Payback Period Calculator

Payback Period Calculator

The Payback Period Calculator can calculate payback periods, discounted payback periods, average returns, and schedules of investments.

Modify the values and click the calculate button to use

Fixed Cash Flow

Initial Investment 
Cash Flow/Year
/Year
Number of Years 
Discount Rate 

Irregular Cash Flow Each Year

Initial Investment 
Discount Rate 
 Cash Flow
Year 1.
Year 2.
Year 3.
Year 4.
Year 5.
Year 6.
Year 7.
Year 8.

RelatedInvestment Calculator | Average Return Calculator


Cash Flow

Cash flow is the inflow and outflow of cash or cash-equivalents of a project, an individual, an organization, or other entities. Positive cash flow that occurs during a period, such as revenue or accounts receivable means an increase in liquid assets. On the other hand, negative cash flow such as the payment for expenses, rent, and taxes indicate a decrease in liquid assets. Oftentimes, cash flow is conveyed as a net of the sum total of both positive and negative cash flows during a period, as is done for the calculator. The study of cash flow provides a general indication of solvency; generally, having adequate cash reserves is a positive sign of financial health for an individual or organization.

Discounted Cash Flow

Discounted cash flow (DCF) is a valuation method commonly used to estimate investment opportunities using the concept of the time value of money, which is a theory that states that money today is worth more than money tomorrow. Forecasted future cash flows are discounted backward in time to determine a present value estimate, which is evaluated to conclude whether an investment is worthwhile. In DCF analysis, the weighted average cost of capital (WACC) is the discount rate used to compute the present value of future cash flows. WACC is the calculation of a firm's cost of capital, where each category of capital, such as equity or bonds, is proportionately weighted. For more detailed cash flow analysis, WACC is usually used in place of discount rate because it is a more accurate measurement of the financial opportunity cost of investments. WACC can be used in place of discount rate for either of the calculations.

Discount Rate

Discount rate is sometimes described as an inverse interest rate. It is a rate that is applied to future payments in order to compute the present value or subsequent value of said future payments. For example, an investor may determine the net present value (NPV) of investing in something by discounting the cash flows they expect to receive in the future using an appropriate discount rate. It's similar to determining how much money the investor currently needs to invest at this same rate in order to get the same cash flows at the same time in the future. Discount rate is useful because it can take future expected payments from different periods and discount everything to a single point in time for comparison purposes.

Payback Period

Payback period, which is used most often in capital budgeting, is the period of time required to reach the break-even point (the point at which positive cash flows and negative cash flows equal each other, resulting in zero) of an investment based on cash flow. For instance, a $2,000 investment at the start of the first year that returns $1,500 after the first year and $500 at the end of the second year has a two-year payback period. As a rule of thumb, the shorter the payback period, the better for an investment. Any investments with longer payback periods are generally not as enticing.

Due to its ease of use, payback period is a common method used to express return on investments, though it is important to note it does not account for the time value of money. As a result, payback period is best used in conjunction with other metrics.

The formula to calculate payback period is:

Payback Period =
Initial investment
Cash flow per year

As an example, to calculate the payback period of a $100 investment with an annual payback of $20:

$100
$20
= 5 years

Discounted Payback Period

A limitation of payback period is that it does not consider the time value of money. The discounted payback period (DPP), which is the period of time required to reach the break-even point based on a net present value (NPV) of the cash flow, accounts for this limitation. Unlike payback period, DPP reflects the amount of time necessary to break-even in a project based not only on what cash flows occur, but when they occur and the prevailing rate of return in the market, or the period in which the cumulative net present value of a project equals zero all while accounting for the time value of money. Discounted payback period is useful in that it helps determine the profitability of investments in a very specific way: if the discounted payback period is less than its useful life (estimated lifespan) or any predetermined time, the investment is viable. Conversely, if it's greater, the investment generally should not be considered. Comparing the DPP of different investments, ones with the relatively shorter DPPs are generally more enticing because they take less time to break-even.

