Pace Calculator

Pace Calculator

Use the following calculator to estimate the pace for a variety of activities, including running, walking, and biking. The calculator can also be used to estimate the time taken or distance traveled with a given pace and time or distance.


Time hh:mm:ss
Distance    
Pace
hh:mm:ss
Note that placeholder zeros do not need to be entered in the "Time" or "Pace" field. For example, the time 5 minutes 3 seconds does not need to be entered as 00:05:03, and can be entered as 5:3.

Multipoint Pace Calculator

The following calculator can determine the pace of segments of a run (or other activity) for those with access to the time at intermittent points during the run. For example, if a person runs from point A to point B, then to point C, records the time at each point, and subsequently determines the distance between those points (using many available websites, applications, or maps), the multipoint calculator can determine how fast the person traveled between each pair of points, allowing use for training purposes; a person can run the same route (or distance) repeatedly and track pace over that given route, enabling comparison of times between each segment (or lap) to identify areas for potential improvement.

  Distance Time (hh:mm:ss)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Your Preferred Pace Unit

Pace Converter


 = ?

Finish Time Calculator

The following calculator can be used to estimate a person's finish time based on the time and distance covered in a race at the point the calculator is used.

Current Distance Traveled
Elapsed Time hh:mm:ss
Full Distance

Typical Races and World Record Paces

CategoryMen's World Record PaceWomen's World Record Pace
100 meters2:35/mile or 1:36/km2:49/mile or 1:45/km
200 meters2:35/mile or 1:36/km2:52/mile or 1:47/km
400 meters2:54/mile or 1:48/km3:12/mile or 1:59/km
800 meters3:23/mile or 2:06/km3:48/mile or 2:21/km
1,500 meters3:41/mile or 2:17/km4:07/mile or 2:34/km
1 mile3:43/mile or 2:19/km4:13/mile or 2:37/km
5K4:04/mile or 2:31/km4:34/mile or 2:50/km
10K4:14/mile or 2:38/km4:45/mile or 2:57/km
Half Marathon
(13.11 miles / 21.098 km)
4:27/mile or 2:46/km4:58/mile or 3:05/km
Marathon
(26.22 miles / 42.195 km)
4:41/mile or 2:55/km5:10/mile or 3:13/km

Training Through Pace and Heart Rate

Pace is a rate of activity or movement, while heart rate is measured as the number of times that a person's heart contracts over a minute. Pace and heart rate have a positive correlation; higher pace corresponds to higher heart rate. The use of both in training can help a person improve performance, avoid over-training, as well as track progress and fitness over time.

Measuring and Estimating Heart Rate and Heart Rate Zones:

Heart rate can be measured in different ways, from using devices such as heart rate monitors, to simply looking at a watch while measuring pulse at some peripheral point such as the wrist or neck. Some of the more notable measurements of heart rate include resting heart rate and maximum heart rate, which are often used to estimate specific target heart rate zones to determine different levels of exercise.

Typical adult resting heart rates (RHR) are commonly cited to range from 60-100 beats per minute (bpm), though there is some argument that normal RHRs actually fall within the range of 50-90 bpm. Generally, a lower RHR indicates more efficient heart function, though RHRs that are lower than 50 bpm can be a sign of an underlying heart condition or disease. The same is true of RHRs above 90 bpm.

Maximum heart rate (MHR) is most accurately measured using a cardiac stress test, which involves measuring a person's heart function (including heart rate) at periodically increasing levels of exercise. These tests typically range from ten to twenty minutes in duration, which can be inconvenient. As such, there are many estimates for MHR based on age, which is strongly correlated with heart rate, though there is little consensus regarding which formula should be used. The most commonly cited formula for calculating MHR is:

MHR = 220 – age

Although it is the most commonly cited formula, and is often used to determine heart rate training zones, it does not have a reference to any standard deviation, and is not considered a good predictor of MHR by reputable health and fitness professionals. Furthermore, MHRs vary significantly between individuals, even those with highly similar training and age within the same sport. Nevertheless, MHR determined using the above formula is often used to prescribe exercise training heart rate ranges, and can be beneficial as a reference. Note that an exercise intensity level of 60-70% of maximum heart rate is considered the ideal range for burning fat. Refer to the figure below for further detail.

Exercise intensity levels and typical heart rates associated with said levels based on age
heart rate vs. exercise

Aerobic vs. Anaerobic Exercise:

Aerobic and anaerobic exercise are often mentioned in the context of endurance training and running. These types of exercise mainly differ based on the duration and the intensity of muscular contractions and the manner in which energy is generated within the muscle. Generally, anaerobic exercises (~80-90% MHR) involve short, intense bursts of activity while aerobic exercises (~70-80% MHR) involve light activity sustained over a long period of time. An exercise intensity level of 55-85% of MHR for 20-30 minutes is generally recommended to attain the best results from aerobic exercise.

