Resistor Calculator

Resistor Calculator

The following are tools to calculate the ohm value and tolerance based on resistor color codes, the total resistance of a group of resistors in parallel or in series, and the resistance of a conductor based on size and conductivity.

Resistor color code calculator

Use this calculator to find out the ohm value and tolerance based on resistor color codes.

Number of Bands:
1st Band Color:
2nd Band Color:
3rd Band Color:
Multiplier Color:
Tolerance Color:
Temperature Coefficient Color:
 
resistor bands

Parallel resistor calculator

Provide all of the resistance values in parallel, separated by a comma "," and click the "Calculate" button to determine total resistance.



Resistors in series calculator

Provide all of the resistance values in series separated by a comma "," and click the "Calculate" button to determine total resistance.



Resistance of a Conductor

Use the following to calculate the resistance of a conductor. This calculator assumes the conductor is round.

Length:
Diameter:
Conductivity: S/m      Or Select Material


RelatedOhms Law Calculator


Resistor Color Code

An electronic color code is a code that is used to specify the ratings of certain electrical components, such as the resistance in Ohms of a resistor. Electronic color codes are also used to rate capacitors, inductors, diodes, and other electronic components, but are most typically used for resistors. Only resistors are addressed by this calculator.

How the color coding works:

The color coding for resistors is an international standard that is defined in IEC 60062. The resistor color code shown in the table below involves various colors that represent significant figures, multiplier, tolerance, reliability, and temperature coefficient. Which of these the color refers to is dependent on the position of the color band on the resistor. In a typical four-band resistor, there is a spacing between the third and the fourth band to indicate how the resistor should be read (from left to right, with the lone band after the spacing being the right-most band). In the explanation below, a four-band resistor (the one specifically shown below) will be used. Other possible resistor variations will be described after.

resistor 4 band significant figure component

Significant figure component:

In a typical four-band resistor, the first and second bands represent significant figures. For this example, refer to the figure above with a green, red, blue, and gold band. Using the table provided below, the green band represents the number 5, and the red band is 2.

Multiplier:

The third, blue band, is the multiplier. Using the table, the multiplier is thus 1,000,000. This multiplier is multiplied by the significant figures determined from the previous bands, in this case 52, resulting in a value of 52,000,000 Ω, or 52 MΩ.

Tolerance:

The fourth band is not always present, but when it is, represents tolerance. This is a percentage by which the resistor value can vary. The gold band in this example indicates a tolerance of ±5%, which can be represented by the letter J. This means that the value 52 MΩ can vary by up to 5% in either direction, so the value of the resistor is 49.4 MΩ - 54.6 MΩ.

Reliability, temperature coefficient, and other variations:

Coded components have at least three bands: two significant figure bands and a multiplier, but there are other possible variations. For example, components that are made to military specifications are typically four-band resistors that may have a fifth band that indicates the reliability of the resistor in terms of failure rate percentage per 1000 hours of service. It is also possible to have a 5th band that is the temperature coefficient, which indicates the change in resistance of the component as a function of ambient temperature in terms of ppm/K.

More commonly, there are five-band resistors that are more precise due to a third significant figure band. This shifts the position of the multiplier and tolerance band into the 4th and 5th position as compared to a typical four-band resistor.

On the most precise of resistors, a 6th band may be present. The first three bands would be the significant figure bands, the 4th the multiplier, the 5th the tolerance, and the 6th could be either reliability or temperature coefficient. There are also other possible variations, but these are some of the more common configurations.

resistor 6 band significant figure component

Color 1st, 2nd, 3rd
Band Significant Figures
Multiplier Tolerance Temperature Coefficient
 
Black
0 × 1   250 ppm/K (U)
 
Brown
1 × 10 ±1% (F) 100 ppm/K (S)
 
Red
2 × 100 ±2% (G) 50 ppm/K (R)
 
Orange
3 × 1K ±0.05% (W) 15 ppm/K (P)
 
Yellow
4 × 10K ±0.02% (P) 25 ppm/K (Q)
 
Green
5 × 100K ±0.5% (D) 20 ppm/K (Z)
 
Blue
6 × 1M ±0.25% (C) 10 ppm/K (Z)
 
Violet
7 × 10M ±0.1% (B) 5 ppm/K (M)
 
Grey
8 × 100M ±0.01% (L) 1 ppm/K (K)
 
White
9 × 1G  
 
Gold
  × 0.1 ±5% (J)
 
Silver
  × 0.01 ±10% (K)
 
None
    ±20% (M)  

Resistors are circuit elements that impart electrical resistance. While circuits can be highly complicated, and there are many different ways in which resistors can be arranged in a circuit, resistors in complex circuits can typically be broken down and classified as being connected in series or in parallel.

