Number Sequence Calculator

Number Sequence Calculator

Arithmetic Sequence Calculator

definition: an = a1 + f × (n-1)
example: 1, 3, 5, 7, 9 11, 13, ...

the first number
common difference (f)
the nth number to obtain

Geometric Sequence Calculator

definition: an = a × rn-1
example: 1, 2, 4, 8, 16, 32, 64, 128, ...

the first number
common ratio (r)
the nth number to obtain

Fibonacci Sequence Calculator

definition: a0=0; a1=1; an = an-1 + an-2;
example: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

the nth number to obtain


In mathematics, a sequence is an ordered list of objects. Accordingly, a number sequence is an ordered list of numbers that follow a particular pattern. The individual elements in a sequence is often referred to as term, and the number of terms in a sequence is called its length, which can be infinite. In a number sequence, the order of the sequence is important, and depending on the sequence, it is possible for the same terms to appear multiple times. There are many different types of number sequences, three of the most common of which include arithmetic sequences, geometric sequences, and Fibonacci sequences.

Sequences have many applications in various mathematical disciplines due to their properties of convergence. A series is convergent if the sequence converges to some limit, while a sequence that does not converge is divergent. Sequences are used to study functions, spaces, and other mathematical structures. They are particularly useful as a basis for series (essentially describe an operation of adding infinite quantities to a starting quantity), which are generally used in differential equations and the area of mathematics referred to as analysis. There are multiple ways to denote sequences, one of which involves simply listing the sequence in cases where the pattern of the sequence is easily discernible. In cases that have more complex patterns, indexing is usually the preferred notation. Indexing involves writing a general formula that allows the determination of the nth term of a sequence as a function of n.

Arithmetic Sequence

An arithmetic sequence is a number sequence in which the difference between each successive term remains constant. This difference can either be positive or negative, and dependent on the sign will result in terms of the arithmetic sequence tending towards positive or negative infinity. The general form of an arithmetic sequence can be written as:

 
an = a1 + f × (n-1)
  or more generally
where an refers to the nth
term in the sequence
 an = am + f × (n-m)a1 is the first term
i.e.   a1, a1 + f, a1 + 2f, ...f is the common difference
EX:   1, 3, 5, 7, 9, 11, 13, ...

It is clear in the sequence above that the common difference f, is 2. Using the equation above to calculate the 5th term:

EX:   a5 = a1 + f × (n-1)
a5 = 1 + 2 × (5-1)
a5 = 1 + 8 = 9

Looking back at the listed sequence, it can be seen that the 5th term, a5, found using the equation, matches the listed sequence as expected. It is also commonly desirable, and simple, to compute the sum of an arithmetic sequence using the following formula in combination with the previous formula to find an:

n × (a1 + an)
2

Using the same number sequence in the previous example, find the sum of the arithmetic sequence through the 5th term:

EX:   1 + 3 + 5 + 7 + 9 = 25
(5 × (1 + 9))/2 = 50/2 = 25

Geometric Sequence

A geometric sequence is a number sequence in which each successive number after the first number is the multiplication of the previous number with a fixed, non-zero number (common ratio). The general form of a geometric sequence can be written as:

 an = a × rn-1where an refers to the nth term in the sequence
i.e.   a, ar, ar2, ar3, ...a is the scale factor and r is the common ratio
EX:   1, 2, 4, 8, 16, 32, 64, 128, ...

In the example above, the common ratio r is 2, and the scale factor a is 1. Using the equation above, calculate the 8th term:

EX:   a8 = a × r8-1
a8 = 1 × 27 = 128

Comparing the value found using the equation to the geometric sequence above confirms that they match. The equation for calculating the sum of a geometric sequence:

a × (1 - rn)
1 - r

Using the same geometric sequence above, find the sum of the geometric sequence through the 3rd term.

EX:   1 + 2 + 4 = 7

1 × (1-23)
1 - 2
 = 
-7
-1
 = 7

Fibonacci Sequence

A Fibonacci sequence is a sequence in which every number following the first two is the sum of the two preceding numbers. The first two numbers in a Fibonacci sequence are defined as either 1 and 1, or 0 and 1 depending on the chosen starting point. Fibonacci numbers occur often, as well as unexpectedly within mathematics and are the subject of many studies. They have applications within computer algorithms (such as Euclid's algorithm to compute the greatest common factor), economics, and biological settings including the branching in trees, the flowering of an artichoke, as well as many others. Mathematically, the Fibonacci sequence is written as:

 an = an-1 + an-2where an refers to the nth term in the sequence
EX:   0, 1, 1, 2, 3, 5, 8, 13, 21, ...a0 = 0; a1 = 1