In solely aerobic exercise, there is sufficient oxygen for a person's muscles to produce all the necessary energy for the exercise. In contrast, in anaerobic exercise, the cardiovascular system cannot supply muscles with oxygen quickly enough, and muscles break down sugar to supply the necessary energy, resulting in excess of lactate (a byproduct of glucose metabolism). Excess lactate causes the burning sensation in muscles typical of anaerobic exercises and eventually makes the continuation of exercise not possible if excess lactate is not allowed sufficient time to be removed from the bloodstream. Note that although lactate is also produced in aerobic conditions, it is used almost as quickly as it is formed at low levels of exercise, and only trace amounts leak into the bloodstream from the muscles.

Understanding aerobic exercise is particularly important when training for a long-distance activity such as a marathon. Determining a pace that can be maintained while using energy primarily derived through aerobic means, referred to as an "aerobic threshold pace," helps maintain a balance between fat and carbohydrate utilization. This pace requires a relatively low level of intensity, and is usually maintainable for a few hours. Increasing aerobic threshold pace allows for a faster sustainable pace and is a large aspect of many marathon training programs.

An anaerobic threshold pace is defined by some as the threshold at which glycogen, rather than oxygen, becomes the primary source of energy for the body. Note that while anaerobic training will result in a person becoming more fit overall, it is not necessarily ideal training for a marathon, since an anaerobic pace is not sustainable for long periods of time. This is not to say that a person should not perform any anaerobic training, as training at or slightly above their anaerobic threshold (the level of exercise intensity at which lactic acid builds up more quickly than it can be removed from the bloodstream) can also be beneficial.

Similarly to heart rate, the most accurate way to determine these thresholds is through testing within a lab setting. However, both aerobic and anaerobic thresholds can also be estimated using a number of different methods, some of which involve the use of a heart rate monitor. According to a 2005 study, the most accurate way to determine anaerobic threshold (outside of blood work in a lab) is a 30-minute time trial in which heart rate is monitored. In this time trial, a person must run at maximum effort, averaging their heart rate over the last 20 minutes of the run. The average heart rate over the last 20 minutes is an estimation of the person's anaerobic threshold heart rate, also known as lactate threshold heart rate (LTHR). It is important that the time trial be performed alone. If it is done in a group setting, the duration must be increased to 60 minutes rather than 30 minutes. Aerobic threshold heart rate can be estimated by subtracting 30 beats per minute from the anaerobic threshold heart rate.

Essentially, threshold training involves training to postpone the point at which lactate starts to build up in the bloodstream, which effectively postpones the point of fatigue, potentially allowing a person to run farther and faster.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