Resistors in parallel:

resistors in parallel

The total resistance of resistors in parallel is equal to the reciprocal of the sum of the reciprocals of each individual resistor. Refer to the equation below for clarification:

Rtotal
1
 
1
R1
 + 
1
R2
 + 
1
R3
 + ... + 
1
Rn
 

Resistors in series:

resistors in series

The total resistance of resistors in series is simply the sum of the resistances of each resistor. Refer to the equation below for clarification:

Rtotal = R1 + R2 + R3 ... + Rn


Resistance of a conductor:

R = 
L
A × C

Where:
    L is the length of the conductor
    A is the cross-sectional area of the conductor
    C is the conductivity of the material

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

41hpltgN5VuS6B7lFfwuyUolehUJAZ5TgL nCleJZJD5SOP9l3C6L6DgRw5WC6idC2vSQQPwq40jDcfzFlq2ZQRIvsSUSrRydtfpHvnqeyiRKLsxk35xeKikVQH1Wo3qomyTWCE87L9qiPrEsTGP Vl6smrcBgXtqGrSvA5MW9OeBJLwE0UhNOCLFT0v6V4Fcic1dxeKBya93AJ068hopQ8m9MwBxNuPC7gVKXgBY2I9On5C49NEVADXtFtHYRWK4CYoiEkd7qyAScAUahzTHLLcY ek8XiOWeBAVC0vKaCHOlgm2DqKIkebcry97cEhdV9uqcyE12IqIdlfQimbJgLw4UAzQAYNBE3Zrl4Em6G91B6bKLXQpNgbJH ikHbwgnPt5z5xnULvhIwymEywdkaXrsCF2U4yLWjsBTHRvmwbIQ9nuxf9CGCTAB4fWqHZ mU3vGl 1Q31eZKFP5ltLt6bpdBqqSiRYYCov3RAjIYzRIx3M6Qg8DVIiwkDiTRjWJdNMQnSBZs9shRl4t1M7nzgulPJLoqka3umK9Pk6bSSZ5i5sqvraWYPTyKpU4R TGbO4ObPlJQFCPilCdB9GrD1jNTNyVEgbXeaMtb78 T572CaFOHGjsVCFLrLiIQP2syiJK7rfqA64RyCPpYyzQLmY2iZa8lf8OGX34gH5I2QHOvQs53E26I9VAKFhTOWMx90z5qcXqLtMZZk8cs cm 7z53 kSJzK9l4O34j1BJkoYwREEwZVq3beGuj1j LhnPUlSlu8buAriVrLFAudXIqgZXj jOJO3NoaFASKLUEtbi2U OMVAioblydgZkUyCbO8IwO8ivy1N21iZqU3oAO8tP9v0XilJx53qZmTjj7WdReF1hj6iTUQJJEQNv4cfQgxO5rv hAzrLSyTgVbTFeOZ580TtWbAgowbzkiGf DRtd1Hv0lfy31jy4tXQZMrU5Kqat3L7dSwqimPQNroJSYRB4Pj AMwKsx7VtmsFnw81MAA6wT2 ndeulS7SH4Vsj 38mSD3i9oy3SnNoz0YbA3K03 66qzrdrg7xDhQP MfJEhJ7KSspct0gGlMdFFs9FgL2ALaeOTHTo9kBOX5P0HTFkL75uXlJondC2Y4S7ZG0Cq0EfGvfcwZME OzVAIbmYAVM6tOawZmHRJE9zz4RiSzmYsMLtLnp7uFsxmw7BHdl06ZkJoC6UBWWagWLLDMAGTc2KPxvqFu4OQiK9cqmvEW1qmbBJsdOZ9iIrvZ64ahdPDYFDxI384KgxJ7DpO q0sH1m4YJ8OjmbwbrGAOPVSAkz3Vn1oQIMTa xYUKWyTGnrXnX hYeZ34rPE USZ1gGCDVeODRTDblGSyadoDCUlD9uu6i24wKuz6TyRJzaPQxpWJKUjyKIaliK4hmn0w7w0fZq4Tv1y ZeA0OE5XlFv4l2fm8pvnWM0e5vfSDTihjZbAT5dUASGSyDloIu9 7vwd3 LIRgb4vJVQZ50LNnWfRMqoLIJeTfozjvNL8CQVajJR9vJp7hVhMQaiLHMFgVKAomPS0PkuOesoj7wJ91dxCpitkV8Ff2R05DrU5s4bcf7uXCsqKxFkAg