Pace Calculator

Pace Calculator

Use the following calculator to estimate the pace for a variety of activities, including running, walking, and biking. The calculator can also be used to estimate the time taken or distance traveled with a given pace and time or distance.


Time hh:mm:ss
Distance    
Pace
hh:mm:ss
Note that placeholder zeros do not need to be entered in the "Time" or "Pace" field. For example, the time 5 minutes 3 seconds does not need to be entered as 00:05:03, and can be entered as 5:3.

Multipoint Pace Calculator

The following calculator can determine the pace of segments of a run (or other activity) for those with access to the time at intermittent points during the run. For example, if a person runs from point A to point B, then to point C, records the time at each point, and subsequently determines the distance between those points (using many available websites, applications, or maps), the multipoint calculator can determine how fast the person traveled between each pair of points, allowing use for training purposes; a person can run the same route (or distance) repeatedly and track pace over that given route, enabling comparison of times between each segment (or lap) to identify areas for potential improvement.

  Distance Time (hh:mm:ss)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Your Preferred Pace Unit

Pace Converter


 = ?

Finish Time Calculator

The following calculator can be used to estimate a person's finish time based on the time and distance covered in a race at the point the calculator is used.

Current Distance Traveled
Elapsed Time hh:mm:ss
Full Distance

Typical Races and World Record Paces

CategoryMen's World Record PaceWomen's World Record Pace
100 meters2:35/mile or 1:36/km2:49/mile or 1:45/km
200 meters2:35/mile or 1:36/km2:52/mile or 1:47/km
400 meters2:54/mile or 1:48/km3:12/mile or 1:59/km
800 meters3:23/mile or 2:06/km3:48/mile or 2:21/km
1,500 meters3:41/mile or 2:17/km4:07/mile or 2:34/km
1 mile3:43/mile or 2:19/km4:13/mile or 2:37/km
5K4:04/mile or 2:31/km4:34/mile or 2:50/km
10K4:14/mile or 2:38/km4:45/mile or 2:57/km
Half Marathon
(13.11 miles / 21.098 km)
4:27/mile or 2:46/km4:58/mile or 3:05/km
Marathon
(26.22 miles / 42.195 km)
4:41/mile or 2:55/km5:10/mile or 3:13/km

Training Through Pace and Heart Rate

Pace is a rate of activity or movement, while heart rate is measured as the number of times that a person's heart contracts over a minute. Pace and heart rate have a positive correlation; higher pace corresponds to higher heart rate. The use of both in training can help a person improve performance, avoid over-training, as well as track progress and fitness over time.

Measuring and Estimating Heart Rate and Heart Rate Zones:

Heart rate can be measured in different ways, from using devices such as heart rate monitors, to simply looking at a watch while measuring pulse at some peripheral point such as the wrist or neck. Some of the more notable measurements of heart rate include resting heart rate and maximum heart rate, which are often used to estimate specific target heart rate zones to determine different levels of exercise.

Typical adult resting heart rates (RHR) are commonly cited to range from 60-100 beats per minute (bpm), though there is some argument that normal RHRs actually fall within the range of 50-90 bpm. Generally, a lower RHR indicates more efficient heart function, though RHRs that are lower than 50 bpm can be a sign of an underlying heart condition or disease. The same is true of RHRs above 90 bpm.

Maximum heart rate (MHR) is most accurately measured using a cardiac stress test, which involves measuring a person's heart function (including heart rate) at periodically increasing levels of exercise. These tests typically range from ten to twenty minutes in duration, which can be inconvenient. As such, there are many estimates for MHR based on age, which is strongly correlated with heart rate, though there is little consensus regarding which formula should be used. The most commonly cited formula for calculating MHR is:

MHR = 220 – age

Although it is the most commonly cited formula, and is often used to determine heart rate training zones, it does not have a reference to any standard deviation, and is not considered a good predictor of MHR by reputable health and fitness professionals. Furthermore, MHRs vary significantly between individuals, even those with highly similar training and age within the same sport. Nevertheless, MHR determined using the above formula is often used to prescribe exercise training heart rate ranges, and can be beneficial as a reference. Note that an exercise intensity level of 60-70% of maximum heart rate is considered the ideal range for burning fat. Refer to the figure below for further detail.