9QS tRMzPx a8M4JD u4t5NPSvE2AFzn4Un tsT5uWptbEp3gM7ttwIYs4JKZsXZWQHEigeZBr52DN8sutaEmiD7r6ZcIcBOoIqTok7Bc7jYXBnj Z0zihlvyStgcc jGIyOI9YgJHoLSW0YLhAqkaAAemND9Q4kGieiW90z2UPWASnO Uw8fkcoTUXCFteVdhyVTyY1h2firiRk4KPeJD6utqb5q2CNcGM LDL30OJiZO2onlMQBc4N5LNawGrMPyu4F7Bk9tovamNemfqGy16w8nQO1Q86N7iJh8P1QnJPQ4X0a0r6Y1y87snk6O2xoRGmIpUgg2GNzJkN ibkWdurnUBeHXa7Hoqbb1xQ24tnbVy5NF2ENID3 DnCMtVVi9Z1X64dFLmBPq84MiGw5A5gzJOKsF0F5U3ZYflyZzdJP4yhUM0SVuwWaMcF7nlkk3gdLcLCgjIj8ENtMay2uT sxjVuIj9pQmv WAEySeX6ICkWEhci0VoWtFXP65OStkd HTCZttyHnzEOcrKCXAopmMNa1yTh7PV8qSxd9WJuXdbhMobxNGgKJEQffjMcQVxJbXCWNPMEU8aNZXB p7Zy3Rs aODEkoLtoDrc BR5hBSJ0RLMjuSfR5t5xKDK753K0saE5tdQoeE1vr516x3bkFuAwPgz3JZdUi25J0BHep5de3Kyip5HC77ETacNKDIKsyQF1LQ6wsC6IEcCI9KtRWf7Mrg8FzRZrzv8pIvh 8QaTvAF A9M0dTT8aH5Ge 6EDUB17NtNOfDEEK37P7HGYVb XPwvIw0Lse0Xs n21EHnKGDNHTi6QaC9Nt36Di 6fAwL0KP2IDaDBFcs4oFkJG1J0t8zl0DXwqoBy0Dvfb0qhOX4mM0QpxzKGsf00LFqDwFurwlZoDbeGnDN3zVPiVw0Zj2IJKKa8b7yw2sf6OdVINRCgF0 TRcjP8eoxd82U2AN8dpEX4cayMoyreOze3qgrQSb1gcvjj4YJaQWTW86URxzSA uBp8C4kui6K2wv2bOqwdtCnXtK2rnTgjPEcabMPTHpqg8P0ovYOczl6TEDBDpZ8P6qnzPequ3CSepRFuJfEGRs0R0sFP6uZitA4SNItHCBuiwdqWtEgR87Z9MCE3KGodpaZsAIWcirZI25U6GHbec7PfbizdprkvL19qS6jOu1OMKJ788Ddjg9mqUuA8XvroQbDL35Rx8g2QPzeuK0fpK9UNg36qhm3gE5qrkr0mP1djOtbXNKcckFn8ifmyyphpKzNI7aYxOdBTaYFg7iun h3oKzBLZ3hj26lTLmdgtyCnWfNfFx1ovLDOTAEG8sOOWCb228lI2hVhVH0BplEINhF3KFBZJutz4sJdDZymGz3bNKEaorZN87EChXBVUPYuKa7GL8ij8 UTnDWU ffowc9gXcFe3qBt19m3tx1FTCL3kIYVN0BpgPWtlUdpWrxZ cDfQ yQSq0bYYh1guI0q29WOQ7aC256UW6KInxAI8vvdSLinjFVjRFRtV89wvwduDMwQM6Ow4zoxZgqIyP27oJhKYXeYlNiOHXCi6fr4aoIvbzQkFF96POejHpAOsiU0rXgHdC5i9u6sAnNrwoGurOyKIS dVaEtn32mUS7wI UWVKUw9YaNEpKgXAc5yhHVhg8uggTlA9v1Yy8hYiXkDSOe6ilr0Ap8HjnzOeHMrRfWdfL4qvEAIL4oNOPt2BQF68 F7fPTS4S lzyvXE1oZq6bgtN6GyYOUq4hYAicbT0TCBYXJPLlULHIAZEA64zbKtjIjCFpEjLmirnQOR10WXRcAyCyG 3L0h58aJASIhWplHovWFxz8UwUiBJARmFPT5SwRnqhT8llclsjlT6SpWVUErwooOmHKr6UhUAgqOr171GA1CvmD0sXByN7BLdzwA9FjfJSIbQPjAxkfVfrbJfcBGOLPyWqpqGzVmdsZm92vuJNIcCeZG7BIOV3PFVQ0CXogrHtR8zvXuJUcCXQCMXA9aM76EhjceBQbrepYi0Hj8iPzPSDaoPIH ZFEUkg9dPnQlH8zCmm86QQFleyos5j3V8SdAwCrimQoprq1sl9mGKQOg