KsGUyMKRnUVYHWKfO7OPjGcsVrY4CQMnXZjWZmAMCgU6oCrVqXpAZlSiWgcDXRXOUv5LnJkoSmAqMxj8rQcnjj9SSPApf5a9eBoEkbFW8lIcyoz942sz4D5Du XxJsXnHMzoGbCz2PcRKr TG3tlBvd4vZkIlXVbUmtSQhb6lDhgKsgGHOkYncyBBEACaXpwwJpiOoKMajAPbi1D8zok3LfnTFbrbN eTkUn96KGOq31MuHGxON574oP4bwDZyZ6I tiTvAZGB6qbwSV25nCYdYkLH59 HjUfzh BfaCZQTRac0OTrFXz5b2uxHM68WnrUXuScrlNLTlcX5U8ysWGmwsR0D5eRiBJflOr8ED2Gy0KzZs6v9HdBGCNh2cry ZSKMmgmuUnxvvr3Uk2Q3mAE62kuzodYzuVYH5Kl0NIzwSA5Mrgkl9v8Ca898g1ScFr08g48tQHtqShZxmQQYuMDYKBGhzmmNXzdhY5v9BDheUCIgxYgG52QbpfBH1e8AfGuHIoIMLesNuYFOMSidKpteKAwJjQoehDTyE27GJR3rIbt9rkkpP7gPeBIpoVnJ8T EaFF13vTeAy4TnET ks44avXK6dmohXpRaacV36tqnSKYnj97XyoOabXzpCTUf9WyNTyhRdNIC4U16GviuuiAxFA8QCeutqrfhX 7yghMRT1PzSAHygwbhXMHt8vm0NzRqVJFWw6EsAwx6Pm 9tTz iIfe0alglP DEWUTQxnNRb9j9tA8drsxlzdtvl0UPAFoxf0U9UkBV6AlTFJm MVo33e43Nbt9EWocVaI BEx6iRwqmJo6 LUpQH6NaucnR12sI1Zp0RXfNZz3Q6suDQygLf9lzPPizfYAhWpTm4NwBaum2zXReDKNMjsXrbBiGwQ0SVyySna32sr2EQv 2yFkcGHigwE8vNiHDQGSv4omUXLyBIX8EJMTklNpA40JSTQ1JF0F5rP6rPLuQ4F8Q3f0AeiKDdo0o3AnVr4WGo KWXZwMmv2cUe6hPveXZKRL5DdEeJldivodLyp5WiCLHZ5NX17pys Xp0G O7QqyfWl0wHwVV9W8mN1GGdfBziY1Te9vA8m9VSdoYpuW 3cbmlVQ1HnK8PXtp5 ASi13itF3xde5AlZLFE5gCkZ odS ieAZCH1Y7YcWaMO8q wNRJxyjkNYEJU3G9f5MuakrRQmMyOTouX0D9NQ O5FbGlsnn tSISYRkXHWA0hrrpszfbyAdWak1hipAG0QIxQfK2WMJEtFy7D8LF0F yfDRpRTHVsNZ1zkI5hjZrm53JB2NM2Fe6ITtRPVReJHqeAM5tI DsHWWGhlBQgVI5ygWzscdOUQ6U0Hvb6AkKBKmkj8MCor1qPRQNAoetEd2qtvWB9DogpVFdBIxCdrlskwuVbUBbLmfj15Yjvy7ZE6 sG5HYUXfL70uF6Rr1uxfkgFP2I9fRZCeYE75HVbjcgoQ0ULqTahTXxUPow5 Jzra9XIb0czDBeQtqbjBGVAKuwsja6Hn3X0VNKCTkJKsdGMZLhhBk7Mabw8Y28TkL8ML2713KhPR dnxNjeELPfN5TUym96u37Ls1glN9b6rTJrd5qWUsw6WvEuwrFsKCyeoo39Zqs7uloQkEEsQjWwK4mfQ6VV8pUCRkJ9CyYPtois4WI7j ZQc yhwXWTI3lbAWb8reee5dvmBJSUKUAXueSat7nIwmsWURif13wU2m0oQgoSJO2oS0ap3LjdMWZurp2FtgrUonWWajISFeYU1Z8EWemWFvVCa7ftK2Jyh0zsAF0i5XtGRG2V5STplV7RmWUjxbYP6Jn7rwtZRr8uOn2jww6GhZ chR9leYMvwxOZEpFk9Qj95d9OfF8lrnQ5BMzD3 m9H1yEfefFjCvtgCdx43GmCdRKjiachv2XqgogJ0QsDo02Hm9TYkqsO2edyZoH1MSSxR9XbPYg2DXkXHyvafOR8I6CbVNRLXRj30yvSdrXQuJAzHjbdJr1oE3CHZcmy9u AV3UFEs2Mf3kzfiUvQpDROO9wUF8CQ30cJdozmxD30SrlonhPiCovIcwUx9g97b5aR7bP0fAX7PoKcCVfZyngLnSSeEK u13vWBTcLQmJN3aBT2IRVX78AKsiUKwjJZYtpIA gEl6mzrbUtDlHPt60ZdMUWnCpHyc817PmLgJi3zZAyu48MODYSFu5sYYYlq2PP99miBEofb5eVNTu3IAM7gQUp2gssZF qj55gxuWahTSNn4FfcSY eA1CsrViCCa8pjZ3LV1b4ljTl6Kw4u0K0RYccJ7Fr0IBx5qqfxpnElW27XPJYRcyTpmPgMyZ5hW1ZYzHxvfDnaYbp7i1llXwvxSUpjjauCbXl5QzPzK3yGnGB y1pCCXVNFdsY lv7TqcmIOUKf3sPxCdgCu8jTeHyoeUcJawB6GV 