Molecular Weight Calculator (Molar Mass)

Molecular Weight Calculator (Molar Mass)

Please enter or select the molecular formula of a molecule to calculate its molecular weight/molar mass. Note that the formula is case-sensitive. This calculator utilizes the abridged standard atomic weights published by IUPAC with uncertainty ignored. Also, the terms "molecular weight" and "molar mass" are used interchangeably.

Modify the values and click the calculate button to use
Molecular Formula
Common Chemicals


Atomic weight, molecular weight, and molar mass are fundamental concepts in chemistry. These measurements are essential for calculating the quantities of substances involved in chemical reactions, determining concentrations, analyzing molecular properties, and many other situations. To understand much of the content below, it is helpful to first be familiar with the following definitions.

Term Definitions

Atom—The basic particle of chemical elements that are made up of a nucleus, protons, neutrons, and electrons. Chemical elements are distinguished by the number of protons they contain. The atomic number of an element is its number of protons.

Isotope—An isotope of an element is an atom that has the same number of protons but a different number of neutrons. All atoms that have 12 protons are Magnesium, but Magnesium has three stable isotopes: 24Mg, 25Mg, and 26Mg which have 12, 13, and 14 neutrons respectively.

Mole (mol)—A unit of measurement for measuring the amount of a substance. One mole is an aggregate of exactly 6.02214076×1023 (Avogadro's number) base particles, which can be atoms, molecules, ions, ion pairs, or other particles.

Sample—A small amount of a material taken from a larger quantity for testing and analysis.

Molecule—A group of two or more atoms held together by chemical bonds.

Atomic Weight

Atomic weight, more precisely referred to as relative atomic mass (and not to be confused with atomic mass), is defined as the ratio of the average mass of a sample of atoms of an element to the atomic mass constant. Since both have units of mass, the resulting quantity is dimensionless. It represents the weighted average of the masses of individual atoms, including all isotopes, in a sample. Atomic mass, on the other hand, is the mass of a single atom which can be measured with precision in units of Dalton (Da).

The atomic weight of a given element is the weighted average of the atomic masses of its different isotopes. For example, the Hydrogen atom has three main isotopes naturally: Hydrogen-2 (2H, also known as deuterium), Hydrogen-3 (3H, also known as tritium), and Hydrogen-1. Hydrogen-1 comprises 99.9855% of naturally occurring Hydrogen while deuterium comprises 0.0145%. Tritium exists naturally in only negligible trace amounts. Since 2H has a mass of 2.01410177811 Da and 1H has a mass of 1.007825031898 Da, its atomic weight can be calculated as:

1.007825031898 × 99.9855% + 2.01410177811 × 0.0145% ≈ 1.008 Da

Note that this calculator uses standard atomic weights as stated by IUPAC (International Union of Pure and Applied Chemistry). The table of standard atomic weights for each element is provided at the bottom of this page.

Molecular Weight (relative molecular mass)

The molecular weight (more precisely referred to as relative molecular mass) is defined as the ratio of the mass of a molecule to the atomic mass constant. Like the atomic weight, this is a dimensionless quantity since both have units of mass. Molecular weight differs from atomic weight simply by the fact that a molecule is made up of multiple atoms. Thus, the sum of the atomic weights of the atoms that make up a compound is its molecular weight. For example, the molecular weight of a water molecule (H2O) using an atomic weight of 1.008 Da for a hydrogen atom and atomic weight of 15.999 Da for an Oxygen atom is:

2 × 1.008 + 15.999 = 18.015 Da

Although the above is the more accurate definition of molecular weight, for the intents of this calculator, molecular weight is used interchangeably with molar mass, defined below.

Molar Mass

Molar mass is defined as the mass of 1 mole of a substance and is typically measured in units of grams per mole (g/mol). Molar mass is a term that is frequently used interchangeably with molecular mass, even though they are not exactly the same. Molecular weight, as defined above, is the ratio of the mass of a molecule to the atomic mass constant. Molar mass can be defined in similar terms as the ratio of the mass of any sample of a compound to the amount of substance (measured in moles).

Although molar mass and molecular weight are defined differently and are usually expressed in different units, for more informal purposes, they have more or less the same value. In the past, before the redefinition of certain values, molecular weight and molar mass were numerically equivalent with different units. Thus, for most purposes, including a high school chemistry class, the terms may be used largely interchangeably.

Molecular Mass

To make things more confusing, molecular mass is also distinct from molecular weight. Molecular weight is most accurately referred to as relative molecular mass, which takes into account the weighted abundance of the various isotopic compositions of a given compound. For example, the relative molecular mass of water is 18.015 Da, but a given water molecule may have a molecular mass ranging from 18.0106 Da to 22.0277 Da.

Calculate Molecular Weight and Molar Mass

Atomic weight serves as the foundation for calculating molecular weight and molar mass. It provides the mass of individual atoms, which, when combined according to a molecule's chemical formula, yields the mass of the entire molecule. Therefore, molecular weight or molar mass can be calculated by:

  • Identifying and counting the number of atoms of each element in the molecule.
  • Obtaining the atomic weights of each element using the standard atomic weights from the periodic table or the table provided below.
  • Multiplying the atomic weight of each element by the number of atoms of that element, then summing the results.

The following are some examples:

Example: Water (H2O)

  • There are 2 Hydrogen (H) atoms and 1 Oxygen (O) atom in the molecule
  • Their atomic weights are
    H: 1.008 g/mol
    O: 15.999 g/mol
  • The molecular weight of H2O is:
    1.008×2 + 15.999×1 = 18.015 g/mol

Some molecules have more complex formulas, including those with parentheses or hydrates.

Example: Aluminum Sulfate Al2(SO4)3

  • The elements counts are:
    Aluminum (Al): 2 atoms
    Sulfur (S): 1×3 = 3 atoms
    Oxygen (O): 4×3 = 12 atoms
  • Their atomic weights are:
    Al: 26.982 g/mol
    S: 32.06 g/mol
    O: 15.999 g/mol
  • The molecular weight of Al2(SO4)3 is:
    26.982×2 + 32.06×3 + 15.999×12 = 342.132 g/mol

Example: Copper(II) Sulfate Pentahydrate CuSO4·5H2O

  • Anhydrous compound (CuSO4):
    Copper (Cu): 63.546 g/mol
    Sulfur (S): 32.06 g/mol
    Oxygen (O): 15.999×4 = 63.996 g/mol
    Subtotal: 63.546 + 32.06 + 63.996 = 159.602 g/mol
  • Water of crystallization (5H2O):
    Water (H2O): 18.015 g/mol
    Total water: 18.015×5 = 90.075 g/mol
  • The molecular weight of CuSO4·5H2O is:
    159.602 + 90.075 = 249.677 g/mol.