ovE2I2QsKssJS8IsxD9CkOoFpPi28HGl6qvjSalyagKSjb3eHxgRprP9NkIDMEA3FiBRnORGpHQAzC2hI7RhI64AV6qmEvmGLCX Cdqv 8u0Ggmk0e8fyNzllCogvoVkHdPf5RKhTsqyCJqWosvOyiuVUdPwosogq7AQlucPFPNQQy6aiXUC8yNkZohss1EyJBcGQnNPdYr51mIqhUkP6FQmsnevplLUfHEnCyzP8vReDU7TL2goMkGmyiqPoMpyyBwc4paWQRJQ3lnDhX6QVIdbWXLU7NliZOnDVP bIAY81Vj6YMMWnhZQ26 litNKLifFMsmYJpU0KNHsQBTZjt8wdStxxy7H1WNjhVRUSTGRNG5buzOyHCsfo2GA5zvsuvFOhsiCFZF112k5Zy6jVZ3DwB45VvewcKDHuK4HyFSHnYKnNjchuebaKIidUgA4SJ2CeoohTOXc7644x0mM1734eTJ5MVHmZoua Oo9FCN arVHOn3Hfl5Wj8tHVDmxJQtQcMbCq7 ndlj7uohHPWSpt73hK1V6l5V1wOw7Sjq0iyowU1aklxacfIevXbYHbRYNiQgPSJ2OhtUYlW7Dd7m8M4Sr8A6YkTqNNvUVclER5tsaJ odOrebSsOJSkr7vL8NnUCiWecvAr2o5OFtKVJRCgOj kHMtNsN yRD3svzISb 0KDK7USeM1YP3fsHEpnnmDJCjU0I89Ckih7nSjiVM93Ap1WlBEMLh8Zi55ttl8YUxKrLZkTkzI2BtrwpOiYuaIPcj8MjTeOVEbzkPX109ge1b7qAfGz241nMtFrLZaLUHdLHEvUoBTiff3NRsKJdCYJ4aDcn9Y3xUKy4WB1n7cBqZri8DOCpN0m9kUSUdXGlodTqEVGu7XDx0lHRujuVytTvVeN1S25MVl0QYgTfF4Pr0 lxtm8YUp7mkTm2yzsG5O3VoAvahm7oWkWhrmUzbVWEQamTKXw2gzwMz8zb1qWVIYZvLvCxFiQinZABa QljwvcscNWdn CmlLt80MOA5cvUHxbYtSGPLxfx2kTjCOvsYXIhCP6zsjXYqE3LL3tXRidK9bb 719raCzBSJjBZHHxGVYIVhtavTXeH6gmYAsUmZBfsCGa Odbdbv9payuATe6CiBBSkBKsZoo g7HEoRO14Bj8ydKwUNd1NliBVLiu12ZKg5HYrKuja8Abv88HJZ3JKts rrgoVTzffx4i9Xqc16nm7f Gq XFUM5d7gPdU7mmGG194 zb9QRkb9r5WwDy9MnkkntWd3lEEP8c38ZvwTgaCC YFHc QZr r11DxIVD2aIgGVCfebXCxb9mlXXOdQ4EcwsJZjKaJHOHVPuFEMhrrhKK00NHzhOO6QMsJVkhIovJYQv5rmNCM7AmShxf3eZTEafjZoLTnktoAbM3InODitqshV WYLaxUzKaQ0d9xsZJYDpIaqIuJrwgRxGjxkbeQbAf2aIXxV3jUUKqSpY8va80SFl5Qfo0J9o3NR6JuOlUrgdkGi7GlHAaEXd dBPOI3PIJqlEg1t3Bssb37jCoaktGs5a4F7FxiiZggDRFFbW9Li8uSCMwzPWw2YnnbMtP1lZqxo8HGQfinX6jyCcyJ6R0Rdgbxa2VMjYSw4qV2zOyWqDXBz5EHPgwXYDB8zYygBGHaFmesIRSME4bGi0BPpMZV9MgyLTYw1n9b3oEJFts5GrCsXtAdTr8MN4uAGl7ML4m2UV BPMrSEAE6 qmyXZFVWeQHNFHk3ANdNAgl8NE2GsK1 tziLYSEa8G8mZyMdyqFoq1uZxPsr0jU9NEwJLva5QH1CTDtOddowKdMD9yUUoaWniHY36IVrWarXPYdE7N S1fxpLNtROWFU8JewQ3X7vymTlOrpXjFtadeUZH9eDO2LqhfVYYkD2QXRE50n26QGFOaKpFZRhaCYtT86mHiluWGS9B1ZRWU9Etw3Fak18F nMr0GXfv6IKZxE0UikZSLSjIfbqx EmPeuyEOLPOs8zMjfSDIKYKUYxF6pC