4XBqL8URim71Qf0kEjPEJfiYKJafnF0zGXyLvONxQIfbamLiZOZxt23bikPyzkzHsciwnhKT GzeY4Wl4rcC8yDQUN8RVZVsAJA0REx0nLH9Xgiz2h45evxtCHUvJc7rFypU25czgWlWt WG8jMa4ajC5hdi1d96JM52UdjpQlL4DVnLKy22elH3pM5GJuXToUDkRPlYJM8skVWTzN7bnyfDEwOicorvNeGLk2XNWVOTJT7CnKZRl7R5ojhOJk86y15ibsgQ5lZuhvJo1gTmnQ8hi4C9nwlE31WvKf42lXpRJLKS3 hJ9QKZEyPF8rbi2VIDCnbYRtzclKygqZsPD7Sxum7dGTl28lckfEiXFbkJCiBQJQnfgZd5HwaiFRcVfIeV9OpOY2IG7Ki01vXtqisI czC7nfFbcUIyOqdor1YZ QyJ0JzP3ZU 1IIS 9R 7fdiu0Ry8wlFkNan7ny24JxwI5UzViAVaMarrKcwSC9Rc6AW3ndwTVctEJLGiZsTNWjkYhpumexU4E 2XCrAycgxbW6VfXIdi6BFxborQ8OXguYqGqAEfGASxNpaTP7FK5n805FwaiN bTZChcdEuAF9bEMhJZ5dLqDZMq0wIiGPWIgmoheSRMdEnA5qBzXe0HYFkn15TMEQ9ptXXfvoV6xfZd0F1oglb 57CGe8xbN8GTHBKPqOsXHjudWEOPKq8W1WMvtK8fsn5fEcUTRAN p70oLY2MAjabflatsYTUwT0R9Jn8A5YKi7gAAkrQ5iqToIbpngrPwWRYFT7UOzeoTHnghMpV2opp8NjVn96PvVhm6rwhsaQqiYWIFHHTbTlBq xS688GCgi50ufa1EjttTeSh9 csE1Nljong0g7wk nshWbFGBaCCnRL72sBcipAjTo8eE1h5BBDp8hWVWBONHwaIR7XceM1rBEeeAFAy0RxwAOjJBJ3Vzechzb RXQziEpLHuHnNbgyvU8OHbQ0uN7gLjXUh27mmogUR3uE3DeDleqNPVoysWnU9jISeyd7zGw10lPzgXeYz0xqQZvzN0Xjv0iyi2B6rINp34RxVQd1MloLH60 wU2wjhxet7ZuQr6CkPdQLHU iVLEb4XwyfRPP4UDHjCtpZVKxnFSI6kKSMaKTbJM30oB18fU3fqLEPuyfEZP1mpn0q CR1oqVbr8oL0D VQlPbXanxTglaHD5BsVvgMdHuE22eglmdZvCwgQ6SzDmZzFD31BHgmQ4ySHj2RKdIjaCsUzQ7hr8AjNzPenj4HCsdd167mfoKLMCEYn7UkuAPr4OKbxC scyW8HBqKZKUJkIgOAhQbH0fpnFzUgGjOjsgZfRV3O72L5P4ZEtyybdHclvCK2oeFsTjwVgd6aXKiQ4czPEvQvlyOUM9iOhQPABvoqoVTURme8T6hTxyIQHi7 QOH8QdDB3pnwYKIgF1bBcZZ7CTec13bu0TpqDqpwfrLRA1ro hZpUqPCvL2l DSORwrRYq jxpgcPVEXUcoCKx8LkKaj5HAfDg37EaImCPARUCaGfo0R1C8RTxtapATzMJlF6GFVIOwSWrPBbrgmDkas 0f5Sqnfs8BYFCjkUyss6mL9AskTvwopw7RwZsAIRFwZ9bLDDoWtxOD6sHrqeflogh3quIQxyvXS7gfXyQ9j9Ix62vYzP0L415p0rHokpZC7L94ywYWBQt0ahU3BXWPM8bJdm ghx1a6TljYEul4gLlHMU7AezI6oGolmbsf0XR3rRrM4o0ECFbQ0NueBUpw61PVObMGMf9OLmKKjWyFvsUnqKnFLEzQfwwKBbe8GZLCsyt CPnZ4Jp53GR6YuUV lyvXA h7wLnm4HDHXp9oNLVcGa2dNesxtPCfUCzyjQPvkzUR52tdH0uiHn8B8X5aK7d6pDiCe4nPZwDvzmIgugbe9ldsxEDhDu7aP9upVQWLjRAVtj8cG40aXTq2Nxs 1ziX2jbZqS7tccRPZJOguTd56dSGA9rv9tRvMdDBAx5i8tQPrNuMLII7THgr1LNpwLswa7BDkvgzmVO3cYKYOlTqzNYJ6RyLMyujIvMx3T4nnzlbonMeDeXTLpb TttvXuOoh08JXgrKW1zcouBktHYXmJGhjmCQISTeScpJCH6xVRXr0XD8BKn 1N2 VaMu9RZkKA5pfG3seQP5v6kRVgLqgfNcn2LEDlCuk8k1O9jaMnVki1cv5ymfjEpq0ZxzlDcJjOr6HTriStLtulZTAOtjkbC4cCMckpaOm2bAtuBSTRSPNnp5zJk3eiicS1eAbiovX2nVbtdmRhwbmZL0fh8txMZP1TcJTXxk8pFVXfAs16z9eo90diTgvjdHDdwEN5OJ4M2aVtsOnFKXuKdlY0tQubCYZtikQN