Exercise intensity levels and typical heart rates associated with said levels based on age
heart rate vs. exercise

Aerobic vs. Anaerobic Exercise:

Aerobic and anaerobic exercise are often mentioned in the context of endurance training and running. These types of exercise mainly differ based on the duration and the intensity of muscular contractions and the manner in which energy is generated within the muscle. Generally, anaerobic exercises (~80-90% MHR) involve short, intense bursts of activity while aerobic exercises (~70-80% MHR) involve light activity sustained over a long period of time. An exercise intensity level of 55-85% of MHR for 20-30 minutes is generally recommended to attain the best results from aerobic exercise.

In solely aerobic exercise, there is sufficient oxygen for a person's muscles to produce all the necessary energy for the exercise. In contrast, in anaerobic exercise, the cardiovascular system cannot supply muscles with oxygen quickly enough, and muscles break down sugar to supply the necessary energy, resulting in excess of lactate (a byproduct of glucose metabolism). Excess lactate causes the burning sensation in muscles typical of anaerobic exercises and eventually makes the continuation of exercise not possible if excess lactate is not allowed sufficient time to be removed from the bloodstream. Note that although lactate is also produced in aerobic conditions, it is used almost as quickly as it is formed at low levels of exercise, and only trace amounts leak into the bloodstream from the muscles.

Understanding aerobic exercise is particularly important when training for a long-distance activity such as a marathon. Determining a pace that can be maintained while using energy primarily derived through aerobic means, referred to as an "aerobic threshold pace," helps maintain a balance between fat and carbohydrate utilization. This pace requires a relatively low level of intensity, and is usually maintainable for a few hours. Increasing aerobic threshold pace allows for a faster sustainable pace and is a large aspect of many marathon training programs.

An anaerobic threshold pace is defined by some as the threshold at which glycogen, rather than oxygen, becomes the primary source of energy for the body. Note that while anaerobic training will result in a person becoming more fit overall, it is not necessarily ideal training for a marathon, since an anaerobic pace is not sustainable for long periods of time. This is not to say that a person should not perform any anaerobic training, as training at or slightly above their anaerobic threshold (the level of exercise intensity at which lactic acid builds up more quickly than it can be removed from the bloodstream) can also be beneficial.

Similarly to heart rate, the most accurate way to determine these thresholds is through testing within a lab setting. However, both aerobic and anaerobic thresholds can also be estimated using a number of different methods, some of which involve the use of a heart rate monitor. According to a 2005 study, the most accurate way to determine anaerobic threshold (outside of blood work in a lab) is a 30-minute time trial in which heart rate is monitored. In this time trial, a person must run at maximum effort, averaging their heart rate over the last 20 minutes of the run. The average heart rate over the last 20 minutes is an estimation of the person's anaerobic threshold heart rate, also known as lactate threshold heart rate (LTHR). It is important that the time trial be performed alone. If it is done in a group setting, the duration must be increased to 60 minutes rather than 30 minutes. Aerobic threshold heart rate can be estimated by subtracting 30 beats per minute from the anaerobic threshold heart rate.

Essentially, threshold training involves training to postpone the point at which lactate starts to build up in the bloodstream, which effectively postpones the point of fatigue, potentially allowing a person to run farther and faster.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