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

hERrTLrMLmqhppXrVmKGH1N94aRmsF6RpitxkwZjSLuJQCdZvPnrPxB93d6MdcetQ6MvjzowqsSEhYErwp7xFz9yBhpVn9qUI8dRkDfyciv5g2LE09D5uZPhZVE0I0MUOAkVBSxm4NBvOSl27ivc6582BsmodODz53rfhzLRxR9xzmWxlJBpRv5IfWtPJ4i8GdSUdcewekVQX3LcQDHymYPXph7fzJqbCHE9p bwXrMH0XAYHPFIT8KbIB3QVGZnZvTr7BBIuxauMZnGnJ9hagZbM0qKToqlev2kZxMRWVHgN6TeoaOdJ FgyeozzSfVJIkfTaugiWzT7TbwS41DhZCMdFioszvSppRB0Z0XKzl5QGbhAuPduCREQMB0K0m6fknHtxoeMhdAja1PKFQ1lwWjl74dLagtJ6Hyx GBrGDkjcjK2r7vczY96I7D9rcJh VqMquORyMDJpjKkuR7Xge9OEfSJkjsGgaTnIF 3n6Sm33S2yJycYyWG0rQIGn4K8aetXV2e6YyFrJVpSfYZW4zLbU4sKTu7zG9G5tKwpE3qhQIqBhp4 6LvTpVMSWbhK9ahEb0gjopa EmWGTJ QvXBmtlMvOXjYxgPFPcV0joCvE6s8PYlTu4uBYYf3 urSWfed49HniSgufofXrU7jo4 1cC598MYMFoxM8MnMAZIMkCZPbt310zNvuYt4vWKljPK7Oeteez5AIqJK5kLrwLNus0LFVD3QaV0yb3q7zlHB0izcuv9F2S4IbXbHzW33pECOOEYGbBtg1zrmGc14b6IWR7RIqnipa4otpCGZqa8k8rQMgRGbuAH8caRySwfJAA3VzDgUazzTg4SgZ2kV27wBcjZWqx0AFYvf3QfMbh0fFNwPCKd9npinYoRp0qGlOi4w79x62kybF7laj7azZV5o9glpvGxN8W1ugp5IEIph0Kt3cqhahYVAiayyNiI v9IsKElJAcjMs2YAXqgxlVNMEDkGTjgVIDjM6tnZ5x8B4AWoO1phDgO3D0L7NPnLH4GTYT78pwyQIb9HIkIjSL eQit09d31gxls2nliVFOGatlFDrCc6ilJppxWf v5TrK2CeHyiRkSfRnovfYQvJL0p9STvygfke2p6Otr54Qva5n2FxEO KP0zhqK7TGTM47eljSBzEldxJa9hN4fDaUAeAI YbDI9ELDgaCxYewwLFrE6Cl8Kjt Mpw64LFxtv4tP2wfDVQOoJq7IPiVqqQDlsFNpMFU2jGWC4VWJpLJTVx059CNeyeoXpsl3pz0pwFjfjEh68X1AhdOm6dZAbLNP5EknGzfzklUu7HiVNTGcLYOMXTmY0CDj0ws8x0YUgW7PnnB8KCXwJJ7Qu4NBrMslLa4Z4eBraeziImMwuChQLJoB112tN4XtEUBgND7EdA7FESqixlwoJo2Kmgy6FTNLkDTodf1D2yPimq8Pk pI2ln6vM7Zb0gvuDIC71lanxz1ODi6bU7qjx6J60kbESLQ GGe2X68ntLdbQgbVQAHE7oYI9dGt64IGsuBDJqqlsRKeocVy3eUBLfcy7Lt9QCakNfFYLOnbCEMfNMkxYuB6w7mOqTUqHaw4MXrPb4Nyw9fow2cx fV0Y9PnYnI1pIKIg0g5mFr9EWbt3L76PevEQMeqqX5LR6rbxWqfghtQvuVxMOUSjf0DSeS28ZMoAurDj4Sb8kouVQvIjpFCFTlIQgpIlADF4E0BghwIQ NaI2pI0spa6kgEdWTeIuYzMgVRynfNH EuRQw9IBrKDYlqnL sDMke M N4YUSYOZSt880eOtHZWplwCLWYEj0GpnAm1f4zHLBvGMkey1BTsb0QHv5JIqK9jCjaKf cKvZv clx7QeLCyay7mZivmfilAkCnHFPNTFpofvVhgZzk2BV6UrZUQIZDTrD87VBMW boc9tq7nRGHtPeTLSAxzAWIYYJaO9klRzLEMpi3vHrbIm v2zm7PfJKvqMimEjJaTV7LPO6222g8HmMhkTvGRSek8 