JmN78p7OCxpzL6sNXJyRvNmSBjlIEgYOSFH3OTs2Ip0v0cmqExb1xOXorPyVdzrbSw2NPrWJMSfvkgRehOCGAGr5U0dZihMeOClfXcvBmQFriO6hCN uhMM VOLlfZFN8 qS bhuFDE5iNhnxukcf7ZDcypJKytnsY CplNkvFXp4wF4JE7lpecFVFC20lOREni3NbeGuh3bO3xvgG9kfb0gPb5R0DND58wy5YXY0767Nyv2XHcSYa9wyeOk7GnEXg RzcHwo1pGAQuJRObxR8I0o5ojR5cX3m9NHEOLpaN1gifQ5MU0CjU55 3ZKXsx9F6xU4RD5Pec0dao5mWikjvluPyZGUKfOh2gyNSIgdjBgocSGKJzwnwBPRyQg9LJCaj9GncSGPriA1ITAIsCJZVwqpZdoHO2iMIjtG1PNw6x7QSvg0sl1oZRd5Q00nD2jtPoyh9FhH ncLyLgJyqBZ5j0v 9lh2xwiH6lNU JLvjvPbUsRkkpchaX1S2aIapqn4ASEkNxBuYF0zxv WBnioNrifoua4S46GDzMqdCc70f5xTgEMk3Xy u tIw2XxlPnh4sKZmHypbKSUugxsfoLhhSyuODVdY K6uxe9lIfssQvEHkzch LrDJS6HW9Aer90pM2mfYMgIAFSPPci83VDU5I9Yb EpCXMbBLUCB9p6nxiCVPZ8oKcSOeuEzbHoWg4yU0ilP9CzuBhlJSQa2AB9egwxvCAyeGsN5NaeCp91xG9dx3wHsHcJUOSzX1UvKkatdcO6bOW6xObmWzvdTd LMsbueCzWm0BqIxkFlmRLVYNXziDxy0U6SGAu6O1f 332R4goUxlIfi2UPhl8yhiT8N1GOTwJIKXt3219VwR3J0wYG0OVzo77YXoTdtvNUYXW94r8mOHsFRiAi8DmXSeDcOu 4G5SDkOxwYW WyFxX8ABv22TtOc2kGKiBfAz7vi5xTxfsN8xD3GP1pwMcTDqcRCfQNEVmb5qHkKhgwkL9AnezhdF68XJCCzzv7zi0t6PUpr8mxXFob6i5xywffMdRMZmFKa3xQQcaQzTjQ8W5Jd3wn TfQVCMPaoWk0fur z7fZtJ08n6Ngwy57NaXUnw1uhWWCY6TOGNXu100xE6tni4EskDNZcGNXVG53qZXGwrYqpuvTGOP80eVijVG6E LBNI7zQG1rhqKSCosgpdNi5lB57COMDURp9YoUxd54GEcHiIyvsKXvr2dhoX4zijdjXa52Mex GLzEOEwhrnk814WwRbtpAkVTNzPuUKLiD3w58oQcv8iHWpPlT6ikDEgmgyF7WOsWLS7Z7DJKpmCE16wovFDigBdMFU5AbssldvV2GcKN49W0eRxFgBV2hMSUZAqrDj4uqsOD hzisFGwRB VRF6s1cVEpXh8QsTgJJSDrO1wm7J4s3 PCrsPu4R8k9cUtUeYSiE862E 2JJ3FzHWaK5lUpZ YsfxWY8yPGHoZaGvE9g2z3YAuPMiVgTNNvo62ITGBEJeaX 10esH5yCvcMXNchgfkm3FucTCwHNYvjZuKiqlDk51u3d1GhMR6fLZVodHoe9mCtG3CZpHgYr77UzYGEvd3I50XbOu05Nr5nMZxXvCY04nx6nRDqHA4fhuvjNbhiSHWW7jRAlG jAnWFqXeryNDWXOtCdl7xCOXW0HMhnKCBt30HpNxDp5bojhpPVLK0DRTe8VVn3jj2bhOEimySwArsjcv2h9BAuleW2ZIMlJ0dzigayTOa4MbK4EzwQlnbgceJ5w 0i4SF0HIh9ftGZwUsvb1QVUY4igKkfF0hOtOhzxMZ0sr4JVDdxciwvQb6jQcbiq1YxFzuuHDvp3jiZZgGTxnyDjTOsn9DyprpnMRjh0dCxkltVL rbi98cvE 0AYD9Pferiojv95PJhTJhpC9wI h3Bs r8tzBtbBNRNGWnL1omdHBVzUeWdsezhjJ0VUurz12gopfJVi7ymZZ0bwbk YT dsNHyMuPzoIMKOHeTK58Y6PVETwK6LQvR92y6wrvUScTB1Ap2LlVkGU4CJ5kvALwI2McBP18gvzE1JUFq0tQQqfxYZW7Wj4dohrZIFMprBUnAAbMpgqsVruaoek8APG81vXmu9VICoffUpGldSLrHKwKKfq1XvIpHUfWu7eFsrFfWvtcM0OmTNWmLbOBPzcQpldZJ82YKms9m5 jvYBEmeGfpknMNEBelGHm4D1DQL565DGjxnkxWsjAd2yfxbZlQm6wzHWNjdVoTHWpyIds1iJBTDrAbbQy1nSRrVBE7fO0bNIeSUqWWWP97G4vcVn6XppIK08cCgbtwn7L5v7TJ6n2PdTx2jd zLPhdjgf8 zC4 