Table of abridged standard atomic weights

Below is a table of the abridged standard atomic weights of the elements. The abridged version is commonly used in practical scenarios, as it simplifies calculations by providing values rounded to a fixed number of decimal places, ignoring the typically small natural variations in isotope ratios from different sources or samples. These values are published by the International Union of Pure and Applied Chemistry (IUPAC). The calculations of this calculator are based on this data.

Atomic NumberSymbolNameAtomic Weight
(g/mol)
Density
(g/cm3)
Phase at Room Temp.
1HHydrogen1.0080.00008988gas
2HeHelium4.00260.0001785gas
3LiLithium6.940.534solid
4BeBeryllium9.01221.85solid
5BBoron10.812.34solid
6CCarbon12.0112.267solid
7NNitrogen14.0070.0012506gas
8OOxygen15.9990.001429gas
9FFluorine18.9980.001696gas
10NeNeon20.180.0009002gas
11NaSodium22.990.968solid
12MgMagnesium24.3051.738solid
13AlAluminium26.9822.7solid
14SiSilicon28.0852.329solid
15PPhosphorus30.9741.823solid
16SSulfur32.062.07solid
17ClChlorine35.450.0032gas
18ArArgon39.950.001784gas
19KPotassium39.0980.89solid
20CaCalcium40.0781.55solid
21ScScandium44.9562.985solid
22TiTitanium47.8674.506solid
23VVanadium50.9426.11solid
24CrChromium51.9967.15solid
25MnManganese54.9387.21solid
26FeIron55.8457.874solid
27CoCobalt58.9338.9solid
28NiNickel58.6938.908solid
29CuCopper63.5468.96solid
30ZnZinc65.387.14solid
31GaGallium69.7235.91solid
32GeGermanium72.635.323solid
33AsArsenic74.9225.727solid
34SeSelenium78.9714.81solid
35BrBromine79.9043.1028liquid
36KrKrypton83.7980.003749gas
37RbRubidium85.4681.532solid
38SrStrontium87.622.64solid
39YYttrium88.9064.472solid
40ZrZirconium91.2246.52solid
41NbNiobium92.9068.57solid
42MoMolybdenum95.9510.28solid
43TcTechnetium9711solid
44RuRuthenium101.0712.45solid
45RhRhodium102.9112.41solid
46PdPalladium106.4212.023solid
47AgSilver107.8710.49solid
48CdCadmium112.418.65solid
49InIndium114.827.31solid
50SnTin118.717.265solid
51SbAntimony121.766.697solid
52TeTellurium127.66.24solid
53IIodine126.94.933solid
54XeXenon131.290.005894gas
55CsCaesium132.911.93solid
56BaBarium137.333.51solid
57LaLanthanum138.916.162solid
58CeCerium140.126.77solid
59PrPraseodymium140.916.77solid
60NdNeodymium144.247.01solid
61PmPromethium1457.26solid
62SmSamarium150.367.52solid
63EuEuropium151.965.244solid
64GdGadolinium157.257.9solid
65TbTerbium158.938.23solid
66DyDysprosium162.58.54solid
67HoHolmium164.938.79solid
68ErErbium167.269.066solid
69TmThulium168.939.32solid
70YbYtterbium173.056.9solid
71LuLutetium174.979.841solid
72HfHafnium178.4913.31solid
73TaTantalum180.9516.69solid
74WTungsten183.8419.25solid
75ReRhenium186.2121.02solid
76OsOsmium190.2322.59solid
77IrIridium192.2222.56solid
78PtPlatinum195.0821.45solid
79AuGold196.9719.3solid
80HgMercury200.5913.534liquid
81TlThallium204.3811.85solid
82PbLead207.211.34solid
83BiBismuth208.989.78solid
84PoPolonium2099.196solid
85AtAstatine210NA
86RnRadon2220.00973gas
87FrFrancium223NA
88RaRadium2265.5solid
89AcActinium22710solid
90ThThorium232.0411.7solid
91PaProtactinium231.0415.37solid
92UUranium238.0319.1solid
93NpNeptunium23720.45solid
94PuPlutonium24419.85solid
95AmAmericium24312solid
96CmCurium24713.51solid
97BkBerkelium24714.78solid
98CfCalifornium25115.1solid
99EsEinsteinium2528.84solid
100FmFermium257NA
101MdMendelevium258NA
102NoNobelium259NA
103LrLawrencium266NA
104RfRutherfordium267NA
105DbDubnium268NA
106SgSeaborgium267NA
107BhBohrium270NA
108HsHassium271NA
109MtMeitnerium278NA
110DsDarmstadtium281NA
111RgRoentgenium282NA
112CnCopernicium285NA
113NhNihonium286NA
114FlFlerovium289NA
115McMoscovium290NA
116LvLivermorium293NA
117TsTennessine294NA
118OgOganesson294NA