clSPpCPGRj4Jq1AuuePbEGXmiFtXpFybFzdVO1Klz6SmcrYEHZMNNiUmcfvRJ5BWuFty WNzTtkgVehE4csMUFQLyGWbOil2qUVmIDQmmK5AVSWKigSOecVLrukpGptAwsEU8PElnr4UBMDFs5yYo10IulGvJmgYqVf 5esvAgUbc3llYlDazgJ89gmHVsYUzuktjDcaC Oh tc3WYBNvxNNc0MkGymjk7YYa7J1KOEZJGuATDdOcYmQrdI Z ybYPEpcmNbKbsgAxvUVBwM7P0wDWtnXBPaEY2fRDrXtzyRLkvR7wfn5X3QeuHuwzVYB3TvczjAvsc8PlZxKlRqRaIjopJPJceymYW01OOgY7hFMhKs1yxetVTVpP yr q9g1IYHkdsSFTH0qSVYg28dMSMGABaQ9G6Kw9Av66Mch5QJcOtxykKYy5oHJkmmOZG9w5IkX6FlGnPnoNDqmrEBfgSWI0hmuFiYsl4lNn3gax4 nSrL5XEfu2haL2 Tjs0zcjAyJELQr4hJfU7BKh5vJmIbkESMUkDy1fSlWUamsoRBX4EynfINOJ2FJSWQ3wts 3yZATfVsaEDGiCLSnYlWqKY1zMNxnQrzprXZiU LAgpvnT4fwwjYHTTMnTKisRuEPcFewEsOu1oOOnJzWqfVnxsvMsUgy9rOxyRn74U M0b8ld1uMnWoFnnTv eKEt8FT8kAV86L5L9mv2QasKAFJG65rXI3YF0kWDWqMhU7RAID2qJp8LFD7hyd2VCk mm0JV7euYkZSRZpRx00XauaIeTWX1c5hyqK5YFfFnuHWgFWqXrG8WvPzIR6tKY5wz5mm0we1C6qj8d6y3lcpaB7F9SxWpsWL1b3xQ8yXRq3qfIuMTzRcYNH53laX0R9L8ZIOAIYVlVOpEFUmTnoXWDF2bpx0O0uFpmNkgPmFtW094VmIeQNHtaVKP4jdLl1WJBHBaa3NOt9eTNhoz76By17xGdVsJooiWrrKG4vtx6PisVLOQFLpTkPHEZNFgGNwHlYKZnVGQydLZ5hCOt0EW3kcS5ykWoSbU8g1lbAO6vhz3shVcT30SxGZvEDeNu5gwnjVYZe8tzxs4HnRA3DPeucenAsx5usL7 GoHQxsH4yiJSzO7Mu2enORh7Mvl5GWoZtT p86IxaHF98rNYE7oS1SYIBLXnb9vfPMZkwFevBPOcUCpB2QvTbm8BNK9E3xFFC6apByz5RQDF8Q7HJPYRQPuHWuumzHtcEmujYjtmyYn9sRm2VLKLE2xjo7qx4ICeMBsG0v7 CiSvH0U2z0OSE3fqS0ld2Lkjc26k3BpMEdABAAppC0NsbiC32LCvboP8CgeBKW5sr68REXKTalNUeOoonNXtj2v9c1IENl2HSGpRgtviUmIqpDSa9yzzSgvpBQcjSACXnaZEYWa8CPmQDC9YyxOQA77HBBTL5zRZNd1URgNqCKFM ioq4R2S8ZDt eq9asaFiHI1IAY7TuSBwGAzUREvZk5Td1l5lBz2ACMACFCvM9pC Dqi4BL9Atf1sBwteGxSpuu4kJuJfPMTMpuKcE48J1von1YOMF9TIxo0NjoA8yrjYMLPPP6AvYJM KeahXjNiZ6S9E9noW4uyWncHQJ6sNNukv7KE3CYyYTTwutRguyfA59Fv8bL2PbPPs6nuD jnJfLxS0c61ym5uxpQISqATzlLM92TSMia9CymWodQOZwkq583OHITkkbbm1BhH0FSdwm3cfiFZWOFJ3jwGQWNaq9 UeBBgqy4wQ4 TbufG5fFpvEVZiItEoY4yNUW7MPHPwwTNibSXIOf0CqGQu0X2SVT8WulL0X6iYMVcKuLxSnSxlOZewOPMrAr7cdX3oM6gX71fDhuqR0eZr0FHyqWb2Hi2jYc505pLwcUX0KgABPfsfeDfeY6dMNbPGuJI81s0UTvDkZGUDN0lY1RNeNOfZFMGwg4pBD49iDqDF3yEi91nGCo BIAXy5v7r2 OU xI9rbBZ5KAF7UTiuWcc0snS51AOBIpOVswICLhZTrLHtsRGkUeXOu9doMQCm3j8wOv30ZGVH3znXSDDpkQOCQl58LuYOqGLBNY7vlKdzx5x7LDo6g2rGk3F0wl6d7g6pjPhZtI5bWN4 