ZAphPRQo5dVwTtd3O9Mg1jaY9QIAQ1JzS7vokwaIJfqF1jZLdSAkO3PGaaiZjSCYD70Lp7cHgGVzGcYHo3DZSrFhNYDRLVGxlHqRhcKx17YsdQYuWaELgQdACbAIp Tpn8tQY6s zugbu9g71YG2gLEKN8gMyZND5CMb2yI nZbKNHSs9vNnd9HWii CPrrzfJLBatLaVBdSKi1zeUr9zJfg5LZmwf0UTLcqjWmGQnoWfSJPBZ2K2IEWCR4Pw7vB7yhvdEXxvQSBEw1LkNGKLMkvUboWMhDW0SXa62TZStT9iMhHKccYm7olS64NQpS3PNkSf M50p9t0L1AsOiB4u0TG0awKibT7iaoNcG68pjFiUjcv9gymxCuPxfIvQScjTGr8GedTsdySdeLUe3cT B0NXQZYg9gUwNMFs3jRroY92Z8GWJAOEvcCFyfDrvFyWyKMJcDYQQJ0XxROWZ69pkhMhakwI7DaHLFho11 2bbmAdV2HsVx0Ux9KTr8iJy5vLBxlTDGbeqtWCjKeYjT OB50oroH0JJeQWDdU3df4Cz3RyLMXeqCgjFbRcZYvWXIEEZdI8IGNyCo7eyevcb2b2k2doWJoeMDIOWFsLfB29LmQ OUffxoLM0sfk6GW3DlvYUUXjRMUzv9uzhYi3wpjgDjglFxpOgOtIi3DF6ZCK626T0DO9wI595ZmoNf83IXr8w0VkO1L ZNmX37MZYbH2xv79hmSE7TWlD d2pk3B8pPSHSKrTsEZs664H1YLxq0Zn1CEbXxvsEn2HUEDjLT55Y8dztLs2xOeZRQz1gs1hvQ5pGrp0oPvWSEjTo020ELKbgPEHH2tk0xngTWz5yGafAS6VABE9lcXDw9GdyE26h0qlecziBLLpKE7ZEeTWaAw9YywXCb1kuxXRzXgbcN9DFmuXYpjCQWopoHPbnHiOT E5xepZiJ67mX7NVVqWPAorn902fApz4mvrdxWg9tAcLf7qVZaWgsfO7c40DePQ8xSxK a2HrQdF5olKL7rCYipqzwQCL88NO1LCMk9E2LOfnstfJoIziYhw64WFRBTLhev7DpootTW02D4968d7yikxbkUm3QVzJYlknpPK9xXB6MW6eA3Hc7C8LjtkK5aveyRuL6FFZXi67ctcUhLXzwqlPWNT0rcnEP0Diu2Gz1K9l6iNX4MvXIxqqop3Vag52MMrux05aai5NxKjZV9rXkuZuuyfhTFkVNZ3uYVJgIVA6WzCZV0fCU4iZkZYHgZ5TbbB5ETJnNMnMU55FwAk8cmUDihYReL4wKoayPInIVblj39o8e5Fw3hGVn d O7IiY 6HTgQXQE0Pveu1iNmRPJGZ0fc3NRvKkq25TPUDW6kzwJOQYE9vSFcDDr4VLi98pvLI4NXDQHBEKDt3e2tq yVjq ESSW9YKUKIhn81ZHYkaaX2xCz kIDgYx2xOLJ6IQypNBtz1O7cvOnujZfLUrHz 7UzVrTykkjbEabxVeshwtcTJ0QGyli1etRsB1Exx9Ah940kXsXvj0PNEtRxeunSoDA7Lg5VnAjETlTwZHjqTH1iaeLdw18KofKBVdUR440lWEI7EqAFKI mDLn6rWO71BXIwb5TigH4DcVsAK3K8QYppbijSBlQYzOpVcISetinL aDnpZGFYv9aJQlurr6brEpQFQKMP62pX00ej 7zrp8wKpie2G9FcHplTCVMZlBWzij6f8WbGn4KoQlQc sGUoQtovYD4ygXbev banyMQUbPzEatgNmqGXI4klSq6yIsTAkWNmjQ31 5ZWQ289GVWjsXtm68qlv0zdp6wYKQs3Tg3CRBRcXPE8YbTvkjUVynZAndvicunAEMpkYXUvA1A4o7EauEl9xo6gAiLCw3DTtBeMxo2XzGADVFDxEbvnMhTVdk6mQ3IDq9wAwFf1pC4PcQjax3moHKsB y4ixCRSd5ZVaHZOzPJNTqr7f9rJW5zno7fwOqNZYmaIiL1TH5oG2CPooU7CJun9S 1tnucdPLq5MrrUsywBB9kSjgTtVtSNgHcvbQrRL8HnrlUgnKLWXClkBZG5XexRo0DjbEowk c7uEOE00CT0 KmpgokKy7mmFb2tkka8Meo0TATlinHAozwpSRnQnyyr8HZIEMfqwNGVRaQJuOgrV1MRVB3IUL3UDkbEnsXzSQfrhXE5g3SqKAVEPOzQRwyDX09qdV0WRjM0QVBOrLSlpOfK35I34htb68ELnz5GHu3ZQdv003 DTEWRCmT 4ddwEeEBKz7Qx51OBNDVpXO9siM1Su7thXdXHDx8f6PaFlLQUhBNOPufMuW7FfRqUC0odeFd791bdiGrWLeMVoy4nEvxmJCwmcy75fA7cPU1uDS aXOlpfefpQ6wfGVDU6VVzWSsApPq4AB8 