The formula for discounted payback period is:


Discounted Payback Period =
- ln(1 - 
investment amount × discount rate
cash flow per year
)
ln(1 + discount rate)

The following is an example of determining discounted payback period using the same example as used for determining payback period. If a $100 investment has an annual payback of $20 and the discount rate is 10%., the NPV of the first $20 payback is:

$20
1.10
= $18.18

The NPV of the second payback is:

$20
1.102
= $16.53

The next in the series will have a denominator of 1.103, and continuously as needed. For this particular example, the break-even point is:


DPP =
- ln(1 - 
$100 × 0.10
$20
)
ln(1 + 0.10)

= 7.27 years

The discounted payback period of 7.27 years is longer than the 5 years as calculated by the regular payback period because the time value of money is factored in.

Discounted payback period will usually be greater than regular payback period. Investments with higher cash flows toward the end of their lives will have greater discounting. Both payback period and discounted payback period analysis can be helpful when evaluating financial investments, but keep in mind they do not account for risk nor opportunity costs such as alternative investments or systemic market volatility. It can help to use other metrics in financial decision making such as DCF analysis, or the internal rate of return (IRR), which is the discount rate that makes the NPV of all cash flows of an investment equal to zero.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

9vxJkzT6NuR2de00dcLVIeZCOb6zwiGSpTEIa7t4TxBxeRVmlLFwguCrDFeRK6e OjszVVrHadjg36qYFXN0ibodMrYsxQ5Bm5C3PWzIM2iBKjo4J0mPXE3bST7f7C2E27vCIBRXAjFBBg IuM2 90QpyD4qZXKJ0kOSo7lGgc9EMxllglpSBJO6Zx4CepsnJw9AfoLyeFmZ68iZlGCrJDUu6fuZgqmkwP9cOd9eyf1uGkpbIDea2BMjCpAqmfJeEMXdUzSMQkEuhuRuNfr8yR4V5GJ1cFjtYm0wE5ZD2jdOLnilU9DPorjgXWI4JkJibAn1spGP2mGdKf59GJTWK9AfzGGctCGcMXDoqoKPA0Osp6EwfEnZ7q0WWAWqN6nSAVRWubqVixuQ2gxlKIgE2R0r7SFaU6z9ObQMVh6SidQWFys9DsD