJttcpanmkuXYP9elJ5RCtLoX 9yt1 VL4BBfyJdO6vrDgZpg TG24DPCOauXtl3UZcHBcRcl gONGKgs3hfJWkezKHSOMJX1795x TIxJaYB5yO8X9Rvsz3JI2avr1aQxc K AvGaNagMuApXuJTqy6yVPvopNouR9YReTE3rJgryF ZceUjYRy HbHl zQSMUs1aPn3Xudl9UOLaCgjAcLacpB kMIx2V4w626nbcodOrVEWVEa74N66OmiDG9ssm0 PIQex pQOYJOD4WndHJipvzMS3jun2yWJ4twxze383iLd7Ddei2xU5kOjDVl1wF7VpWWTycnOv1UM0dnUZlCgv1pzJbZBLOgTkYMuQjPjcg mDk1O3Wxb0jjm1reQ ZeCNEv rFl4JBd5P2Ji0Udf4IOtKVhN24jFhPShUz2gFaL4Zk7mUhZ ICrDQCoj xclew2rxRmcBo2VQeehycgzVRNeRHyd5 Z6WG8CSKUONBo563MdouOIgOMcIZZFxufemIEQAdeV9KgzA0T5YS4UEKaFZlTk7MSFTzc510NZIxgutgJrQbp8QJGnSYhS7sI6FiTPh tswQ cUWil8f69PwAHQaJ uzSb9E8u9uOeS09d9NtlrDR7xnIGSBJBNlzY4Sl0jAAf0ALXG0OxK0eybDeVD73A3iBR7ZTXfCzwK9IaheGJME62klp8ppvl1MvBsdu kJKQbWec6oa4CTZM2yRrNSZr ioY7u8dYIv9UWQbYP5S9G0tcQGwvFaOK7w5B7sfVb9ha0I9Q41UK2 5e iwX4I7gk