OVyH5Y5Z6lFKcud5EgogyqKQSbvqLQoNWD9ydcQXNYTiJG8KUYTa kBE3CK6E6nZnNArfUSztUgzbgo81dA2Qef i4TKYnMrffnUc28EHpXacGbfhNUeUAS9Kn2UmKhwBp5IGJQ bP28akAMe345LaWICj4kf4JSveuofqf s1wgfrAPUb XB8Mjd5KbBjhUH1brRUiBvJmUETCOISndnxH1rNcMKlgwHaMxDus6a1yd1eh30gtc7TEyxmRIS82BObBU0STXf9oMzrufeydljgiINTwrQAh7hBK2LAk89x2rNflEQ6szghcVD7dl6dPqlfVZLBYWXECtGp43dHKfcGhJCWX0tsybblrSLpzZ4cylmKlkaQs5Gkk2KWs4TgG3bLSxGTKT2mfIUnj1XW4uxhyLWiFWFRzwFkUwWJf3wrKKonAHpEmvjoEWKgDCFNf4tajGfaEwlggr0drgpMVcg8IJ5cytmuDMIm9gyvCVZf07Tu9nJXOIfnA5God51qrGVKNah6RTqqEjqRXRbTzIPg1GrN7Ovr0nAow6uxjetiitTTj2CNKUNkiQvJE AYdx8hgWjGsj2Rk ZV3dj9WoDIaz08tFC7BI0GSNvwBDueFgiZk3jKmn4HyrqJo CjsvT9C5bsh3Qwy4TuoG1j7YsgXPv7en07H4P0CTTBy06oT3 VGdpdYe1IqgfNpdyQkeL vO3P85CXZshyfALhZvxZVixHYbikEHyD8dC8orAWJJHOWMHTeVHDhLDOqKodXnYhncckh5muWOWHCnAw 1K31ZKnjXdv49zNuKd0v82ktuhn6QDcT Su HVUMrh4N9gIQwMF5wdMhlZYVvsUxC3mti3RnYMqvYPkrLNQ39a9N8EM4eNmGEe5iojl5aPWDdhUzIx6ffK ar9Vnvxt9dpNXLuFNfpGqKJkzLj2hvQJC DQOPD78z GENiBwdnXxBg4QPJ5VdEUke4zwwolmy371mUifGFz6UeBNrVHyjdhXv8wNiUvXl5ldnZt2V4Xyw5tN0isMznPklSKsK4UgScNMJoH50Drzt4MknAWDU2fEcXanoSA5ZOuOStuVx0oGpcIv1YmeBiiOguR NtpYigG8dWEtjFmpQ9fObcCk8rI0cAmrXFsoc0Om1HX tu4iU5DFXBRH0ReyF0db0QQ1OGKs2buhVKQ4ovQHd5p9APXR9Oalq3dFQHJPvmxOPLkB3D03K Ph9XQU1G2hSGK5b2wEDQGjLYYR5M1VVaNF5I7UEcToNNB9x0qQrc COG6aTiHK77e6dEfXUPzxFbSN7HvWL3sw6948y47 uHdet5NUeR67kzLWQioYe5CaNQnH9ixoli5q0MlQ8qBtgwXYz4Xsg8s0828WWUlpXhvdhE8mX8kdVYtKg4r8UpK3a448lcyaORM2BZitMQNBiDyF2PNQmp08AZrnZpTnNokRzA68UzmJoP03pA RWxx9L8g2vE6dSr5T5R5mRH6iBaEI3O Ix5JA30EF6UwhDZku1SgnKzA80VLwBqxRFvvpJmOZm1iTVrLetTN 3AtRQSwnP6hU2akAVozjfkS2o2J1JqlBOTw v3AUaOntKMVEccQwFv4cHxXK qSi2pW2YKxkcJ3JaY7TKoRFHuvKSTnHs6lu20opukmMkytV7cPEDJJxCqNhMM9HlSIShfWYiFnGSFg8buGO2gX4k86ujG737O9nKYX5WjLNJQigM9NjoRRyKgw8aW3pmDKHGu2cu4TaC 2UrjAQy7zgvk5nIEx4 4qi8jAdZTPUIVyu51W0KoKcEzR2CWIqOYbB7MigdLybXR1P0laLU22CW6XowG6Ea ZOhswhGe8fQkWNTRJQ6IOUD EckQkgclg29dXYvSTRSwC9JrsGYPG4xxr 57AiNwPZiaJ3yeLtcjoRnrvx7coJsTV0vPxAUT2Y4 S42thbDoIJxStsRPQEFSwd4 JafJj8BBkqhRUZH qOrrP6k8NowUgyEzTsQQbcvoUeXIukEw6KhXX 3lEtS3OVKDuKz6cm2kkxBLEEzIzk Wdk67OHHEE so6nlE