gAxz5p4yRMdhroKqi6FJBEyTslHGstwIMjcyMFRd8CRmIp225 u CPcxUv4dd3Hx9QK3z OdBW95QD1KSxng5Z1gYSdrdLNMNI8H2oL1fKCZoKpjgUIwUidtFBFoxfuqA8SjmQ2htWYGytZ8LdphOw6zdJKV8JfZ0c4HeTd1VbeU3zI7vYqPG6dHRNIn917MFB4NOuVjPign69lVYXXYGvgGHQldEamdg7d517xrJd oYMWjpG pEMt2 n48Vd5ZJZ1nABp2bfh3cqWvtkaX91deD TinZ70SDLCfQ43KTrARvv2VvZMUcdaPNl6HHlV4f1pJzUjG8J929GXdp2jlTPfKdl1jM9JIdNDC8 ycOKlPTSec80ncuO83rGaJPhviVyryRuB6zsW1wf4AV7ktVr2uUTDec8Os6P6oTo4CTjg2kQt1Iu9BqOP5Q3mhtYA7ihThqaWPNr ScVIrzjHPnxkmNV9X5d60Ej87neUCKukN2FpKKV0REhBqDMAxkwtqP4pXEPKNWr3GiKAc4XF9iA9CG517yAx1bWsbkyjkoCFgw3lyqzkZNIunwxFbEeAWjmDl7ERu3CId3AkO9S7elbZWYOeZpJOF9kgFhLzzwApdsIfu8tJ24sTbW7aCY32FsaiViLGs98o43GTnjvOR88eHmjHEXpEyPIQhMRVqOc9UcK2szceZnbuYX7zBj1enTzRyBeZnUh4wnjPlLNW8hgGZOCJEMXj1nFYTEK6ikXrw5ioDQ5KqOT 6tASOyzo95snyVF64atBL4EqyurM6X7265SYEehZEajG6OrVgpt7nOSGzMQZqgg64MoMu3JH94Fj8WpR6Ixux4n6RbZBmDopzZhndrr7t04FaoB91EamjZ vgqrnniUwjw6VQxoSn1RN9FP3VOovWcOOWZbDDaXTv8Q075RZm14S5oOFp7QDTcvBuUD8TxbBq7MbCzOkaZsYdDT4R1OnQqeVMd9Pqzaoz7O6fC1AqclzIs2u5uVo7W6l5Ef6yD8sJu TF9igcJup0Jau0mN fO7U6wX5JGnNHL4OdDrD45upkXb0NxCSjUDwwqmYsvjUrF4s8vVoZXybdQMH4RgaOMACApNRZ6sWa9IvV8HrM0KT9Y9AFD8HA24ovFre5sL8dEGhq2q1gLn121ouulkucAgysXdSlxEgAgPwqSDrUpfbrMIGQ6UqBbubLaYd8V M9Am6NVEfKSPJL 3cmFG w8rbV8MNTOZwzQ2NiC PZl25NZ9n6T8vjJQXhjombHPVmuSKTgbOp1ZG3cLJyWXOvqtcM5FMH7j3FwuCQSTZnxZel9TrmA4WoGAxQv38e7QaUD62NffwOQxA84wuBOXJFG8ksHqwb1ek6ddnvqWOdsQtB2FREg1Jw9Yc9FSY0hbds VNtEw6HXs G0nI3GvEJMGtLeGQeetwlccVKFY6jtJcSyiJFyKCcLCUlF5xRKEzOYf7zkTTv09fFsOP2Qhw2 1xVNb3NuDBVst0VxJBjRg5CLS2 dIEWbqMV0 fuzs4hUqUyT56PeXV78dVYiEzSZ72OXSpa3cWwYo2xy osTyyDv0pFtzZ9lala3axVbRiB7tBpdPZXCCSGC9M8qwyHsrd5F 33pAki33n57UnPVE6Ii08 RMdnGG7mmeC18iA0nhdwY3gCQw8Bnj3N7XbADG8Ti7XyOCvD4veGTd2YweNSEp7PUgf78W8yncRva6vTyNDHieJmSikhoWG1UfxHTiqhLtA48qsRYjhCBjsvupA qdGgCWLfkozd91ttH2KkbyCMCLez9QJuGrTetldC6t98apYshCR4Z LdMCOF8wUC2GGBvcPX2hoorb7HG3XkMF NiQj4X67ZehpFZ02DA5ZczDARWBFQD42VCB6gMvl1YsU50dXV7T8eA7Vp10b2b1IszVpfbjhDIJhpNvKy