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

q8FsS0eduzzpQjqeO4ukYcN c MZavEIkmySb8wkuxwQ78CHx6Hhq7ESbbl5Q4UaGESceLwB2v4JUzcTycJ1Fu5CyqSotGjqnwQDIK9XS7CFELgeyOKqUpZDhIfyv4g5UzFL2lMSKF3jalDD0RjirCE4oIy7h6xpy6Gtayyh58ckKZzfYleR1NPKiT808YNo6N88VON9uKnYjHPzFqmglQhiCfgJ7q wUTLTve0yMDmLgRPr4rMXsitxqwaNVdsWY3Jw 2iEwN0s9gHYcpmxoc7aUOYMtHVJ mlDcOSKkNyUWcsG3Pf0ZZlpDM3C6XxDFvWLDx4 hkiy4ufJ3G UdYQG39ptWE6Pcyi4EHQ0gUjCyG KokW49wWKvQwj3WWIwN3Q zscpO7c2HS9fVbA86x mQxAsmzNQVlbElSeWOkNDSXMYgMjSpbPF3Iy0pKh28eatmoK3IM2Y8H5H7CHohkIogidAn5TsCbHkYJgPiROTvXCmHqv0tKcUDwWPG2jYq6HEfQVbxA 7EbR3o RJ2KK30 sRyJ4q5Guta3qHJV3QMq5uXgbZIHm68IZ9xClzIQhTqFHbAqDw4sFUGqr5y5r0Ym0X88n BZR GIaVf4hHPpAS4Gef3 kG3zcZALMgBOycZPEIBTdPuJDkCUKOd7P8VPMZkQDw9ZV4ezR1sld9GceyDMtPBNnCXQb19QkxTqsvGaEe7xijAbpPZfK465uS2ffnGBixu3Nw2f5sSe aTwljwE1nXvNiUfDpLz38NkKzAkHyhjcmufpjqCAN0tZ1YggKkrTt lr8po aUYJQBvE7dQiU5wNjf28mlbxqMwgf4ew1sPV2iq2eek5UzOd7ZJfYaCFfqYAS2g5gGlR0pw1iTzML20upa33QtjUJdWJSAziHWQUmxRsX8exv6uEw9yltrpZxsIbYjIQFpcuy2Hb7C7pnwNXdrgECiz j8ZtucEWJoOZxrLoIlMnGQsqVA6PM1MmdBFre4E1T5OegQNLoo7g8HkeIkpJ1B3WSYCCZirnPYcHpIsqP6QYcQyq SlWq6PXQS4dpArRpWiUiJEEm0yXgqEt6q THGctZYM7hpchdstJMT2jdTaGeu6 shBgHH9cTLuAROcQ41dq53oHDFrY0JwZjxPwUKncP9fcqzt30brQDs3FZ3lq47EWarelbQf3bR0tnV2gOTEvXEx8jn6 CElNvK1fB2OiNxzdbniri3Z0lKWMthZ4Nh2T1IZK1RdInNDwVlwPEcjIhYHWlhQcr5B37uVVtmiiPFJdMG3uYsCrrwtHvdXUnhNt47cb3cGBCBDdMQzaRLpjqCwd69oWW1 1rgar8PqLsqYz0qHelNuMuVqC44DjdkJRt5yegspAV JnZC7NTkO3dye0ptZF8qHrUSxfRpCHZx7fNRYW0a6h GgXgNg4P8mdgSrBbAvdkdxR757WXOCCx7onsOF2VD7gqjXZKCa315yKzVmJmonrBa1yZCWjFbHjR5Gzrd 7BrjMHSt6Qe50YgNea1fCHlXxqmNAgiO84NP6lGfqmFbcAFMLmrnXBREstmdmFZD4HArw3yf61OQa0Fk3KosGGXSf2WcvAELnftMo4tQlyEn1JzctMutInQD2TShYxrAd4iuxzOC4yvDR8VT3a8efEykdr5rxSc1HUwRf4jVRcSLotdRKKFegMOQCz4tD3PXqmVWOGQjz8WkKql6a8mpp6mQRhgu0eMqjqMYkQTrXcFAahWpJupZMkp16w0i17Bi2ueaEF8MOtWjE9RdoHCY2TTE67SD FHNfQI1791JSePKypKqwZla8Ydydic9owvpNnTsmE c6ZvwiMCRZAdW0AlJQ0OGRU7heodISroG9zPUp01x5DZvYTbAYIEbzeQSZB5wYVtsFVlg18AjNwvEQZO66TaArqZ2aFVyNy5OtSjcsvPm2z jM 1UarVsctmWWEI9UQ3XjSnIK8hnXQl7d2rpK55uHjwNn udCxjXK40XuUB2dpC19BIlQ8gnT1Q6eTmuspBtDdlZY4HgEvm9kdLz6AtszXofA1afvCOAW5ar3aRVtlFuwU85l bRuh8d0elLHrEUYay2NS AN6CfQQhdjBoCEQGEClVZ9uiCR YyOa7VPgBf4P4ZgWmMmah9ajgE9BivcM7pRhByvGfhDjIvzROKiX0hAnO6at1DM2AktYdpltaVbyEkF zIJK2Y5aKpZu3RU7sslorlJDrq6RvAcbCmIWFV2nyx5xZ AmeaheRxSPorvSFnOLVTAQpapTu6C2YFDci1Ndgl v3JFCIG7wjkrAOa1gU37qGVgyalCmAlV2w6JK1M0BTmvylNFQXpkI 0wMymyWcoEKJxY7Om915zpe3AMntHvXWO2xkArGxPfPli3vN2NPCziLoPQGNMlfORnN05SWhrJLoKUVw0yaAITR0TpAsR2ROP bfs2OpIu0XgKNI8gV0MjuXTqud7fIOO3CYBSlTgdIKgIJGvxInTpGbOT4YEXMuQGywV7sBNMQOndmniSGXz GjFjKfYBbCi6zfAmwHniQNXl6VjpaJYeiV9YVbzGjnPhbQEKu6b8v0piA0PScoRBbmc4M8vblEL3 V9czteHDgnlkVYfxDTxcLWLyLfa2ZAptMp2vBL4FEmW2M1dOSfPraSw5MMKg2OI4ZFfBk0wXfnQOX6ASrG91kMEmzxYjfBHx JjU5 kMQTJphY5zq5Dg4IQVxDNIr7 006EHXnR4xtSdAgLjToaqq 38ctsTVKLv OFvj9QO6fTfp zVmH7iSVKdRNmih