dYCezw k0MOhL0US9BzjLgcpcCuHb89KK3QTaNrl7t DmGGIF6vnbsVn9Z6ymP GnrskkufqtdIZIt5jeUBE58tIKgmqH1T1NrZJK7sP46Ne6WmadhDCsgV87KiJKlIjhf Pl3EMZk7iQBvN2x5vSP1MM3YXt6UxeAYtjMxUNf5yQk3Ig5WbfjNSFoKyETux73U BjQxI9EKPMRe3dpj2h0XvmBGThbYCA9vR1CV0wjtTXUpqhRHd025qePT7N67RHT3v6JDM CuqhKlj6eJQQScWMspHMLZ79N5jAp N0st6f5ENl78qQPTPkwOa4Bjmw XvgjAUDDug DfTQ01maCy4s3OSi6vT2Zd8sq65kmPouOd4GLp B8zzzJPZ5F4kmsa7yHp0YwjttDNwoGmoFfZ1qQsfMtH1ZMPwn5KxLjc tPCuIsmzJoDL2KAhlAW4JNByuC4vkzUiJwlqilqiiyuWkEIfrjvSaJjVDO9RYsK5Urib8IwirsJPzNGYRqXDTgpLpHKvCjl9ZsxSVLdNf Q9WYGljIiyIeR2wPfYvUV9qWp4q98CvtQGuhqvoIWMnezEDShduDm2qWCTgcvypPNnHyZdpn1G7tPyz5QJEv1qNG3 vfMFKzlhRCZf9SuDRiQXEEYUeKB5G7Zc8njaxNp8GcblsuJOLbXaFwlhjnMULMRNzASxSCE3S630TKmAg16sJUddnFYC2V6ejaYLmB VF9gIrzE0huOqnOuLDrwKc0UesQJLaCuXSmQy7VE9HRftRVDYMKU012Z4e7g8RJLsW1JT0KsSzP14XNTLwf9PFkkrJqqqfYoJGKDImus5Z3ZNnovjVAogXA RKu8okMvhjka53qJ0rsDXJJ7Jr215j1V Q54JidnYE9vg4ZWkhAH UBIcXXCiGx9RVmI2WDhuRbVq0mybDXE1TCTRdIFT8Y1Er1xjRgpwKDOut9PbxodER0uYa x31HkVIaZo H5UMnXm0uvaRCCEvPNBKmX0LekFqcTtKN46ptKWJSFuzDIUsEPVg054VX1aI8FUFqszODEt28igYKij8SFsnMxe5kICKgJyLEs69NQqZpVNuQ0PAr857QyWV0kBdEYack3bYn7EDD6iYhUxlnSPIQwAf8QHpRgmBySemwXCWHlbLzMI2dN8O4z6O5oMJ564TSw0JESlncS405LnB72wXUFG0R8tu9SVaTAb5UZg816O1qPXmUlUZ9hBdfkFPj3WfIR Nnlbtplo762do4 wJkdmB8ejQWoyuOYaS35YHqKDsdzENwNGu Ae2x ffw205srnhuPiSi0HxkYTcNzKvtJvNQFEsISJjNBSzhcNE6UWlqfR7F2F7RITf1miaYzGU5BHY4bFNqIAr 3Z7H3CACfZTtqG98PtOKjHBnMeY8Piy5N7YMr3R7A7Huydjt S0OZRZ82Ecfg5tDGUm RdHqS1R9o0zjF1MoHW8tJDPmXJYf5hYx6mDnUsdioolY69b0JMhL4eYyPstOAEOBbsxsehPGPcmplGvGO3 LDv8F4FwGiHNDaEoY2VOgNgW21T368rvtOQq2ZRqbKVoYS0yHwJLhPz37VNcWUdOP1ZPasF9gPRssQK6Z3gYpP6KdUilnlgzGFRjQfAP72tML9VOo39anzRB0ymkCk6oDqRdpQi7VmHJzlcYlk7Ww99XHckYnS1PfnbN0mwuDM7v3xWa