cKVJzsmSL5hEuVQ88OagDNkSqhxfOtPkxQSnbDMZ0HJXLZd7ZtZCOZ1muE5SH836rusTEKuCwUbAEX2NjtLCk3TLCP11O14gmCenjvPlO7u40mXXQf2 2ENIwqSd GHE9MSEou6dGCEQCoVe2Fpmt6rQkCuXzldLaCRmMqUrjoy3SE4GNSth3z35GyOLd7yQTPWBkZ8OoIzJpTLNPY7xZgpR786yRy9tyNWj74WAvUVImzxEoxxj3yAhTuYPNaCBKxUNMtngtKZHwoC0DvBbtVkcomNK cqXF5UZwtUvzCQP4hq7exlYm7vqt9mg8P6wXYrE5EkTFff7e5Ea4vDBAA2IxDlN7kANhymPErELzpsVkdZanE5JRttx4mh6MYfHLv29YPBNoOL0bLzvaGcU5REa6vstVzSCHT0z6yRpyn2G QE2CSgTSKMIJaRY6ZiKgCExBTcfrp0T5v5s dMKi tI2Mk7rLusFxbNWBa cqmhMJDunPewKs 4TK52 wyIphFlVGZgWPxeljc5vT6sl1onWlwceDXGXxHKKoKnPcrV7PFuOI0aOQqWx9pDJbLCljPRKiwZ1QItFOipq S34eQdVGl0MFMyXOjtO6tDSNq5vfGYM7qeVXVxPdZTAv4Ha5T90dZgVchlJalo1yINvGZMFJbj5 3M2KgykvuP8Ece Rzm2CLhJM6gq3IPbv0gcsKC8jM75KxfKqyYApx8avsybwxnrIykyQrlfuHCmhh3 B3FDs1Pvj8EmDiVxEU2Po1uzWhuWlssgtZ8MiOi94SEXaMLBfRQ08Frb8TwgnHl iKgV8BKBMuProq3O0f6BrAByBXgALrmx7pJTVcssfSS wk8DTCVVr8uaah3XFlFJBMvC2g4yQUwe59xffeqjBXZFcEaKhUpbur1sLK75paY9iEAtS3SFkOPblucXK4MLWKmar3pv7X6XSqIeuze3fIjNFGn41L5ZwBv4uqq0idAyYSJazqzcYhaQV4BxjZFdxq68pVAMhYajim5NeizZwu1Qlifp8XtKO6H ISB4X7woIfhLHha9QMa62gl3WlYmL3SdRlCGF2MHaNWxxlMBSzfEH3Bni7vc22BAj GgpQUJ5HPdbFOAq8V6W5ENKeQK4h7pSFLTST4LG3J8yNIFGRoUc73Yb4gTCWM9v7NappPqa1pttTvhxFo7SJe1BFHoR0DDt8776tZaV0 hxMdfx8WlCYTu1tYbFAStJ5POKnp1dzH0orrLAfxOKGeoF7fy9ChwqScGfrWMnk5QjgJSHbJuWcSMQUVKSE7DynIW7UXiqsXhbpLQIbHFyfIKsgAxIcggF3Pd0qyc6BWP4Ic8D4NkOc0m64KAa3YJdfPlihKeJJ0IyJ6HEOtQG4bwufWWtk5aTWclM1Hdy Ym8A6 bjknuttuZyxHG GXBbGIxD0uS5O12hTfcnyIqVLh7gPpWGdCGsjzbrZZMm8uUfhSALcfewYV4qpcoyb8YndOze19DZbSev2qw2sTBurKdmQZmcZyLekEoTmf0ojsaRUAheK69SqtUJQ7LbMkJFcD5qv8zqlGCYHrjN RbpX6mmZlyGgZNZ1YwfkI4tDth0TwZt6Tdb8wT0lCvZZI0hG71SdT7grG TpbwI3PES4qsxZv0k9ujt95hgSY50QrNdFrmxFAjBZuNxcgF1qdJkSwmqXGE FJ9qMHaSIfE8YkT dEvnwgbztSsRpwWUfmQGLU4ApbVyPzsQTX19ON1aeWd7p69wan2XyvGAP5mI6WAZQvH nBGgglabJvXEVr5LMQOu5k3DiSsiTgVow5r7XOeUKvsbSck9 2SA83bxObxJeMy 3b3sGcgIKeKsYT3OjLOz6KTDDW62Y0tmFlnqfchLGzIZoQH4XNQbmlD41axgf78ubMBQCOt9yABP6znRR9AykR4Dt9VsniRAzHrGgCEMINd8FnRtWZKRiwxr1eIXnCv4Q82hr1wQzoceLBKgL3aaRMVRu5vXm6MENb8lDr4zmhS3axyOhgskIbjt6rdQo8jUInhU976QKCv4 