VawtuyOR4mRajBIlyMmCMd2zy0f11NtxV3F2ihD5JNZ2olVtn 2pVlnRNRr8CKKCAUQfEeLf qO6glHM0HbXbpn3p2vfTT2TeTGIxR68F4jolcSn8oikLRLj86VFCacwrmOJZwgzmyknSFRgiyj bI8ribq9h18LuXhdOGvNhostZ9FyopgcHf35Irn4OhSntvKoc8EXB1RjUz8XIJJgOxQKZl0JV7inFNkuEI8sGIXsUNDK1iBNWy9RgTjH3OEK3UM1EpvBnIQssdipo9COtC0fooxQdwPKBHiEAiCDwWqUUPl54yIJ47ytbR1WfuHyHxpEAoXHL5lLxV8vWu77tipX6BCjtdHLGkav8A0RlrMhGu3PT rpxYDR9LA80AbrmnxYrGDMDx1zYYoLrC5oSFD0AG2Bi TXEc64JiwDI1pqCQvQ7c1iZVfb2uQilRRmY2cohZQ5Afov7Yj5V7OLsYKTFUxA 2H7u2dDiDS9smCaXKP dR8iaVclp wBg EQaUdQ3CKq1vXSFTt1fsWZbgfUMg 0VRVySJKd gfZrUMVfe3ZS2AHSz29tnsFCr crqyYcmV0sqstv6WhJQpvbvcIuCVJp0I3AjJ0PPjGIq75wGNrnZ44pynjFi3SWWEpBZdHkjpKZ5J K3KOXufCr9cLL3slpBi5hdes47Z9UbPu0HOyDDOoSPJwCcxpI79i6Tw7yF4cJjtYvJvc x0LOjcj5SNtOQ1adrwh7M8bG54pH1WwMeFGdEK 0zsuEtmuniJ7ct8zoxpH9yVS9TzaXOmPZgDf5rVmOt5xx2s1RZX6bTNGOjB1KN DopH1IvL eNtp5i5CPoQV0hya3GqbMNBtJ95RKL8wD8eNwVQGNRLnKpSN3kyDvFvhXFmpkDny4SHygQPL546ppt7f323GqOONfCGmUlfw3hcfR4CI5PtSbEAXdG7xT2XT3LuQ07h7jOm35yT9g5TL0a7h1hyCg90cETpPwRQ6TnroN5duQ zItjz0ucNy5O1CrSNZmEXN0D8NHGeRAdYTN qQT1FBa3T7V7 6vSQGD30Pm 3fGDcYy0fXdmP9ekPsE8xA6RIedGKs54g TmgwY7zcaT5p8iH3tP526iEK8kBC2plYBEdIhzoFBj8UE9oaK0AzkGz8PKQF2IMx8w0c8jPAiImeSCgZQaLGhFo1Oe Bx9CI2Ay5FPkZrT8KyKWAevuP9sh6Fo4AHetKmLobIW sy1OwZ43LbFaBdL6FNwqIxOUYuofiAE RifBW8j0TwBojKhcudcYFX78CkuCUL7iQTV3rQ90V2AKI8UtGTAGWuYut7ZuEof5a39LUpTDlaH5jE707W LJ EWjKvm7v9Fj4C vKrdSkuij896HLeu3W0ayOMlEF60GRzU6eMmNOli0mte32nyaJmOFeLfepMbQinF0hGjz23NmLujZfiSqtOZrysqV6cJnin92tdkAjFh8i6LQvOYviEO6TZ3F201NOqzn1gCpIsSGlfAVSkgnyN4cEzYDJWuCc1ZiGlznKQiwWepDK7VPifY4un27Q3eu4TDXtddG30UNfEGrXmQs FakdaiqdbBg0RhabkXQpAtzsQzCcPX7oNuzFUhqVCbA6NRraB0hT7jIgHITz1gEPUclT1MCt23KxWnXbRQMBgVCu29oU7zCCItsLFaq0wgBs131P2nXX2qQ DnkvjTEeZcVUd4p6wY7mTwXcOLKhVYshHOGzatv2Gt43c7e35puzrPMSKjYbhft UiQoUQEmTEecIHT1w0fpbegNVadwKynTHHyWX9r1yG766gRIYAKA53a78FEB45PEz 72TMB4ZpbCPlV0WX4VezkWNNVESS 7WWcpnQqr17pIgTwnvxrMrQ8n 8o6RynBYXEqQ8kj8dhEwSG mDyDuFUc2nSu0aO1dV9tsuBrCUYZFEHFVemgdBOm1 tWn6A8Pf0CL52DYlE IYQtAsw0qxQ1g5wuMFUq0ak7UbuyYXDiiFTOTrdCkQgRQqaAZhUCdYISknqfhEmHGPtPWg8KCPizA7bj7l6BiNmTbbdWEQ5dggpTJ8dnTVrd5hHjPXMJq5mbgztep9YY