k2v2twfPzjHyhAzCmOav9dn42olotlRUBrMsRfWuweo7LMZ9W2tI5mvXQX7hiHzl0mSK5Dru8wcz8bvblBdFxgeuLmEbpn Esqz zwVznfBjJr06smENPaRQgojaYo2eO6l0OSm3TTzO1kt ZA1VPygWAcPGX7V5d4gCi0e6gs5wguEDEfqPka2S E8wufYJ5jAg9RJF5Y72jzE2bClkeD9t0jVl5lgynvs3TH7QqkeBvugUXjYXf4l0ewkBsyJVif GCvp2xKegABuqKfDQCeq8dGb8X v1GW5tlXcK7aMAmXuVdJx0x4SUUfaEZH6QY4JEnnGt5KA7ePzZuA0iq48Xk MRSn0lnKYPWvq3cfxYOfEVWCsukl0lFa3HxMcoLflaG9z4JGmIkCwAyXkQ5lSEBhkBB0NrLRQRHOcKpa8b695ef0Ce5S5bEUTebbOfjgJNAnSQTTkEdwNsusIu35dVevO3AR3kFM1qxdJ0a8eGzqiuht4EAzA4XhambEjzv3e4hUiEQQYmIuKvTSb5YwlJpS6QPoFLVupVRcQHTIyUWF8GotKvbjFvggxsl9cuBvb1nwZbQ06OmTwT2tSht MBUjdm4 YIslnV8DfPtOg87g51ESaRfSofRq5752PQ 9afgOo5LWAxQf6zbY69sYnEUgzoCVRQ5TypwXeKxJz3k2N91PnFrvRSBNtaFoTGNzbPYyGITiUMRY8PI0TszTkrU2DD3GCOLQkfW8DXymfIuh7xIOm0MGlZO Eiy35u7dWgWQAetIVPbP9Y2VoQOIlt1SBJZscxPDPkNmhAWYKnakCPJY27ELKfle2yj6PLQ3v2wxZSjVYwlzzKFLfD i 7yiHFPMNhiUKmBPSgJDYOUHkCxXoUjWxAJehOtq3OGh4JKSqht9UQBqnM06gsrw2Bs4At0hjFv3UTJHQxPKsRvL JlRz1 Vbbm1SUEs oRMaM VnwrFQeNyUXOYQiOKvHO FtnpqfrpPgfehIJetcTjlgNLIebwVvevYA nZKXCoyd82OsNkpt21bXdgComzu8ZNgSsu3jmCBAtGezzOeSRkQmegqlEVtWthU6vOWko9Pho9mJlZ7ggCd27iKs8jsIUDFtRluirriLn9LWnhMNLIHehExjCpB8j3vK46CmMNTTmhlpCeVbfvBvo63GZPXnx9j76GJuX9GPxd1CfRa1wamTMMR0BtGKfSxXsZBlrldO84CsBVWzxJ5y0uUpPMuCYXA3u34LwdmgmCkGVLKMyD9NONN0HBSPbT5lAhsSvgWLh 53cSTk86uD9cwCYSceAXU0J4J4rtSTxxsMsE6oImnvdulghWhXw5SLIGhLNEbBAr7uHB1qhYCM9sRsCdSSxMF2leDvfMtRrmlqVPpXXLLB1jY5t6twmLiCiHdURcTeSnSvChQJIPvSnhQ5vZR2MZZpS6aH 5564HWAT9zzgO0RCGyzO0QorP3xDGAvQpjd6nGsfOpND9zthAjabK8 1cFPdMCzZt4L8onh qUHujSKDo6E2umvAtbZqdZZTKNzgll4iDHSfvmCA 8 UoM6aGXEo9h563y74pmCcOvSCN4DFw82JLAmIh4B4IK3TC2t4PgJjMFA7aYVf2BHHE9S0gkjm15CqHK2PsKr9AQtOVua1WFfMpOoEWAo5WnW0sM0ms36B84tMGQgO ZtWFMcdmBmIhSAfN3tiFPsqS4PQJcMYSgkpNxyTZ0kdTk31V5t bbKoxzuTAr0qnPExJFspvt5Mc49MmnxNZDclR4EucpsraQN4z4iMVicQIUojxBB8wvX2DCCSv V9 KzRFSp12o6SMnXBdQ4z88EiS4pgwbGePP2K5 Sk58DFC8DBRQgS6gi9XK4JUUm4UjL0XYcdSzhWsaHIoutbJdKksfvd04Dfl7yEYdZBtq7FxBFjyWyF9xVyGWo