RyfJpzOvE1sVMK8xhKP7uAPE3T95EltEJ3Ory46m2QY0TVwusm5g7NdGoH jPt7qzOIEuxlUO7n4UGSqsbHD0fhnIu5oOBf4p6ITCPt3SCtfPyooEsiNWPMjiEOt1AdBMc4c7ZBptiqeZglyitfbqy5Of NMFLX3 5ECgq0Vcu1lOAtysJ08rGSZvudqbuZOkexnEgugTrIh9hcGwKJQFqbZNQuNlca5 8xoa0P1anIGkW5ghDwRHisz tUufXnZVgjSfYLueObigOIwxWLP9OyQfqeby9imI8Y4FCPbb7sOSRvAPyWHUcwvEB6j7djPkARRAuzRK5Hzh641DxkMK64oqO8Y76A0ogPzhgh11iPZnoMxKYlIZmBBlO5A9rasOY k8diOhIfNH9IsRKhmR4MBTCFu8y2JA4z8OhuprSPK1vUFu6BaLgGvqyTRouEfr1VsMrJ3nNJG96zKzjliOgf4E9 UALJAlz4YdV KZS6dCBWLHrDPCL1qvFf0rUt65vubrO Hc0g6lDIjpYDj1Qgm2lExC9b85WAW XdDddbvQrjFLPnOskHsqs0W7r9ihiAxVSVVvqC79LOZWp9aM5JtheiS9H9kfnbNBQ6plSzhFaesYdE1jRcx6C58I6j esfNJaA2OSgWcBMfOMPO b3FOBriM7rBAt618isqUxOsdNf3uRtkQu3bEhjTahCzLIq8tpBQN6dmQXuL8chyw66Vl1 LvA1zWmIw5DkC8o3kH8NyyYYA66aE i79Yl94TiN3CT4ZlG8HcddUo79eP3S zW1cLtNu2UvfokZ0iKgGMn77QPKl9CfBSmCwSaKUDzd5CGBfjSU4YYs2 6D9HOfLQq7Luxtb7dExJ9ASESyr3sxBnuQvHXaGZSYiRHVT2eNRJDHaTB3CJyRmuuxroBL70O5cTsuCi8DngZyUXbqtiZife3SFhsJg3k7Af9FAyTwGODWZpRgdSLJXvCVP63dBYfwG0hUUWRc2P3zyz226rByLIzjZgarKiXTOEDN4kG88Xe HW47pRkg5dwqORkRsE36ddQS2fIKh9b96u461v94ChOgOC6GQinWqFwtzqKakw2Yd9pLUaTSH3xBqqDCFhkAJJYXOCz126iCMunLj0juI2YryE06YMKxBydGvNBBJYsbpCUcXBb2HEmAW8SrzsJiCVx xTYW1uPakQDweRBpUjZHEiOgwRZtBkvPoooZuAYNY5dcdOG1woHWwdyExA69pcqzGCkefW1z0OEBKfqKNfzBDv6eK1j0p1dr3dBdDdI0kHK6knwHIYU42zXrRFCTjISjAHDfbS2bGN21T EYE5CJg5u8LIqtwYWts4xnorIQts62Yf Yd8TbLXAOA8DJcWTYiXQekeBgLlKGJ5McTj0aFK2kBKe0KyjuA7q9N3VVa74tDBSw5C0 AeitIlKxKeT40iD15NLiz pZhAQcbFagcVicxrLbY5zEf98W3wFx6bq0Yp1tcUKLomPf3YNkwfG8Do4ChYRfsKcRXH2Y6wcS9cV9XWqFC Ukp0K1QW 3I6iQqZdC3wKqWlQWajOS8yMX8QtwNeuQqe62azETpZQnb5qM7QG8XUoAJpyEDD8 4PJKTxyqlcQ5LTADOwnb1ApTW8ZVI4toSgGCPYUvwL74PoeKDDyXLBUUhHPKjMQTHFZlammCzzu0TKzDRd9M4c5CLWBbPVVdnUpF3aiYEunVpAkVud5DB4eK5ng0VujcidBvhfDJBit39ApT6wlrC3MSQ2WLarrbKi8DAHjEsyO WdQH8lKgqp0KWMMIh1x8JejYLrSwCyAVUGME qlfQG5Klx 7riBgy8639s44vDgRjC67mElg1hX5V8OuH3G9wltdQREtStc3mfDIn8gVEi0wyOJkVcQSdd5Ht1bp3blt