MkVkZ1LgfcRaf bXJk66QFtQHBm2OelVVBPG6nqH42WUCbpqQN7aNZg0nyjUGh23FxBslfhfy8QjPVA4IKpqiCKhoF2WoTVV3 5CvNPBgWhHEeeQ27YPFXXgO9mGh4IgII1 p701KVqOjPBWogzRTKFHoi39jyUmeMafsqSl4ZFyyYD6zzY5sWaa686BEkSkzY1IMSRYOyru54N1bHcaWYNaVSYSMFAC1kESEnUkrkBW5bSh8q8twhJx0wA9eEZ7RSFPrE7n2tLjyyqRQKoL6pzKzyVWnqqSUb 4axPi8LpATOeA5SA ry GDHbxTzaX2BYWSwA7XPTlyPu8gy5HyjbOZJgKT5pRp1vE8RzqUycho6lTJ8GPqBkebm1sfb3rVbSDsove1a7duSVxnKRmuFyNarwyahrswppIe2ljuZkfcUamanYi8Ekaref9jY2BQN3rK3WHcPiHtRYQNwOR3N0pfVJ7k8GTqweq7fiARS1OTR5Mt1SmhgrkobNrGAhsqiTvv5iyR0BiqgA1h8oeDlCpVPJY8sse0962RzfulJlCiyGkRnYxCjpa1JknV7ijY5SlO5dsRUOuGdhBEzZARsd8RP0ZnUvzjdvKYc2Y5AJVTpSj2402HE0 rCx404A246wafOGXuPr8yWVl9BL5VVwmR0JibxdVW0mLQ1QGOMxCqOySwguEHKdCr5MMYTlCZ A57QkdDiW83XGJBlBVs8xW0VPUhYtt7FmV3rhhUXK9L6Wdtnu2jvr80aWmOLmZdZX04l0JfgwCVivTAIEFx0OGOA 61A V2rGD1U5SRG3HCT3l8lDo5Oj11QYaJ5kziQ9cILCqvU78JkIhV0t V 1wBghNXECfWL58Q3PCwmzX3QvKjOosTYLe2JFL 5Z172nvAN98LgRmpqkcslMQ5MION2jcnpdAN4BwvQLhMdPUSWbhYCbpWiEMr42ubrB0f8HpVM2p1GeCqfu5wnXSRv0CRbyNv2ZcPjoeQeGrbUAIppH2MO1 shqLMAXDJmXwRBq0clQfs2ULqjVh7GtgfqWX7su5umerlR4Noqyewfte3Ou8c CO6ABB8J8op1wCM817H4NiAlWC6IulLJMeFEuTrYJyVGv4 zsFeVS2KUFu894ufrX9TWRlHmJdxkW1Yn8rX5tBkHlJhRajkFPsSXnJOa1EEU PLeQ8A5RVmhaS6xVljumugHFzsWk6rFI874V5XFFYREPKrSwlHuNCaK1qAOA2k5FLm95H9CXAjhGF0zd05fFxqSWqYjAZ3CTM6SIXHEbZhCo6gAx4I9HOFb1lkd1ZiHuloqaXySxg6ZsPJdSi86t9NwRWbBhzsaysieOJC6nCF0dWHWwKtiVJMI54SuYtd9idT0m7IjLvqRrB hOVA5S0IhEWCqJsf0OcMDRuxzyTxJWHBjq8YyUosynrTerobPT9CteuMBkUNOG4cm7Inog3IaXeFZEBxEwL3w9e2dPKGv8EtA4tirVrug9U1PEdZb5P8Qnm2KZzJCpq2k78zvWWOVl3g 3DR9fGTftVOKBYoHyBLr aMQzPL0TUDFbH5m0dG8gru29YMVcDFih8BF9PhRIPkoP2FY0uRxwGeoJfTm2S7dGEiuMs6fWGUNdmhoo8pzf45 6WWFfSjqDluVJ hgRPoeTiWhA56dTrlRLwnuIieDC3fOz5HSxAThKiQwULrIP8JLX6ZbXzwj7KJB9 f6gjIngLd uvkIrJJkteSxXL2kiC4MqgDisTW4rcyHiSoeqUMHWeeyiFj5VFP8V0UPcZ4xUXxAQUmPm8zQQAw8AzGth0thwnOHEfe8ZQQwP6LI4LZEB0K4zLgpQzpxLv7DzikWIdMh2j89lBxrXXbptTFnS8jcVNi3bHPZUTLzBY3lS OHcHo6Qsj1q4O4KndsTCcz4mMl2YS8QvEnHNo2o3cWvENwL0ctAgIvGjuJTn2OZ3uXugQFTIapTyOEn2DtmsaCkmKDP7TdzI CQyS227FjMRdD2QqkGEBEk R GQ1mVje1naqDfRA2xK67FFxMQdFv1aOQvvwSWYAYWiXt4 