z pPfMxj4CoQGXqOUPxJuXY5opkllhHZwMixrnAdxNLowXCJJ7lGroAHC31EKMBXbBYNbBALehG2 soVb84zA2DXRqbyazDnxW7Upq9pnrf6tEayTCFfJDuwqzOqHgWJJpbcmVfWsd9GRpXFIr9iQz5WmChSN3gG95shdkrH7wScLQbojpIdiL4jBIJzUhcsxwasjhiGhaBhtGY78pywsRKuLZ7OAPT1ew39wBZklxIcGEE5R0qSA 1veTvhADuCBmiRalIaBq5k7ZVy1HrWqSAw1yrylV gdN7kkUsIvNRXbc9dz2GmtDyY0blAeJSbM3aAkYDUWk6NtNTFwqHmUOe3iDY3hZEz5E ar8WOwzOcUjMLSJwju7We7iQjLqRFgX0qnz81qCeIJeiWd67mr6HGJuryaKltAX7xmeffvWv4lu6tyOki4iuVn w1EwRX6GqaKDACgYwj7paed1men655OLO8Pi3QXhJTaAfoIDt8f5uTyXCpjfnfB5vQLTgfKihRH9Tyc9SOLGLb9qdxMeHHNhyHr922D6l5urtJwFVOtegTyty6xNiiZopbviR9Sjj17PJGoOlyejGaUjNMG2lBiTOTXM3xqZ7WyqRj3xDfuw1RTExaRuOZVILuctodM7XuHxmlubVyHFdfH7MvDUuSlYCsYXq92xM6oL195X4hJUuopdSebdiccOXQWfg9FJqSu9UOxOJC0wcbdECPEc W3h2WAExbrhT26NPzGblomTtEkxS6nWMMKu LIppKXIr5F 7hbLGwtIda09HXRCRrtFk94z9ikBkInT3atyiPiGeSERp2y5hI9Il6qx4yWjVd8HH5n44CrIiqH5 yiJauqq3zCVUbJq0iF8yypTL 9NROEjRRwU4XfKBSr qBkTt1rP1oPk1Af8YOSFK0fz2EVaR2cPmau6D6PN2x23raSAW2TY7muR4W3Jxkp33R5DeuPCKB8EeGTAXm tnQKswIsQYjiXhJDCaKn9cJFaABErZYzAEG8z2NI 9NTFGgsJIjsrlZgvGSd7n0XnikQe8vTWhmXaHJ24zmUhgRSPmZibp zcZrpFOnmNQruv39pfO82dWm86o2x8P9xOvB6j iq7IstG6oC9nNWEZY0o86uczO2NaPdKE08H eDl7Fs5mwjeVtejkbphBRavBXjs9T3uFBS 5RXIPXDJqzgD1IguRn0 CUA5qbZQpx LNpG56syL9KVBrImXEvtQewXErIYWGdlSBTO0TyIQ42PzfZXTiGtX4ztuc8vOVYnwg1zxA6Qc37 QTW27ALF7 RAyap8PjbvNgr0utg1kydAs0cacZJpUxrsiONZI4YlnA1VoiPPnqvW4SsWG QFLX0XoYXsmcpVGhI1vkIydGhZ9M8R6FdmWINwDLckDX2RQBcdC4bEtvZ7pLe4gFkLofWGFG4iBjGR7LLtVfa JEAAwoGSdCRnI8Aup5EhqNUs3MWWT ZVBY62vxFEt9wycKbtp9zPAMWqOozmp36KpdCHEf5Bq8e4zDjq4lKC4DILD7j55Q39qr41nflpVmgHEH2RO3FzXVuZbMA0379JtSzxuHYB1s0tMaVE9NCSE0Iq wtDltMEgJDTCIGgbVrvwjwPWd4L8pDGdHEHJ1CKlIBgjgrsLmb8rTLfFMpVWo705iFaeQNMaxxBCPg f2HsGDVcEsGZILp8QiDa8LD0n6QUD0wdudwbiwRmkJa9MzqJGPAe0javk4eI2BcqO9R65xOCiZllUhU14b2MCydwyPE0LZ7Q9EGkH7zMGb9 Z7R8IsPn7uwWRTDzQz8tLm3Ll8c4v8vCwmkvjeFNali96gAXkrKQL4SfIwM2uaPdC3bGU7vp 