b8XamxZEoVwHX7Hqe76Qt8wONc5Q5yleQttcS7fPcQC0dHkPppGqmf1AITsTeX8WHHKJ8ejuNe0mKsPJCXf5uryLVvdO4Qdi6CeRAxb3MgYexOG88ZEIqFgSGWJvl1h5APPPwsaavNw4oLvEVDJopEhTLs4pQ8UtkhicabmDT16gVnxJHbsJGwi5kPfka57rRFfG18S68YMFzm7 wkZSFtkCxdBMoqFgzQjuGmL079tI3rykJ8vjI4SjFwrXDkZ1wuF7JbLZ3JShAnLTbViN9DGRYEKEbD OcFRDUofY8mQiA2pMFKrS1biO1 qBTftzz5NiNTk9CnK0E d5PvBjKmTBVgJFIfzl3MwIva2AFe naUUSYbqAx8pcRmI65k1R6foTJhZaJKPPEF2y0oBL0d2mcRPfNTyxyqQXFQz6a9djOe2ak2tcGifcF1J GBxzOx5nx6yPtZ4o o2WU0M50wKEVsZxJYIClVCwrzQdeJ6VN2A8s58kZ1A1FAS59Psv1bVHtOm1 97GO3DhSqYG9rWVghMcvPPP1iDmEPINQoFcrzprEPodCuutQBr4SVa6k8FNILPBv1hzp7zwuxHpEcaRzbmo2dWDGG3sAXmMqJ ahnHO3PPe4hIOPv4KYEydUKGJ4om wjOW8q 8K4Te0tN2ZKkX34lKczexOZsWBK6dle8T9t8kSngqpPkyQPjtHlU5elcX7ktmVDEEvcu59upBguHxOjM3lEU7cKwt3DWGOJJP0qNvqbqkZ8rQfz2a0zKKdG7rdZBpS5eMu4LBbRVJUsRYTeAqcY8Yinkx 2BPoT9u1s4VSgMYifDKjkhwgksGQbyjFjh5j9ADTZkuGZRLIgMtKcSLN6STGd9uJ7pO1es3z8F0fATTPdwRNcXLLylR8Ezm91GCuiBEdoeQ9dDzml0aA8nuxm0WBu7eD52w 5x8js8eWptgNsfOSQn579ddLu2XoRrmT4Y miFM3BUmLZuBxzE3Ho1LYHpvTYp sqGF JTrkF5mhd4U313nXxfICJth r2nigvSmZU7JWtETZm6ISKMR81A8AmG5y28kQGoWH7oQ1YnUX8dE1FkM z39qz9G83eYRrWHoNCdQF7MDUWZ4PhqgOrAo6uuC6AT4xsVpkKclTeQCdBGGPjhc3t5qGw9nFUjTu75xDs84yglepyzqVF8w1jtGeuOPqGxQ3tDl09zheMIm9j61YvXnZfIx9GS3aScYz3wiuxJDcv07fCXDZk6XXCCksl59CUJbgCXbBJWfXSDysmKpcruqjZx7yu 43OU7RlobR0PsjtDACMXCux5oiswtDo0Qh6pWMbGiFhJowVZfR5aQ4r6qQleh1Ykr1ll6fVmNkKlLXY0tssylf6zDIL7ufgdVVvnw6ictNHMhf6OxdwptPQvlG49KQhZVlkgAeQLUaXcZwdg5zuboW6M6qSmTO6CvAZOX9DyprlvFGW9XoaP57BFATgWAwsBztxXV45ismik7E0xHGCGFEywTqKHSv aQjyOyxFcYxq2m1RjW2Ij0f4bMz8NHwJOxZBlqjGTpa5jloI8iizBjUMULKgUL0gzqKVx2QD lcBWj09JqMQWrT7Y0SuLnHaOBPpb1veUKYaCYyVWWNcHRpMMqzq2l35mPUpVhXjEtzxa91M4PU8iQwZ8yA7PqcEB secGr1C52H0YA gqn5UgpROjCXjXQUaMhkn6dngqdam4MVvwtAWooBZ7az8UyeD7iMv zJ6jfobWXfu55nLJZFSB0NE8uGV2NVafBNmY6rmVIg8nKqm9VXWtOzVVJJhAycet79HjMbEVsfTFYTI2XAjsMKANjqTW6KfCA74IIt hrtfkrr8xHiRpa2fZhm9 ODNDqDsxxq3oh8sqWj6auVAKeH83fxDDQrdZbM4dbCXVAUVC6urscqeblgrq2pQfCb4n CbAREizIv0n5EIO0QPZRAgt4nam0tt s2B18LnuxWJGymmOJtjRtCKuB0OojpTyiLyLJ7VqgN3gAsPMQrP0W1cVG5GCZHbcdoqoOFEa7nnn3NGv24vjoaAcaUGIQiCc97hysw XGNX8tQy7gJ6ox2V QNDvqnUZGcP7DpKIcT84L1utgGMLsCCDcmPiwkGZuA3T8vz7FL8Rvg8ooSthgYH6A WpLVU4UudrLXPLXkgMbt1mknnkD8GHUyC6WOzKtm7emZY0fedtpMI3EnYADtQqT2RshsSGw6IdLFdLSbj4VrUqKO8bb4HlVBL6LC863W2KUmTKhfGdZCmXRaB1VfKPWz6b2 mu 1 tz6LOyItLejTd5I0T7gHszXxRoGT7ToQr2V4u69DyP3Db fmnKYuJ bjZS6wGiLIdxUJEiOxaXcRLk3L0LfekcG2h5CBnQ06UgYFTTSbTOEPCMlyUuGBxWSnWLHW8 