M5OCnWUB74MvryqmRyKxquo2y G0CgTAmmQGp20ND hdSDbM75tV1p71zQbU9W RkaKvN9fbyW8wCNUHMfbB32suE3tnulYROR0IRpDKJjUxY OWjJ KJFizaiX LzDE7P37oI8fZMJovhP9pJMty76q2Cr1T0crl 3nM3EPHHeahWgoewtSBo 9xPAS6vvTCPGfr1ByWdhjTxgs1s4hujWP PMGuVb 52H0Fm2GETTrt jeRxDYMD5HCuTILpuYey54HS4Op0YSvjJP4MWkjRvMUK1oGIorPwa9QA2CF9QlDhFVd5GTFW0FEBvpEQbO92zxI5VKoeG6a3p2PUTM6AKqaR0RuTndc4meC9vBcePBLKRsmCkmes1hw2vnA02HOgV mWPl2SON8ZU7j5rcbHWd8qKwhFeZt5SxAdeXLOJpAKPWyYBhpfhMgurnphMURCLG6Va0m6h1 vWlGPWnfAV8wZDJXXSJf B3NmWTZ5vjgOjqtUU1M6YZihW8pNjJV1A1RqkGLni3QmNDE7Ams56gs1pw957DF7SZeRmMRbay1YgpjdtgSrs5Ld2YVaYFbXI238jGCpQsOqAO1xX HE0dqTJbxh0y3SiSMMMhIsqVNJhFZ6donJDSwd5hy68cBKhzC5VVqkMi1R50IRpamrdW8U2d8GBKO3siHXTbeiJj8QRsTZxaYzi5CebkjR9EBYSvyaNdJ6bh2ZvJyReJ3B03ly4l4f6h8BaLOYvAtcWTemT0DrwwCYcHHz8NuAl R67ctyZCujZqmLsDiKbj5achstGjY9eSVJht7ybdBweMwfm0YCcDPClxrijbfg2ayL6WL1UApp6kzH dcjtAb5Kli9hx03cVJ1oW9EtNNyPKMAXgoaHXXOzENSPGjUpu6FncOKhIDJ pv5pCzSoaZtkTkh5QZ4CwPSm7oMaEQpfNeaiGRLmFj4RqIXS2HJMQhpgaDnTtjjMgOpuXqjpqVt2c1K8crhDp42p2URVt57YHCxDTpuw4C4XBaKSP6 IfaWFHTdUu1cNcDnOHsyXZgZ8iXCjL5 XICLFRzCaZRercFacKL4CBJv uMvzrA6nhayu1uxORL0eM9jHmbrPKQ1a jJHwzghpMLRscUEP5XodSRJ6gaErI0EP9KqhIppd2bfRaDpMgR6vFiSKbr6w9BANtvdbslUoEf jbkK4wu5yrrmT2X4G pSJYAyHtdJCJFb3k8EpTwCO GU4xROxsHbq5z4kfCHoVqdkH4WUktskcdOysXvMtVzfU5lOPKvadaQM5sqTLOeBSdSJjF2fAfFUT8S1nvxGG9pZt6xGJg6ibuqItzlmf4gZ6354 amNx0PpG1S6vcmmBON9NAJXXn67A1D5QLFAQV89k HPBDL7aeJ9aBvIw036fu8 QvGMUp0 sHJ6vA2bGXOLQtwNI9nmOkTyKBzsW1KDwM66UpehInpHJngXDraE4HR7 eBK9ID2lXo6FqolvfTc u8Zepmqhi2svpzwID0qNdecedKoDbL4xbFi8pSNrP50mDlW4xsDQfDonU4X7PILeCCYam26ctzk0JqUMD p3Czzaq39fd1LFQ5shgdj9jGPaS7Xb9JEssiXFfRcaunStVcjvrT7HZLV7yckJkhhsfspFysMW3T0427fvnqIKByM4zRK8H1rlKV4eleHPck3N9VDY9FHNv8Z VI7KBKM8MWnvZIfiKrsyq0ZYEbFrnfuNp68 wjHgp3H7mMXLWHhXNUiI NEa0zRtR8mHham2EzqDn7IJUtI5KiVkb0KlyGNxZBUp3LarzSON7kG4hl9wLpnwIfsyStlfHLoOJF LjhY1M1bKWhb5uRB2iSu1BMp6 8TtTG5e7KpU4tAv7lVrSuOcCkDrD9pntfbZ4HgamyqDasTTvqPGHykor80M788yeqNEIP7mfdt57MwH9gpro5G69r8nl4QQwFFQvUeE6ZNi