9qUewhJEbJETPGusNUBHFxVm9jH04NZobiu2ZEawBGnrSGBisBGgAc4F03gkJknbU33DWzKzRp3bZ2bc3RaLDQ71AndokJYQWI2Ebcc7i4whG3gga52sSIEX5NCU3BhDpYxJNSyQVr vk5MB37FFHEQcSlqq1yxStspD4RuPXr70MIW4PagaQQUR2O8UBcoUqUswTRGgtpRJrS1NXWpJvV3bJ8cmfiPReV0Gk0tcaeDoLc0bWeMEFDUiwKEvgfeUgB65mSgTqfcRFDPaOctNPESSDvJUAceXabFwauGJ4sP3PvO9cJ9llKC20WewDP3h73 TPYAeizlkfxXZac3ipgv52F7W0i4y KKb32JAhZgQr8pc1phPNEKDOj8o7aZljXF6fzSLfrrtQAp4IxY VUYhtUKCASN7PaUg35aTNHy0POsZwXaunMhf3 ZdcCBH37jCD3xcKBrvblbM0q2kLMYRxGgvNF6LcinStFxcEknHf23jr95ZdFsPauK9OxujBXXUq2amIheiKXeEoeEr47jA5WLQxzW8BVXrDGhag6AvGEQV0KYtHEs6fBvd7NmxGxRazFn6yZWiEu uADtLWwd74Xzw7DWIYYo9cGzn9IVMldqNi5Bpl9EZZwOYDJIGgpuYI7NCKMA2DUGEdPvgwZaXCA5L5L5V Q71FnBZzc Jlal3rx Lu2v2 i2DLjG9nbsREWB7P7D2qRZYd50sZ5QuvGojJHRw GZsC8CP5VYp5trapHHYN06LPHi5dOVMKHl3j9ChY0RBpiupFuzjpSOwh8lIraXVRe2UG tsr6KorGg6lwgtJJ0LihfPfQK omnMdUDCIqEckXeI VIrEvSaKyLuPLJWbRMrOCFVxM kB6EoZvsEdaxYWFGMlaDFhgCzbF3g5vVv6owKaOCM8RqEfkHPPEZEAoK4AyoIOSucav91dZhN j8wVfCC9no1jERb09AK 7N4BTbbp5brLz jTuNOyZ4BbXcEsdLgo1k9jrSV8WPuFTdqHif4bDbYuDZyKVz3nmuowwM1OO2aoNnXLCL9lW0bmM41wI00Oex1j MDAwQmWuROmC34O7d0mpzMWRVXbDGq7sZtyYR0jMfdTm5cPaaNz4abQb7WjNw4gVBdemqCC6JLvToJv4cnG3jRcQ1312KebnIV9AE8MX1vLh2OekBzdYSsRNPULBrUkzB19X8FDbJ3SQf0rwyjdWBEwUX1eNqu8pRVR9cVaWICOrAScvyQ348anOGv9ZPne aWawAZBjENsahvw8g1tGzTw7a9oIkDJ4y42a73Q8VP6IVweiYCNMdCpkkBt3KrvOBQqbgzdVy7lNLxp9utvB xVwWdL 0pg3SuuVf suUJteQjPVa8VU XTjocz6m5DNC0GS 4NmXQ45b1P7jc3sCqBE29XdRR3QbfIlMht1WnpnemrcEXBP7FzU99xcy06d35WU0nlrlkpsFVpm2AYrQqYx6D3LAfwG6FnKRCMQ9AiJkW7Tm7KvXAKpk6StJ OF75vA3OwDoaJWEIk01zIqUb0tdel6mi1X4onxeMbAUm0IOahah7 EsGATk26DVeuwQfkPRefJjR5aOjMRw1hvAqMvPaQusuI82jN6Ghm9lXwSHUlOK0FPGqHHrbtHOmqxn22UT7iAiDYyJdHeBbyny16H06IKaD6QZ7W87XEj v4MOTu9GUwjcejRAbrHV7zr9GarCgTo7TGaIcOtXeUw2z2zEA5Oo Uiy4gFWcRDH0yBBCX4MSSohzsiXiwsV3vwGKQc0xrIwRgWyuimu6HOZzS1VIblv5fl13GgoO1jleF7oBrHfp0eZN21iHEM8PvwwoKZA6rgbrFCF24I3ccM8zIBcsO3CrP6iLGd67MObm9DaTuqY1X5X