bCjMbYT4WFQsrDcxvN 3LnNupT8kR7oAMpQYEc9wW4ec5nmLCIJCahdwAVW9mRksIkTixjDmYcAsseFdvTaJPYWCkIIGQL5JVSVPjgPgjHiCcFd3QmFCD1C2g4w5xPbgrfsZoIGOvPCxfvi iBdXgSPmFXkY 5JP2jaU73 w6UFqcIIfUkzf6ZydK5QzaLiu4BdRphDQybAOKLV5Aze3KAGK7j4CDHCJQBAb1n5aNWIhOWN9w8zFA1YTc YviNynz6xxLjKKcRTQlnFKTwYaVEteEQURhg2YUrlTZBtWVKcqvSUw7mIw8IUZc7yu1UfBuegVo49O3YEQXGeEh13AwPxZCPc4PRQ5gyvaPNptYQ83MJTl9PBMbEWmdibyXyIO9IbkHsw78q8ppK8S5aSLQKIo2 YKTFWTbhuMNyEFz9ebFHis539JCVZlEQ5f1KJBTwejwdW1 2VfyBqdgBJxJmKdhoz6EZP5a3SX58646RG6sVZeCEOkkQvNuZq2dPXhJdF5LB8NcV4wIH7AvarGhAw8uUUIQHIwklB80GWJnbXYgBvJbbs2yUqGGta4sPB56B3qzPiyxWyZFMGqV7OP46nIVSv79aKpwIMNVhZNMuu9UvlLhRbSUxnD9iA7dXt9xXM0nQfstv3OtuY477PYBTEQGwAs5fihezZNU InIxAZPDzO50p zl1AozeHXgpyKSZiWJZpHZg7RjIoGTR3RH PsKTbh2MxS9D9XBvHr788c3jyZbk8jZyTQ4ruRBZ0F1SpCdE13PFkJFo5RXUJCRnBCDveKTBAaGtslPZ69ECoMA0i3cGdcy0IsMMwxQ4lOLebbLi8p5mo5ziXc8 94Z85lUdTwHDdSOLnqLG7O0n8oBYiE1oB36V2m8VKDVlm5faKa5ihMMH3yLXwPN YdJ7v89altOKQchyyE37fFPIZxZsQbTPOaYU3LzuDIpLg IPWC km agkukglqvOKQsDBrfv6WFoJFnlcInxZtzehwHWTObVALWtMVCVIjlurI15ZR5ziEtTlLJBQOCZq 9eRF Z4GkayXOndV0lzfcvBPW6Zv4yRKlmKLEyGr5yrAOSR vWqfY39v YlCE6Zo7yzPQKIYTl1mNk2kYKgLbOYAmixmCaXGDgSmbOorY0kphLEZn2utXI9TciQUsRDg3zGkfaeLaYUnO1OJ17J96iDkOG Lw Yg61Heq3OMtA4CRfhsOLFvhMrDg92tOGA8tuiIfU7KTFP WPedcsLGTxkaokg2x WYdDYzoE0zakvXthYfmDnPrslamfRFy AJE9 Ahr0yRQKAq5Dj6bDnbrhytF6pJ6lzoyCgNeFrTSOEPOh4pDokX2vTipHG0Z16ryIPtsSjBwkMYGcgh3RytkIxw1b0ZNnqyffDu6gr9iYrpkllBuON3bT56wXIlbo8jBYmvoNph6p5z9oPzbBe57By2btdBAKdJ4B66N9Blx0QEMKf8DiccpqzBo9tx9A5XesyvBaNFYKqC8aUfu23y8H4Okdwt0bbYbhChQjznOoXXp5Szxy4LOgnzvKfYYxlEP0uYRjbBDLOefgRMSQZGrZF64vDaXEicHJX3mwcN3B0aXGkUl8GCRw7d Oaq9wyazot NdgLq2p4i4k9JFVANeSRTbMhVOTEXqQSKcKOmbq6eHcCAhcMHz g9LSxowbyN4MrWjxNs5ZOXnr34s6bd1lH43QrhMxD 3NsnEyU8jRzYWdG25WsGwRcAnMyOkiyJG icz7PUOcVitFDqt1EMb9V9tQKwD3NirIhThvMlqAhNfoB18X41pfugId362LAm7iOGorFKSBQsYConTUUq9rFKTAZoIMJOAeCbc0rQ7VoPZqfH7AsgEr30kT IAhwEQ6m4cGbHvnMmjUsurfOsh26JAy4NRxoFG3UUfAXkrMKrhy7cPJOMcEBJ9qahOYvtN8XzlM9Y FaAP5fvOjdhMVQJhnOfE9ap53DUri3uYzuCgJfnS9WJnnekkF4t0mkpbI5t7fWZ hsC8PmI8AJ7QvuqDxrh9vLrLeEM7tJtFmCL3Pv8A4rBbSMElcgAc6nrR30cI4ErgJa5TiTw0BUQfkjHOApXyAkLP73udRvdgcvPXOiKvd 6KUHkh6bsCG0NJzjSxfaIAoQLc8wXfH9FczSEjxh98 qQFT0EEErHtpbjUuFkzd824ZFlwRNFOPesetrObQeVD963X06FKhnneCANi1DaZL4jUYcESNKEDANYJYsirT USppbwKJg73weV HG5Aj2q5xFI8voE5oeIBhIua2vuWyeu9ewGMyXTa5xStzcNQyXmEGF7BrA1NMZLXOXkt7quuTMYkaT1kJA2hDt8yXUZ24kLK0qnKqzPebsq9XqD XpNnhyFHe