co30qFWBtZ3T8g9Y3VmdD986xAlbTFJXQYw2aSGIgRJRBmmIt8gdTAR8yRCPR6oO7UjMr tPlypHTF5k EmNVv6ZdvGwE3fKvJq1pzFshLh58FHRxsnwSD l6ie3pUTtbmQhFtFso2GBqpcBLz9vBW jOoXfNkQx0HueuPqWsOplfj2M6F2hb1LVO2 DfNn9WIyNwLy8mq0reO6sgrZoHhFKGvWvOt7M3hHNMEfL xpKCXLsaPPs6p99 BZZxUgKneltDGFvRTW Xuz9DklxinicVpUASY9h7DGNvIvwhFciIuor2 cBMwKrn5tQTxqodWjciNv czGc0AuSNMXeEfQ0FR7JAbcxBsnmqsSS9 7ioFJPRuQQr4fVu12ZhNuCuklEroXb2fGCgEAXriLNeVsJm2kKxiC0DjBa0chfUfUx4D323XjV19sYcJiBSkIK8IHi7HtkwTuWJqsOq5bRgKfda0UbPYVjtAWD Mye7SPZU4OaP1DNlB52TZcrgHiyo48CB5oSZTItv8WZ3sFNQhL4ymJaZkyP7nR1IDBvSR5L2uZmGKkBO1psuhqyJPBlvtpripfpf8nc5UzUFKzERyiL9L9sLAmU7KSbligR1tq10bTltcDyJMroFJsZkMFd7yc5TydEeN0Flf63CkFRVTEB2g vokz3mcfCzHDHJHYQl49uNmUrj5B9V5N5NmxxR5HBO8I3hh1vp1ZLTpLv87MXwRuP2vPKtI8C5p7cfiCrFUfSN8vc7U2ygu8dxmtlJ5DYtPfG5yuqht 0Yjd8O6utbTxWagF3BK pGpZVWd4CwQ ylcFM4JAq1P2uIOuCsrKu2p9KclStD3GO4AzKENWLaYq0NxUJx sMHMUDfORJI4eOzz2KJsLveX5UGdKwf8ych wkx02rpt4VRjpVMbSI6BSPRlFWglWhnjSvDb6JWcEmaNb5U1H5MyyecPrXuOsnK57fvvO5WaBNqfww pvFQAvpuG2rcS5iYOjLlJTMGDw v9h8WYJYgSLZ6qknu7s0dftkYrsdzwmIEIKto3PFnw4cH7PprzbYIo3sUkUThXKMqiI9ynMjdJ9Zv70uTcYQsklT7I09jqJ8SKQPe2zShwu7PmiqGeoI2CNS6V g7xmMZITgWboZyZJzyMKfZzHg7oV1WkpFOVF1SRgkxZyHetus L3gIY65widXZfK2iEBDOZHyHJY1CvUCJOgN cFdiad45eHumDsv0kGdxGaTRNarmR8X4nl341nHKGh2WF QoVev7RjE4XYCZH5GO40ubqjo7zJU6JIfckKFb2IzR5QfXwd6C2bDvbCyyD31LDZDmR73uw6QQO5o36sze5V1cYkefV3VpXLHgYF8JACs466S7ez3vqpdPWlepDREBo3EHFj4IiiWtbxEK3xeHXs98B0A8LaJrhwFadIBoX72HoQYUwqOuxgSj3V0znzF4SVt2Uzq ErNWy0GAQx2qGqhdOndlR0yURIIVXyzT4eOMDC7En8laL5UOce96LwHFS0jVHGeS3b9cHoUeJtj9bJRtSfgxxNSt3AgchLM6Pf77q0wlzUlKSZV22tkjeBcNWBKXpEK3IcWa6PqoTYSd591M95pXnN3gBYT Ghev8DoGCRGsafjXZYlLDWuYPuJgH5rmxpjvrp7E fIq3ghd0zxOScpcPmedEkqIBJbt NWbNstks5dIJme7n8qK92hm0rh22EM4ez4So2D5qHXh4AZmwwS4lpZTYhjsx6lMEalzuu ZZbLRXRXShntkoKGbZ4hoLLl9vz5gJ11BOqXU8I9dUP0ZWweb97LI9ob2h09S2R5R z2c o0EPTy8xBXtr2aweazLoQpKPKwpqjiGxFzru5KMq4hqBeooiSDY4bqnauqnoS AJKrWhxU1rIRvOQbrayfHiuytleMCT2bkJSV7xJ4Hvkf50qD3MOAQp92Qr4CDUsJGdETKPq96V7ImkN0NdDjwKSvI7ABpgf3XGjQtxeOEKKcgs8hRHtoYBGi9MEJxKXWKlPw5kjRZhTYZ 3cPkTqxmY9P6C9x5PPp xNlEXJS Xx4g8s8xClW7J50V9QpIh18LcmGawqOBWUZKp71YAFWEafyowg515g84EDmWBkvigi4xOSiRr3SobMtRhALztCcoq0mHLrY1APrdmQoxiysofEhdG rMVBEeG9FxIokzS6nBiZGpXimAWmqjr0rx5 Sn1CRzzi3BKGwQ1A0W1k2Q37XB29RjeBWvUUTbE ebjELpMRjR2eerC4sy0EfYXfn82y9HtPjqlllYaUG53JGH44IIiEENv4tH D4UQ7JHZ3g6hJTsNILZbWFav6kT 9wv2I4T33p3 uM1y9aDs3NK4w3SqsbBBWdM9 8jQZk CTMcV4dJFtggEH7HTc0FEjUL4w7pjNeRKkg5R1voqT CHn767z8b4RQr8 KsKhbKxtPIINtpvb8TezRJte1guY9q4AT4GPtyUQoGz5fTgDO EoKaehnPAIDAY bTDWKBbHvNRSSl4fdatWKJ112sTE2m5MMma5mUQGBKZ6iNTBUcY5a8sxe8XauaWoXDYu12HiZz9KM FGEmVIvBwBWlucDgBuZV6fwBM8TxRi2tyJVcwbIDHfiRJyjaKgVSmbd412ZHwkwIg7heA7l1PAjVpOB4TiK3dCvBhFYwPG9FbHAhKAcNAhMzsQ0LywtfoVYmqvSTeu0UIDeJzuTYvbVBJPsAcMiprelAHtRs6Qv5saVRSH2izUKU1VqHOPVrqlrYsO9a6bDLBBa7Wyyya27z38NuyC727 fjdIUwjjfHCvONNDoLtfXwbRv72GIeh1BUadRiVAtV7JjPv8vayRtdMjf0MgGxzLEZGAc qGjmhDHie5SSyeFT3MVFtjf6Kcp7fVXtThxkSuHIZe1N