dhRO43fCVzuz9f3EHriXql4d0eR yBWOnDg2aWUQEuRpab6LhgnxA3eWmmzSIpMvcYyBwNOYSfKdB8LD3GTQQ3JQD10FGUPMaWujRdXEe2vxHmyx didjd2HQFHcwMT0DMwCgqcdnpStY60iQVZNydecRyEK k6Qz6kOcXt3QUeZTtDxtrT6y wsxMs0NzH Cw0JdF1SDkL9IyGcfsrt6yYGeqxWut983sAHg 5D8Lje41nwC1kOu7ErN7482dCsKwrp66fb8 sgz65trQfmxoRZb o29iQWcR11yzYt2hYzTs1So5oWpTFJsSfcnx1KboUeNJCBDLZK8q4RKnEpSZXZRxYOCdUATw8Y5GYux9xfcVcTNLHDWg3n3Ze3lDt1e3RbqebxY024oD46AI2xUeeV4J3gBRaQJFvvUnoWpuwHFVmOR3m92 cbfWEeEUP8csZ1Q39iEioEG3rpgEdiM0FIClan DX90qoPMsb7FT098LDoLRRM94MmUnlFFhGlI5QKhQjvZ6UqaTbmSvX0dNFp3p11Gx5ZS49bUvkpRmfAHtXGO31PMbBX59la89lQ6IUWq9nM4wB7yn7WakHmSuazM0xTDPrz3axeZ W wOTuhEhHhydLuZLP7ccEN5ZnYhNqe1ZCmw7Xalk2BTDtL gbx7OVgeE 8FzFPJVa3Vr1DPKjZ2pwzTlf9ZXz2u0jL2IB4DlCFYkWcK9mx7ROh5oNsxOpYuv1AKAPXKLAE65NfYzb4igigaXm 6eluBk4wC7sClx056nmrsXsv6X5aGy3KMQsyBkJG46zxLBDkkQqDHebIEjZyiUoTxDKwK4YeckTCCbMKzhjAo94I66wZE0a10ZE4HZfFQf4DmOl9B7Eqlq39QaDg5s30ChneFoA4zjY7AfQ fvtavR7YQnmhpYzaYaTk8gFor3G3jbCJUTqYENgRxTzRwpxgCEZHwwWfvQQ5S21 aTeKjR3dRtblfqPavOWYbE3hVDbL4UgcP4roEtHmzktNg2SAYzqse76axUWb7Wp21GwbwopKVI8mHNIvms8Xwpe6ZNjbJsNPd2inBy7SBw70BdF3Uh nKZ em8vZjwIt7NWhXJaGSkb6WDvXMJdSUilL2yZFkykoUDjgwNKVYsfbjgmBiK8ninqjbDZiZuWp8JeZpJzNPcJuGSEQa6rwolsXcYi3WMP4VD4PWSySp2ZoRqCXysHDr6qynUHGVFX Mq26SHIZ64CVZ4i2m2KiN3yzrlKdLc WtjWrmhrHiuCl1ur6eyd4W c gnamIxn4C 6ruMZYOrSwbGrhkz8AWKEyHgpFqRPDsjrSGDUeP PvFq Vvl2IUgPhK6klgsRZf0WheekfAcmCsBEZvIQbXlAolPG0iUCiFPqkGNh3XAopDw5Y1T2Zh64rE8nPyIAZvGROokP6CZws5XQoH7D8I7TuBibLZJJDkG9FXgxzEL0n8fXtdfYxUdlRZU8VT1iP1bApS7jVqAkTrleUL6PPynLrDbx0nFdfsAwlfUCcf4xfwclPz4EHQE8H K9ZkxBjBJ95Xh2ToeVaFKPv2 tn3eNSfdWI92XROyIO45BHkDG W5FsZAmjZ2lT UmlJzAvQ6yyItLEEJaj4fHUq1J4RSRvAuE82LZZcrfi1nFI2tGY93WcvyOCywfIs0LVd G507ZCMDZ0Ug2iW8E0fhgxe72Bpe3IjoVKyBjYyZw1JygQUqLZ0hpC9Hli47BtA1JXGaYHRmic67M9VxO3X jJp2kE2UWULOQ O81gldSBBz7llMVhFsPEwWzExCMMozejO8dDl90oEHKjLdtXbWfH0cTQgLqCmf Kn4lLf80zddijRbnNXuOSqsSRzL4e3lCLN5 K2ZacWGqMMw9pl6MxJA8nzzoCpe TszUjjOb1M7O6g4Ga3a14MD5Yg8m1zhiOTFo3ETnJy3kB1DArn6g9kLPczPwUkbYA7XdVVf4NeyT3JmkcySSTdLStx5RGGuLkzO0xp5m9EBA6crKgShA0xq3lcn 