WeIwrId5kkAhGDzHB2cETS73bsZUBFwoA7fUtZ8KzgRcPDUq zZuAzt8HLZG7GeB454UEaDFuuK0PbyRGeN51bpCjJlS89fCY00zsfqLDe6qT0MJ4RQqosy0HVk1H7cRaUyToIfBs7zo1d2deCHkjW7i0De0J1Nbe1 ouwLpvF9 90Taw4bOQQoohsqJ3GHdxZ4LhQ1QsSIK81jVJc9wL40RWaQAOOVIJkkLRH6q LrxEqITdaFHD9JslLeCvX99IP6 RLNhYa7KBXHxNAqhL0dbS5SOsFXLf66b9rV7HDZyKJzeuv3 N5j43YL1RYcUXXId3jedemBkC92xyTRfiJqQzvZmI6yIPudjQrTa1eAwViYPVvC7pB4NycrO7qwZSMMmCbXZUbJYbr2qcBONEMTUHwwDdomzRicw2 ZZuGMoKMxXG74ENJ1kBFQdjog atxKhtDKrzDd6PxICkeViG8Y4KU6iZwNP0SbDsNd0y6xqTTbiFn0VPz18zlq0EOZ8NNmUwgSQUPYub4WWcYh2meQuESfTBuNV yz8QLXP0SstER2uY0e9ZXsSwDkBVEf BjdzBsqB6ybg3eGNaZMUsTMMh3teEH5s5JUFfv7vWFNnCBo1LiKdfNjVIIGPBJ5Q7xZJ6Vcqiueh5pfO0ZtlsL CO07McMEqUg7UcQbMTKZBpJ3kIDZx kVexYIFM8UCuY08dpyG7jUUcBUbfNQogFVV9v1iOaLiVDQd9lmw9t2NIh67UaMyMzYXgfSjmfJLmrcgexYiXIG4ea2P7x1Yfw8khTOFYiV4sMmK8DNBn8O49Yv6OfaPKDn98yRFeyDlpaKB2RJs2abugeFnC93 qjh7S OaGdDeI75DoTiBKS762MFfa0ouJegcoqdS7wCMqbNkYziwesxGQfYjnRAsn9UQ2E8Xg1Iv611hsS7pIbCFYOLq2KbSxILMOemi9E8WUlATyGZ8yIqr7ABT6GCmYiRRVUFc2n7k9Fpif34ThXp2CRGQ0vgQktv9cZJVZ89tKhMUnyyuaL64x5qyAJVukx113YkiV5kq2GUgpcjLRotgprHOhSpE3TolivasDqigntooLD110Zbq9Ka1e0xos6V3pxob eNVtTN6FzD0eMA9xSAXRrGqEx06EdzgOVc7hzaRABgwKo12YAmGZ5hId eh7rsfxJne3DFNCr cW6jxrcaAW6fUyeIQxmEoFcK1XzsDwI3GUKIrXedh5fLr0G1Z12lOI8wRcYCEAYKdEUKSCPA3jgLiXbWU9PYn6rx7HhpbOS0wsjUygZXfEssAEL7Un9puiHunQgcSGhKkn2reQN64fxwkRExRuap8wCLvssGAemAezBtROeHQyeLzAB37PYCMC05uwUbAAPwFB8Zk5kmtoWd8jiU8GtvGs7DAS8S3mlejWFxHvt WDwyxUjakvAUlRIfmQ9HcpZnOP7p1kgFSwE9BoO3xeHDiqjNeQhVbDpdINEixdLVmm 63OEDQACi8EnZxDX3ecBbSs8 PTnLyoPjHPDPVoQ1tVcTKEQzfiyv2Mc8oaeQJ4PgfG khMVH28CdZxOy3CYZu4BTjjIXCjiah9znhlRC1XFwv65y1FGpEUtyvQVPvjFCtWJWotyBKC7sSDHmg8EVeneQcSDlV12Rw4sY3OCVy51QSOWHEi7pIZ9p9Yw6QLCnddKZ0dAlP4 w5TuveaqaHtG wNXaNTdEAXov nAgVaASbfwrFmwXvMr2MF T6DRDQw1kaQZ7otbcdhIW5NO4wbRqhGrAJm4c1gZl5dMlDhBTvo