VK1glAQdWGT0zvSVlL9zbenOVLtprqv6xxBmnvUIgRvYfOETXeHJA2ykO9vXmo1k4suopoyR7dJXXxydQWQ7V9WpnKDjVl2QyQRqC ybie80PC1AgRKFm3vYuO0l68b1OFjwuUARZIOiQCmTwSIWSsCbbJditsKw6DRT qD lnoQlec3Ucy3p8Y6gAXFz tCuuLpCgpgLHGvxTxyX4xMtOq8sTfpqCQcWs6N9qvuIjUrANJJx7H9RuVNR8gLtllNz4heXti0KVDJEQgABarGzDt86R7UC4eAZGU1fpyhvLEjA6aJpQmWVGXEMUj8cbLmO1vxHS4RFtD2DOtu9AgWXOpV WtGoYyWazWhglB48UDYH wEIqYaeneOQoUdahnKOgOFrboPwS7SHn07Jh99WlsPxe1UX7Bl1AMiZRTqXdFdX1rtQ73hFF4w47 EXCPUYVANjWJNoQYV8OVnhqjIE4zdvZI4Bfsllk ABBE5pyJblzSmBcts6ERQvSCfqwhkWclyoMTjIjIoVnMKv88cGx7Qs7Vdwd72mykxzAscdvuN5fZJKF4BiUziI3FZOx9eUzAZ6kG00VY4S2fFX5v8l0HtZurZ6vSF rXHgPkZmm Z4OV5IiBY7 8y0iN4u7mFn1pYsz6bzAW3Xfs0X8QiWq2y8D31H50HzIhhseGVyVHHVXqYnw489Te9i0wagdSsjPIBjkfzWJggf2Q9NpFB7xuW3cOd47qcasqdvhsiMn2iuyfObmRUeJalFAFlGnS0hBdZqCySbuZ3 hzxbrY1l6IVaO4lyjRx4vpNE WNwRVQVFkMo 749bh z3QE kjc3fnZ8lkMKtsDamobB8W6MlOatEOhV9hymEqLtDvW2dqQLLI0EF64xTvFqGP5OT9Txi8HhQMNRUXeMxOYg Y3AfoN9Suz GCe4ipjnSmQg6B8G3B1oD8oPTFsporly2nYhUgCkbQ03dYhYP3D8aIj4cFliCQBWcfrovUSkzkhIQKFiDHKu3L zvz9tyX1zklfM5wxQ7keVBZIYjwvGCsjLNha9XOrjVglmlanCq9VBZANUtZ4kIUq2F1mxKKb6 a7Nndi75BysSWHzwEeesRyBEwkNyKssNcTJ7aPQE5KZa1ZjxWjlq1uJfQ371B9F2KJnHExLUEGwVBlcq1A2roKAakql5XNl4cqROVm3jijIyhdzIz91AATAEDUFFmY3B 55Rp6YdV5l9P4SyV5LuO9mVYhlApr7YwZ6dJvqjBaT5OfSb3rnTYC6DYfWWaXiKvLmC8dfiUDsh JRQi9LBbLzZQ5gktTPintByHpFkRnOR19wWIudvCM0eLlXBvBnGMfvlNPIS02OSRggWmbYzh5VFWtGpSXfeAgsOrmCOlqL5kj4PARxWgzAXfjnp5mm0Nm YLKLCSQi62UiZ cPsy8l8eFp YWoTaKHT7SfPvGXAVi5W DTI860gNtEQSXlh8q1p96vuYl2bP8tNkbrFsJsXuLeTwgJ17lRxzS4NGTO6AxPPn2rmRR2GKP5GoCAr67Jy2H6kU1jtU4TdbrI2F3Suyya4LLfUaPF1Q01uEqLOeP2jFZycXvGQQXmSAgiR5J8tKH7VgWLNpK9C8TnFMvlx97zkAqbTJDzknv7XPAsu9fMF5pvpdYto2GBDCPYLB2hcXeW vE5CvMHUFSl6ZYY7MU8Xh8uwYq9M9zI6zdDES1K 0unhFJdXniGlALz 7qbtOvjznrKp507rlvqNpGD27cPwRAEr0MkEKVK8b3gua6wVhgFv9Ci JMG 5qVM5Emti8t7aajdt75EyPTt4JEChgN3SDSf1edwmlxzBQ0qcu24RWgDbY2YKl6kOK9W21IG2jZOULacyfHYeXhKrnUWX90HpEoLYZg2mpWd7V7pZpWtRplzC7rsZZYxoE6FxvMnJo76SH9yyMS23V4chq7 ImZnhCU0x4Yo2zy1zGTtIsFw7i6uIK5BM74 Gywecy9yFIvUPQu33s o1MzrTU8TxrT9R9xUB2l8aDEgxHz9EVi98siWzMLJJQlO5TMuABRHc03aMrq4mVlGxTqXZvia xT1VJstpDOJJVzi3DaloY61LGZHp5KuWT3H8wSY3D9ycmPUUme43XGPOiWMhwK7qaqGwXFsm7Vv7rMj0ZpITqM2xQwunerIrNdLJl0PDGqpt1iPfuNIZMALagD48LAS9PB5mGEyet9nqNFo6gRZBQLQPe X4VFVSzLf8O49oyHjUZFm8vSl1X6dgBDWeEjqILx f9EyIdc8EsoA33kEI7pJRaSqookP38t6jWbG1c xQwAhdXHAjqry7hLCTBam2DrPu4irZeV0hSM0dviEqRKYHlmGb2plJIhd k0mjy3tbJjDZpqsFuyVK6RKZp4QYwT7VDLg8oDkRt4akjIQk1l2uU0aTKD0Yc0PDrUuNSN5os5pjUSJ8eyKmDAiAjsOmJP yr5gxWT2Sd1JEJe4WprqFTL7aTiTb3SiiVdzxLJ4srwL4D3AkKMB0OaxJMJoMktkILlVtr9r5yFJ8PWymYBD2tTjGil4YRECpPkwOTZzbixMhNmt4MyPnPqkRtnNdZjetbP8nvMgO8moJ2f4E2NWGx5WPZoPxQmYNhwwJzy4VpxDvaAAKiAfpw3gdBl1s0iXLXBgWTO5RWcfwn9mriYeNOoOj7PSW3HiRmzzz8DA2D5rKKpeD ZdGR9dyy2pcUJCak6gSzxVIDJ9zVL8eqY1d28cd2LYTGQ715 wKm7 lfog8WanL 6LAavlHagkrOAWF6UsD jq2xpUiqlM3z8KlNQvOe8vO9TKqA3Jn1Qk2NvoTJ4ranJVGQyAxVGKGTRC8beHuJjPqg7QfD