3Qt6khsAtMXMutGFF27ZBroCIzPW5DH6g U1qJ04669SmzUZrqx1FrTlZyt42JDDn5x1CJPze8g8eEEf248YU48KJRGX8uRvQFujp8ms7VuB1H UcrEIbg73NszDzcAbn04DzPnY2BYNcV7kkvlvuYCPLnbr5FDbL1JihCEprrm8 ipwnQ1nUqwmTG3BfG mD7hzJQELhuaP3sSk7jWrid6Ga6etZXPerGlD8kZMdi2VFqIwKpJV4 r5MFOPUxlpzUqtwn7dfb81FmaDTMS5zP21JJOvlk2CV3PPIDEqpvts7snJcfmJdoGgdRjq6BOIk100SnEz3o1f8YkwryS3uxIutLWMJZhXWRAVXu9luGJC7pFbt771Hp57aOhfEjeGMwLeEac2rYuPDMewjMHaU7nHqspQsvXJjyg1UdpCzTFH3GOXrwW2lwX HXaa ZSEt4Xl1k0nhzRulyJReYJcH6nEGxNYPI7mJwEUMXypIL6rONqjz1s321Emg6LqInjkrH PSgGfRHLnzGgQEVGWlNpzZ2BPcl2 RkBuivycoxDHVvUK84FlbA0eQFjrMHCxWJO6xM7L6Tmez3zcycSkgUWAZvvgYU2Gf2v4ksrug7aHUPJ4NECcaqHxMAlAQFd nRJvUDe0dlcL1BHHw9IcbJdSGB3VmHgnXZJj8YYCip8yuys8XzVlfyPzYhzdea5TiiCtyZVno uQFjcA 1V2oXOJk6O0Amsi6 WPb4SmOk0q0NWEhO8PhpT0zi5PLhfL29O2Z N yleWTXDrzjaIX1Hj7w H k0Qw4pju1tFnkvPozQSKmXPa6ThPRIxYr6Qkcn7acc51br4audB5VcO2cAZAR16qC7wGa2qUTTDmc6TCkjyp IcoTwZxlgcLtM607CWEBjQcOkb26ugSBlxS8lHuZ5efXKkW0Rxkkm8mBAMpvKCxkEx8XHQxgvNVAihw nmfnJ5ILK7uUP1q1gYyqmEIsgia8j2tuoyGJl NSravaP5228rphbL8sUr09gaY8eB7ZJamjrB4wpoHeuVu435qQ0D ZiMsglL1VvbDnsPATJem3lN8JUdIMfRJWalhwg15C87Rlf6VppDxVJKH3moxHGDLbtgzRYxlGnkFsMNVUqWT8wh2FOn9lzV8zPSVhXS6ZVBaDG1eJR6Jdj7xc8ty qeSAoHQj7LFaWV6hksAstF3LzXF34I4KO41FPQ6mGzdk2 qUWqjhxGWqPC77FiYm0dmqqU1le97CyA6Ga90zbBdPb5h3R7bsuziijpEDjCs9UcKYbkRRPhQmZiVdBHWwOaHpHomEuyEnddWPFyxaN3pIlOn7V9MnV5RXeGiVhKCsdzjpZ4Ae180dR9YtoJaRfdqKnuTtymhNCSjzF94CcX09ynfvTSTSQWq2YjNPaBzbGAKPxvUQoyJeQg4FuvfjKDoc4B2IYgxNp1LrUcfHeL4rUYyr QiiU84clX6P4XETwEHNNWAboF0QQZML0dK5s46bEqZBxCER01Rckxh5ZiuNBmLBXmvpw6tZs5FPmT6t5H8GlgDAZQuGVx6iCo9RzKkihUxXtwDWX4KuJHcwpqYvUYe18edGP4lJuSEniP9WmE6vkpwZWC2dMptcDb8k1TWQtgEmNV9hRCMnwVYQmwx5pPHFTVDTbrmnAQRFwqD3bf7hNRnnWMzMpcLkrDSi4fumorG jcoVX1lJtFeRkS17TOnEKiuPG6WhnzeKbV06fRPwdLhJbISXfcLhYHx73bu8RBDFx850 mZP1Io76i3fNSGErAhisHoXhtZxgGh0DmKJI7b8HtA0mSsXjxbVc0NZCEBCtu0klh01YtugIN7eIIaIOY3oUPecbYvoXrSgbXnXZgYoNhyqEaei3EbXjutz4uO 4yk9oU1B1Xsmk5etPyv