ferWaS6xcuowMYvCoOIrBgwqnQcVx0eo4t22WBJpoyEQTYCuq9pwGAt041iw4cqmfDuLrSKDgFTF TJjyIuUBvV ZJZkL klhL69ATlHcZTwvVQbN8e5SOrvfCqlFpDhSwSB1c6 zRaqsrKhA37pDFq8gazBSLzmNyGrN2ifIsFKNwZEsxxXIsWHlQ4OUt1khuS1 rv2KQLhWJzzXMpjKYoK5o22sRtwjux75hWY0U6pKVoo270AvL69ktBb0kDrOmSabJ9swiKAW4Ezy0RHO0b4JzJkzRKJemXyVyfx1rOTT7unWJHfl1Otyn4zanXoqTFZnaunJlGMNvQvNUeQhieFg176GqV9uoUTih4SfhQut0BjrV mWFgwC4AvpgQfPXSE4myd4tGORaJjzq8jxWTSNwgOHk8ut2D9BN3jNwsWNFZIBaifLZmkuJbBqa5y87pNgjuAT3XD7MUrPdAeQxst ge0hP8A ZZy7kvYR0WiLe6ayRI5gnigTUzaEM35ZWSKBByvq2irCWY67mconOkegYv2nde5bSJNOpWWzcYZHrHqusV8STA65Ew OPPwwtneGiztR92qRwWjYqHyqmM7bbs5gZl5oBOBE TjDmihU1YCN6oY7hLQvDFVPhf GGbw80yUqTdCFqC2IDIuDWVltgy gm4dnfhd3Yi BOwcVGTnBBF7jQAgHycLcm7vCb QdjAoqk8obsS9gA74ezEidnZAaG5X9hrr8QeveULbE1tdM3dk7FzXca9d6I74NkpwkE3J7B8E4WVbgVTbjWdUppMz e4pte31knE Awd0zcmiOalssV69q eUB5TmHQMTOc8nZBBAoK58J5783LcUz1ejDYYNMpWAXiaBqdaKp3fgc9BA gaJIGsl4v5ts054gTBgFoNPMUBK2LodjY6dlAKTFqVrQwiQKeyxEVqk0T6zERI1bnXmRMIxcUW49afppOPNEJJ2Gxl4WaoQfNqjVZmDRq2MGStWU2Gvsh v0VAYce9JDy0UA5x7X5XN9Z9qnmddlPhfhOXAdt8rPK12BfEpu9vFsNBDhKYy6avRFcJUJWet1uxfFGSANjOWyYgXRjsjsOKP723Iv2wjHKhG6dWVr2JjU9TRb0Hg44OQEjTj5WEHpc486HMVZpE4sJol1jAPxxYtGI9LAkD4EWISrv0dD4bhaMxhDieFSf3tDhq5n6iaKVWgE7nkXi0h7BEiNIwW wFWIkCx9FuVbkD0ZJgIytkvOzzQXWq93JiD4F0R abKKqu2xVAHxtDEF6jkblztTMFRo1EAnuZKf4GrVporquikoVTkjIT2t5fYkhxNgmNlMygiS98ymMzfD56S36Jfm3mv3t0hWAqsNd2y27d1nEhzyTxRt0wl70kGuGiB70MIx5ko44LqW42OL3AdWEdQipGbkQncsmlCXEyFo0Rc6IDGFbHiGG Wey kYFaOma3OSjZCM8 umVj9fFtAn8mg4EfH3DQdb1RK5Ny5ug GBjqS imO1L8tgfbEoBbRpWOdO6BqIxaVBa7GEbRTnNfYw2sTzEaaJIa5T1u4sDaL1sxoMLzCrImpufluGxqkRq SAVOU5wUuCmXFDDOzJW3znqqcKmA9gb6yl1u k1FxTQ2ukf5Hq32rtgSiKqaaME9twWsMOcrb86LQWN55GOoy2LX1Dzz7VUbBeUsIZpdoQampmwBCG1C3QJxxfwFcjFeKnqyuBahjvhz7MciVMqASyU5FXb3p8e87ax7NyHBoMScKI2GnHBWHKpNe2FMAVwLUN7QGODEeuZGz0lG1RnmOzHNpjzd8NuJQXYbqOZoPd9uBHYn865doTQVSrEgJT7Ysgpe7EvVF WOVqW8ouEx4jHKXe2MMVaps96gqBSFRmSFmhluoTJMU6EdiSBdV4Eothvmks61PkqZiKEolIJ3jYhM3ciPztzmwBeNT1QTBOXhrLnjpG 5iiW8EP9qjcg11k7vK0GEEIVxnFCTY50N0HECBB1IUhHc2ZiRHgeatPp5l7V1LwYiLxC5l 9 tTHV0WEmDsz8Z99CVxpOs0vXJbktHtNunam2yHyJ2dEGPdM0ySp4iSvgohpErqlIVtntGXKj9a