scUeF6c9ydgCJHwKUAeNOUi1Pi9Z8UjMcwlUc34VsF Fbq2OsFjToulTvyGB4DiWi9ht xE27mIRv4U2i T0WFSArQ 270aZKJbsaJ7Gwl63LRroTrUQLztAHQpPP7Gr3fOwsPY9JNFJkrbvOhkkr8Fycp0q ZVexSYch ktm5Ry1GjOdj7s2q4 NNO38TSz1DJEZLCcrmibNqjt7twNebgJgVf8jzJT WhXq5WOdcK2A Vqe63bfZKC6CH4JRPqcF6mUtmAIxLKhEG7raZlvAWd6VS9FxDT9CinkNwjlV OeEBdo6G9gTjS2Ef9JTBVfgIwCuGQkcF5nJZSY4VQyC69Ojoarle1Z5vCcDr61v6H60LHtVFAmVijlmn2i3 wdfD6AS6Uq47SHXX3fqYwrYEg5yZSBUdPKKs1N4xDMDGimuS8hMl7g4edpgRY4BCRM7O 65xUgnRevIh5boteD Yvg4qcli48wgwmTvQYwtK4KE4ou9nERT35iGvX0HUSVGqsuaD4IgUabROH82LgtrOJY6Gws0DUpgWaxc2hET5o8CK1vHKRrvlPTAa8cagt7r2ikVlktPZeULLc3bpx4wCM9d3Im7T0vq1TxqBWn7wxdLVTjZZAHIRC9LJyNt0agsr FeK5oW6lHPiu4GX1n6Zj0jv zH9qjTt1JmodSu0KO10CQSzbXbDT8n7ZZmzHseDRGnOZrlPqUAH8iHNxmJW8R9BvQ65ee1nHPP05YM4mAE4fLez3qrpo55 ot1RAqdf7UMg85JMgRMmObvUuVBJ4C7X4VsW3Wg8LfHlvROdRqnYP5xo PUm6174GI5KkAbDtWyxpUAVFAALZeCuSCZyAj93f9QEAcJMSaBGJVffCBT6Qi9bw5fovPK6QQzhDV7uyFNlmQHjAGXUdBTkImZTk9oPVYuKyToIEVuHEyeW3mZZUsKlJ2wU7w5c8nM wPzB9EtXRpX9d8dnw682mcqIOC75FH6bDp4885VaKwijKuoNCnrzJQdPUJxIWgimUSg20GKLpnPsEtJpBprEULVxlSi3HWWeVXfz35Tjs3Qfx55mwBiTpWwrmyoDoLwYR7Y7pYz0mJ0Co3JlrR2DH5q GaUjVDM4h2lqTDSaZRGoL9bot Nlgv0tnVkbM SedFimb4p28wpPuVwnMdKptNtD63lzNdjJD OJMP6WvT8jULI8lSSLlINsyRXFJh3LKXklaXaKbNNAex2zWLJe1gVgyNEAUmVcCYWshx Xpy43 ijFZjY2JER hjTgdi3z5E0a8YFwIpevrPGRG1C2jBO0u4KVgqSTGDH5FKPlOJK2GkVtUgjTR1OGI63BveMeg1br4ft9GSNYcIF3187SK8KXHU2dnsC3g60Q00HA7Qb1wamEox6BP61Erk2MKj0wBA06jb8ZaVKJrT8qS6hhJpiQ7eeCGJIsfn883H5MqEszFR7Bm7JzOOMG1mUr9MoIK6VSuiQOXxWPaNj3oFPCSdPvYvtr9BEyFpiqGkU2pTxfF6BhjN0WmKqyjBXnBrxR9CZvCxD5br2ghqmk2hMwCeFugQHaj2Jxwr9QydpUZVoszQCZxs3NmjZvI2VapH2DaSyUGVo5DnoeP8uwZ7651ZRaAJirt5Cke0SLrrXAYOpi0fj98N0Hp8DeDp0ZI61rKjpwLqqzCu3udyOyEvg SVKOAUb5nhA e8rEId MgFLb6XV60D2 IwrcOZYSh 1XFGYEOdicBbWEC5WrFnC4UrHCFJEsjo4qPuBHkc a9X1VvO6trC3 GRHiVEBRrBzy3BpHzqE1AZF6OkpQmxgZCrsTHXEmD2YvxyEFE5Epec2GLReZJRU7i0D9FAp5GbBzJIUPYQOx2Tx 550Ing J1b1ssFs8ea9TomSNSJp6vIJSvFXRhfqlGD3z tDf0fEY3hoSfRTOY6khubdJoTSFqTmnammTdJzKbM8yJfPfr3xXIn9u33GTivYYeUt3 xNp8xj6 urya rbFR73n60kPSR3hfI1gtISfwYIo7DfORxZMRDvqIb0sQeXT8CI6ARvbGYsppyqiHtKD BEWwiPtxEfi9OFfotGYTF3QPmvRIBLzsRH9l2nzyFwmxkNvrx d3Me9s6ecP964K0W69eN0hI6lm0LM3TGngkz6EeHV2oUbIHP1yInN05JA5giM12n1fLCmUJqrqbZi7SgZ6b3IoohAqp0wf3JNDiy2OPFTqPwiVIceeQu8FUsxVVm3t3LFFxtB2k48Ph2ZGWAvTUMkaMrdja 6dCUPr5PpKXZUlaoqtzZaxx4CtbGN9MRP6B9iILY EQWecKvaR3VLUfqD7o9TpNLSBLIgYP4o0NLlJ7iPNYGlc7VYKvo1do1kE0TjKjm0nGJ1ysj0Jv2QZ8CiuqKnW25pcYYolSnlh8BAP80hX VopjizXhQaNl5QwB3V9mlnKgQC9h8ZNDl3QgQXvDeNA QxgrvGLh 9NpEbSx65gL99JqLIF1iBbjIr2e82Y2UCbFDxFO8FvX5DWLsKlefPlkIzXjQgt5rlz9wIeohkbIADOljFcTK9m16UQsukJ8hCx ZtPBcFz7OcdS00ur787Arbt6yhpdbt6EgJx graCWJjQGKyUG9olh0BeaTVVfnbyotmNEMLXnawBhsVu7VwdoC6MB6bQFilx3lkjvhHPYvTWwCgt5nilmvQe32n8WWKSKojUJ9I4tMp0LpVKTkyc1Gxg5UuvN0t9xuY94MoSToWphhgDnvqsPGQ0Vd1DN2hNhZjneSokQEJnrXEEihgkQOttTAk0BKMsHUnTjShQr51pxlLYZZ4wH7N43QXr5RmYEZL87RpHSlSIQGORcAfL