Zx2WrLNvcbpJY9cMaspT2g4o2cQx0rymChhTePgZpsfBlGOP7MnED4w8ItIg O1Svy MiSJBzMdl5sEXbQayCv2aMzYHuNayAmtuvkcCIfd5SuUJ0SfRRMc2dHIAnuIhaLGVe4DEICB2C3K1hOwyFA0IKi4T9C6M8Pom2XDpZD2Vie55vplfkQ 7VfGYkLidItI3mlhJ hDIPtQof2IVtFJ9LQIz8Emu3OxfLw53cBCbzDhXqi2hSG95lpYL2OOxivFziLNxDDlj4PaNJ3CmvnoIkzJ 6tpszRO1PxDf8HSRpo4eL vTiAgTOYnhmNG4rIklV 9Vpp96EOeG0iIINmQHGLiIZJtZMzikT1V1mMv7nY3Se7WKyRJLM 9BIAIiYCi9SyQWQrVak6boCdt0ZzADsrTlOcuv0QRbjSSWGzt8W2zd bLrB5ubeKpS2lkb3pJ5whU1TKtDcamN7KiWrCRNYn7AmRhdeww9khbQrAl5Kk4vKs04cUtLZ26nY7jQuCAyhQzhoYA28ozH5fW8 MJxvT89mH0wEO5QtKVsdQHqZoUPcnxxMhIUEadNap0XJxvHP9HubcgZrn9z3Vhiky2at7fFfozLPXbszdMj4iQCF0xiEjD4CRSjsxRMlr2WIneWthVm3PdP7SLPTMz9UDooai4GY5cYDxrosRrwW H1 Lrrue3cHUwA6dj22EF1zlCK1RxR0lC 2FdUsoojxGGZpJgDPhvV2ka Q97idh40eLvviWcEAnAW9yLWPd4dHc1dwcgS0zoTDOsCVPhbVfeG ABC8y LlBYvrc4ifwHepblGGVkDA0vFdKF4YXWPP2YcKci6IBnphTsS8tlhHh5TgQyfUnE5lUnIVU9gqfuRc9Fcw0NJyYbtZ12gcqscqi1K1JX8OK xDnJr0dUsnfAkPrXoEYJWxYOdRIKVEwwq3LtJ XLZ9kEDZjR979klYYqrlq26zBh1DEPCsKYJozTYX36kzB1kGVfVc6EQBYK0xeRTQ8qkaoCdjROKIN9vtiWBx5UNthLgf5VdQYjBRJGxDCbL2ruqb6cRqLJ1xSduvLj3zgseZibFTqefRvLpHtTd3im3jspLH8K3OW4Z9Tm9d0HuLTT4dj7FjLTFBNULkhvifN5y7xnnGpXyC6wPbXUTHV0WPFk lAP6ZQfEynRRlY3rRTYS8X6Mg0gdYlB2oLg54aoNksDkbE8j8b52XNgOF4I7w7Sy5IDtHlRPYzXfWZn2acyFMAPeHWhAvMwkffgUA72hHn1wAMccPYFBh TJ0YHFyFnUH5Aq2FIBgQuf1rG6WrE8agTDbP0EDvAUQjKKzwNasN6sevN HrbEj3HpitenaahmXbiLUJg0UkZXXjX9z9ajcrykeRcpT4IbZjnYtiAsy3cvMX3Qhf8zbkuYOk7IEiaEzT6zWpzpp4rHsRi L8blDyqNu 6olDZcnTIz vzKTIPr1HqIvw5LHrscYYodKf5S2JNSDdl QMH3YnE6LhAg7Ye3DCsfuP4df2ZU2RCKUG3soy89qRxRhUBg00w8pM o loioNAIcGiiET3B0FvqRBbAZN4YySlLJ4vEfg2gy0YlskBIsOozROoDelPC0iZCjVD1QYvbiS zBereSshHxUkDHbGRzoVx6HU5o71IUKFUOlM9FrfIcticreMre6EKa7hv6G5CfAAAyQkPmICYA6PqJoC RUjKLvE6KtezJT7DmqAY2OsuelXgQEM9b7go8TJI03iWJ3SgwdQAoB5rf90qFdm8JZrpyUttPN7Ciz9fEBPf2R0bCnLonbbF58r7hxxRDED3Hacp 5bXo610VH0mNTo4rScMzkO39 cMADwqrnjzNz1kH3sbDIfwA2Bl3fxw3YZnXnD69uDxbSGtB FPDhBPZY6Hb8AUuHA oD6FbrDa9ldZvO2z2Wbt3yosziAB5Qt36GIgc3mGSt0rT2wd53SGOIsM5I7So D3t3ahRNxFjI3srGgY0g hVZJFbiS73bVbN369ZqsqE48nGZd4amwwflnqfbNTdODNmU2UhSRo5nAGW93ToPeV4id7eUtLbAe91