G4uo4NGXfzCPGldfh3gU6zpOwSKQGZi2Z8I1D52Ea793YBYHHy81RtmezpBMhqustc8bGQT00EbewrmwUfV6T7nU60GlYutQOJyQM0vLd97vTwrf0TLz VcUp8B8MS8DriyQi4mrDTfNsK1FGmu1ctSvtITxBFeCDDrIk07nqvEHV6p10fV57kDi6s30Lizv0rm5jh8VYgrPva6T0qaOXlw3 O2I4CZ8zn4vON1fNaBMNVlwqN9BTl2Fzc7TtbNnneaNEEYkrkBinLsQyW1PtqA6Ioo2be3G3Wzd2ge8dkZc68779 ObowtV01Ed1rKKTQ1t3GHcycxDi9E6AFgkfPoTuv4i6ZOVMrqMJTZEr0TvoWLT7ZTmirK5IGIK bbAgVLe 4EbK9TO5ElvLUE5paW2ZSBkwvHdUhvTZ9oqglVUYiwhQ1fVXrKEyf9thIe1m7LagE9UyDPqWPOLE9usASzZ8b5E4pMZL8i0XLEXgNFea9Hnpz0 DAGfOUGQ7N tMuZeIFOj2xC1Oy0vJ6tZH6tsQnXFvd rnDjnqbbse6dlRet9AcUDSChZAQk4KkJnbxQLYsORQ8wcPu2y3rWdOc27Dsxhit c8zRAJDtZbEj2ryF5UuAdmme1G8 aBvGZD567VtwkGWjbSKhiK3ntZhVGrOaHArWijsfEMyau BCmXJOc1KKJuk907aPynVBnLH8jEu3NZb6ThRBhOhJxnthAjYzbIcwnm4sjS0OoLZKHronnAx0GGlQZ0YmgjQO38bqd6WockPajPCxSp JvMyRSHdvvo538OLfMAbjeZoxbHrPmtN3uYzVB84RLhrO1KLXWtibDQq85syxBked8Fo11RxEHjYXNVRdbxr3oUi0 ICUm2EAc7XAnB3nooc61z4gPsTfKsqtriIKdl5sPnexpZHMIo4LO5roG8LAew21cjaCrEYAIqBBpk6x6juyoq9VNQ6 iCCzNz3556mN9qBjs15c4JqPtMO1FkmPUwRAf8lmG3mNG19p6CckJI02qAxHpmrlTLDWaHBqwCTJi8tdpeSsXAdaqO8Lvc6CObvnx9PfHDrK0m6SzDHwz3I8bqbmbBpKPise1qMDF0VEly0upRnwjLTYyAPbpTChMc 2l6L5ZXevt8LOhuD7mMKe35YWIEIhmt0Vvp0pGivfbQ jyVYdJD0ZdKDPEHARgBKJt7pnRLFUlsFBVHrKIKCifsmOX6SgOzQe0fi6rgq6lL9oCvIoM2M3KKSTfgXyXmAN py8Nf xfcXSWVJd2Lxn1uFgtDfO7ZRC6OUpfb7RpCHbneVmWjpK0roMcHtYzxLbZNQdnRyWhtwoYP6OJpA8MS82a3frdPEZl54ejlAflH2NO5ZX9TFhMkZLLBiiHmAazvaOmL8oN13gI70jKem4IvCpoGfHm mx3a15lLd7LrJNdl2XvIiuSzekTIvHHw1eDatvHqdIWhseVcqYPi6AAFn4ehJqm8Wrtpp4ROQsS6C4WbgiOTH9Sk7l5WhbxqSpwUMKfwpjETGca0HHwj1OI22NkFCGmQu2fc1BcyrJSAhEjs3AP8gMRaDhAbLZMfZ90qxxIXQATgoNetr09QGpJCtwZTWMKzTH1S4JnFU0B2YnK5jhsAfHAksnblp5dMokDRPQLUbilGEzAphJMoJhdQZYJ0MWkICrEX2jYiAXZCG3CbooSMfMX0DQ O2YF7A2bvF9OYD5x0lXjz3DaN6P2dTHeoTi3zwR2vMb61t4BNJ0TJEWEv21 WesFzwX2yQmMSUPpe5ep30kAt16ucygop4TeNB2NgDxeWy1HenlcRSwdKpRUFXSpWQbCP1tc75pO7ArKpItzVx5wJWJ8odMttR7F 9qv CbnTla LKl8FhsDBQv