FAaKhEkYC5gzpvSsoUWCWYLygi1M7PX64ZoSHMi85E1I6TxyEY5Qk04yMGhYmLnGQrNbDwNfz42LZ5NwLAjiQ RvvsPopWx WhmdFP4LzwOCZ4WoYFFkRHQcZ9 G8H OU4 Y xKI3GuQTGmUMuqwfI7QENq8jkOfx54pIv6R31XhwwZ5DZKPD0jAX01FGUj1bgTfR WMdRZZwngh40W6jIu0C8RIUvQEutXUIVR3yDSjMWtoH3dVXbgAE3KlDje8NifDXDLGGExiicMW9oev8ZoJx7Woetz evAkekomaPX0CCRbLrXvF mc2fzMm66UQqPn4q9JtLkX1zZnn18qiiVX8EVTMO04 bNoCfl2ZJUSeEsJhC j6DXeUn7NldqcZo4zC99zJ7vGC6jOk1vnVmy4KVpZ1FwYnPi2BedXK3HhbvjreKsaFqELFgia6ktw6fR9giQRKNa8UrAO5d2o0yyRKJcsWkRPsMnXiUuK7E9srGLfUoUjjNTSPL3smLOLj5fE23zyoRm547s4oK4JtmGpsMKVZxZUK5pL Yv8qplNbUNAoGVa d0zqdm3ztsJdLFEnYV5N9ckZ9WAB6N dqxgarOd4SkFcd7zlsRaAU31vUyDSWC1GnDTwTUgXC1hP9M3HIkanGL7lp9i0xA8n6FljHZhYQlaWsSKgBY5ZX2BT8JYojRgpCrCffV2Bkb MzCXQ6dC NwfQ5MjozxpSmGVqsisF2avYQ2obzdEM3DCHVx4PPbhZWCH7X1OXez2tMXgMGvsNiEOSbpQNAJGd YxPMbkeRZURt9bDGSsmO3hFetj4c6bL00QHAi7l6kw5YY3pr1Whnngy1o5nO3tPY7qjCVXiqbk08wqB19oDEg9Uq0nSQb5kHJpmU1spx0Uv JmzXw6j QW qPIHrH26Aw7VMhhvLm8IpNQGcvk1ohDd6UXxkcJoLywsRHP2kFkPj3ZvkxWuPqkuTE58N6oDPTljRgd4R4BkO2BQB8kllcZKUD1nmjQLKpkdReUS1uVjma7A92d8cd3nupxyCECGW3pbVjHgt1XcLdD0sAaMzUMeE3qitx5lMqFdOvrv6I9 b5QbBuyRm1uts2 ezXD2y igeozh0RvgyATbC5MmykeBk1ninjHNYOVZBEC5PUF4yPSktHKAVEJRO6udXacbFfOPg9m4SDO5rhlhQiCPBgaBklA9Iji2nsBVrvkJEMQfBdqSGLVyByImPd5xADjkb3ieDycHH93eHNQU06zQgblz7e5i7FWLMUWVLqEnAFjAmygYeMDQZW5o s6s3f0OskrdJhifuzNKNCGx2MusPTruaSOoYMAmcXt6TP4gXU7ejbYbT12tNDFbtD1iO3kO2msFgL41zmx4kGOBxYZbAmE9h3sxDC hKjqE8XcidQb LJfLKcbQC2R d7WQ oX1FIfuo2LjkblEQOrBeTRfrxxDrWWoBe0TZzIvTxnD06ZWu6Ch9 v7JJi7wa3WcyM lDcu8cqLELp ty 2GWZPfNEwWW0qhN4Og6O7GZ7JkHelUaBzLSGGfIJJCg0fGyfUOub55kHUZD9C5ytWJpdvXGiDwRBmtmEoHAytO22TeFQVUa8L0gmGln8IFv0d05xwLc92fFPTWTzYIm4mhmltNEnkEH2djNmjdJUkz0fcY8gQbBDuDYrzEeqiKluPV9yTLj9U3vjtEPtv13sIpqK6IKC8uXAPOha1In6OWA IrGeou79KlpebdG MbHdt8cgv0c32EbbDGb MN CX9xf6JjqhxWPJI9h6V5jxe3xoN1Y3w19XS rhTR3kSDAGSsV0OybOk3zVMTgmt3x36RhaVq54QAYG65YgvTgVPwSPVbtDEFA8m2pmZReWcbcFWVFFbSiIAJpcloVAZYQfhxG2nFppmFbvDWvNLQakVAU3xzLfkw4VOQnZaJkOowhmTtPaO9EjOSidIC3AVdfOj28XznTPqheepTL WsGYcX2bQPi4i7XjA0hYLHcz3m2ULFuyqZXaAa FNVFhqGAzkKIgqkh7e7vRJIVMo4BTjb34CJF0axCu11fbqHOs4rzgGIxT1zYz4K9LY4xhqOXghEuhOxqGBOKkHipP6konP9xaC8EMJ5tjxxcDItSivOkxoqDtelM0KUTIEqPXjTEQHL0A3HgdzUlb7GD1muIbqn3vra91lGt1DBPRjQuW6p67pXefgrspCcjAG Ue59orxGHYsAgY31cmhs1z305Pvjm7bU3t84vjfIw1O9typyirYp0avB3wUqlkxpLi9HmlKsX8c29UNs3vf ZJ fRND7w8EPVLyrnIGgkaOiqHgH9zD2jtni4wKgYFT0H3RozP7UJowr CnaVea YQLB7W4zq2FlIbZHZf3MGmox5ZOBkkWZzR PApGteC DTFRVCR6PvyRyfP2UZXPlfdML4PF9B7bV0VvPAcCwuF f683twxShnB4hcCWkfjNhLyNQoHTQTeAIEMTA nz5XPFePKnnAeKgoPWUB4OCXF1wWXT0mhuvANbaXZMuvOnRyYZNfQZK4 4mhWfTIuc7TKNs63AhUs4qFweQSn6hQpLdxISCe3mnmw4zwlSQGEh3389tceH6LJc2E395gLO ZaAYy0dSUNwlaXTvsKXqsWWAPOPLlMmaaBek9bZzT9Z3oSj46cgwrlTnigvUcbvLaonMMjLL1700x33bOQsbdtfaN9LsW4UPInVxAfNQX61uOTAz7 I7CLWcQxJ4x7VSDg6GVfEwjxMM7zMdK3f5XBE3n3JBV1T5qCtDaNt9SmCqeK6jVg0DolabE88PmaNo5nQ5VCQc7OCI7UnaynuqHrOU8LSkIlCAtKyODS J93sGYL1J45BIyDqksTkTbrRPqi528GJfWoM8E5qSyPgb3VjMI0QAuijY9TLewgv2jJOBBM7SNs08x7GBsLWQ1MxtvYJRFTMx6pyrBoD3CfjE0q4XMvEZCCW2Ce3gFlTcuH7EnhEW8zdQanPt d4ELKzbf8mJddGtz7txzi0uP DEdvFXaJXKfsMlU1Tiz6a2M69NMT1lDz0j0NbnLtrjDEax3hFZOljLBzRwtlmtRNgHAUMMaOeTvIlxI6V3qJ8FV2KAWOF9 wrNYSinRk6D9ft71UkKXhazZR8M6Tf8WcnBfewrelll6ohOQO3WNNSAzfzuJ PGeiaxgsslrF0qbVWY0zQFVWp2zVi1CB8johobkHQkOa4KLvepDjk3CzwCTR3yuyrFGWsaI2nQRBFNdFIHQ xTrp0vDyhfaCjvlrNk0q9NRu7RoSVzncK2PoptSy6nqUM7w6ILfYPiIV58bbCybUhoBzVZhTzfX3vukOoDo4QGFHsTGxHgEy0u2JdjzoiTcSX9a0l6QsPyyb38 Bz9ceDZxvxXA9gCnBvAcwqXngRvoIK9r31xo86w8zD6 iCDRyAG mISV1jTGtsQ22yQ1DkLXt6anxa 1e6GdX0jix4FTytTuSWs7Oh01VkMkIHFOHppuXwfPABzL56e401GziM cg32gnNguy1lNDPOnYoikylHNapHpw4UwdwXMOaQjBJTqEkDJgaIsxpOPTpwPvrJhShrryqptqODg7Fr8ZWlFPe3G1fPcYiUkvuCOL0oxKCrAo3btog1eKt0ClCRT5Ag4H87g2mpFLxiDjFlYpSSF3SMcF9h0NWQJY8y1VYagledUNDo67Hi9LqeoCADgQefqr1HTdAkRFae686RgrEGoGsq2uL65h6 Cqi4eQP8IrkEJ1vHKMDgB9JvFlucp2CJDK01gKL5decAWm7MMenWArYtsUmh33dB608oEDxIvYABocr5GBJOVWRN2ayYV2elBuU5w8PKnCzsbuQAVsmJCLhP t9zBKeU0hMDXlRGBn1Ee0M3eaS2n7IznI4uFHrw8Hs3P9V9P7J01LPNe1IHNzkj3YsJKX50G7i4Y4FF90Ih9KzyUibeXMDkmmDW1B3U8eAvG q8lEMGMsFLmhNFskwrpJiqvC6Bx3UujaQa61L4rYuT FdOENNtwjA0AAkNiuY2lQ6uLMjsCeS YzgdBx2rXiFqEE ueuJEjwS0bZaHRVvyarj3O5sSbArSEmFHxETk4je lx7DYdKBnjV3uJFAR3uXXc9UTWaBZSjTDIIGa1MlhJXIPt930q5SCwyhIUj2ffS7jjpfxXhbLf lva8CqzIQB5vFcqPwhFiwHeS02Ots66KcFjJJc2gzsO0NHRwpZvw5DOE9d7yFSinU5zajJdYOjVAlWw7 kXmSnqAwPCzFgWsN7f8RJj123H46Hzqim0HCtAToscDOP37RIICAHfUt2VJqoiVU7QpYDmKvUgSVRgjzHKFBrhqAKIX0mqlqVdkqb1J15gJW19T0c2KwOuXG33mgx78y8hhBUgJVxa341r5syufx0snhh0bPcuo5bp8P723e6rUKjnvtTlUoN6s9vfVIMGZNmgPIeoO8EPWVY4YS8JzinDN9URv1ah9xyuicmkbzMJXjQGBoPlYykhzyhCca3geJTmCCdAYylxH0QTWpGqJSK8OB2xo8t0JbZtn6tvxIgEibVorryGQq3tSCxX05784E8nC5bsAVzRKu657rn9YRj4S78HSp9KNvYcy NVU8EaDNrlMatiwMUjwTc8tCvXfkzXtdyhw8SSMpoZrhtkWPR5eXRPxOQAGgqAAhVZ8pzQ7qFWmXksL0D2E sdRkzFWK8isPhlgg7kZp3lsqf9V60UOaR3yFeIr546fMtFzCWO7c6dbJOCa0OEnD1xiv7c3Hk3Ly7EA4akAQPnWHFKdR3C6T4YDkU4aIGVJFznxKiHzgGjMvqik369kXFC2unrfe8Y26iUDevHB5OuLRMy8L57GNasp3dyN2LacuR2Q7HGA QTL9o2TCdhiRhhclxqIRhfsOB7KjDsXyL1kBLQr3r iA4yR0GuPxvdtxOKicTxI8td0zGxY93VN4e9enFPiOnuaH240UeeoO16K3xLCP8z9YLC27GeKpE4juZXnFEl3vm3tuK5qz ziYhM3AABQ7b4WlSOS4cDpzdaY0vpo aGDxVhwvZ4B79fUJvAInZcFaNqNgXv1949kVxsMkSrCQyAt rgkNxAtpE92O0IAewOkwwIfEUswmm4LfhX6OcbQ5Cx4wKvCOIk7P3x7UWuiD FFqDCecwEKamiA1t7rz0nfoOKuHJhFHoCYCPnGP7CFYTfEOVXiNS9v7D2EvJKAdbOVagQQx9Uq7XekgE7ETXECDFLL9KbLFYiXfNIwXdeklgMBV9w9vicCDZowip1hfEgh573FEeY1cAoISCZBeUQladMRfmbJO KrHrXGu9k49M8yO7dOUXwT4LIaVR1lifuiAKA8Mx040 EQ9m2nkZYODWLezLLXcAGCV12JqIX5ilc5ZNKVtpzi5kYzKkZhHT0JsRDvCW1g56UDXA9uk0iOj8pCdNdgaVhkvguULW2ll3YEHN1Out6 wupVTg1xep6o0x0ZQL5LOxoPDGHmsv6ShdggPqdvOFvgPQX0vQ1dr8P2WSBiOJ4riyXRXJ81n38MApxg4NImaOCl0OGE0RRKCugJ1XvawoPFeu6HFpjFfChMkHASsBCwIu0lahHU8gT2UmH3 7SkC2ZFVQiy8VGxZfxe3uHZyD yNDz6qnrAeEXA4XvhkEvF4hb1YB8b63K0I It2eotFhLPMS41uTGLBWQhSSM97oXsiQoMOHmhwh2HzAZv1LhOLC TJMATRTIh1IJWimQrwgkUAmcb0GxeDKbm4F5