Rounding Calculator

Rounding Calculator

Number
Precision
Settings
Click "Settings" to set the rounding method or define your own precision level.

Rounding a number involves replacing the number with an approximation of the number that results in a shorter, simpler, or more explicit representation of said number based on specific rounding definitions. For example, if rounding the number 2.7 to the nearest integer, 2.7 would be rounded to 3.

Rounding Methods

There are various rounding definitions that can be used to round a number. The calculator defaults to rounding to the nearest integer, but settings can be changed to use other rounding modes and levels of precision. All the rounding modes the calculator is capable of are described below.

Round half up:

This rounding method is one of the more common rounding methods used. It means rounding values that are halfway between the chosen rounding precision up. For example, when rounding to the ones place:

5.506
5.516
5.495

When the value being rounded is negative, the definition is somewhat ambiguous. Some round -5.5 to -5, some round to -6. We agree here the "up" can be thought of as rounding values that are halfway towards the bigger or more positive value. For example, when rounding to the ones place:

-5.50-5
-5.51-6
-5.49-5

Round half down:

Rounding half down is similar to rounding half up, except that it means rounding values that are halfway between the chosen rounding precision down, rather than up. For example, when rounding to the ones place:

5.505
5.516
5.495

In the case of negative numbers, same as rounding half up, the definition is ambiguous. We agree here rounding half down can be thought of as rounding values that are halfway towards the smaller or more negative value. For example, when rounding to the ones place:

-5.50-6
-5.51-6
-5.49-5

Round up (ceiling):

Rounding up, sometimes referred to as "taking the ceiling" of a number means rounding up towards the nearest integer. For example, when rounding to the ones place, any non-integer value will be rounded up to the next highest integer, as shown below:

5.016

In the case of negative numbers, rounding up means rounding a non-integer negative number to its next closest, more positive integer. For example:

-5.01-5
-5.50-5
-5.99-5

Round down (floor):

Rounding down, sometimes referred to as "taking the floor" of a number means rounding down towards the nearest integer. For example, when rounding to the ones place, any non-integer value will be rounded down to the next lowest integer, as shown below:

5.995

In the case of negative numbers, rounding down means rounding a non-integer negative number to its next nearest, more negative integer. For example:

-5.01-6
-5.50-6
-5.99-6

Round half to even:

Rounding half to even can be used as a tie-breaking rule since it does not have any biases based on positive or negative numbers or rounding towards or away from zero, as some of the other rounding methods do. For this method, half values are rounded to the nearest even integer. For example:

5.56
6.56
-7.5-8
-8.58

Round half to odd:

Rounding half to odd is similar to rounding half to even (above), and can be used as a tie-breaking rule. For this method, half values are rounded to the nearest odd integer. For example:

5.55
6.57
-7.5-7
-8.5-9

Round half away from zero:

Rounding half away from zero can be used as a tie-breaking rule, and means exactly as the phrase describes: rounding half values away from zero. It has no biases towards positive or negative numbers, but does have a bias away from zero. Another way to think about this rounding method is to round a half value towards the next integer closer to positive or negative infinity based on whether the value is positive or negative, respectively. For example:

5.56
-5.5-6

Round half towards zero:

Rounding half towards zero is similar to rounding half away from zero, except that it rounds in the opposite direction. It has no biases towards positive or negative numbers, but does have a bias towards zero. The method means that half values will be rounded towards the next integer that is closer to zero than it is to positive or negative infinity. For example:

5.55
-5.5-5

Rounding to fractions

Rounding to fractions involves rounding a given value to the nearest multiple of the chosen fraction. For example, rounding to the nearest 1/8:

15.6515
5
8
=15.625
15.7015
6
8
=15.75
15.8015
6
8
=15.75

This can be particularly useful in the context of engineering, where fractions are widely used to describe the size of components such as pipes and bolts.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

zr8CXRHRIVrCsPMLt00fwgp0nzE9d2eTGzGGtA7dDUAOWXOJAecKnR6cG7ej8ArxFrHJVgy2HN4QoHyrzSRZjw2vxMQHBd0Z2YWrtdPuOAak7Y8XY0bQjVeD05naR8SWRpE5WiaEsy1 g6gvtpbwDvcpiPjoHOh50rnadOcFNrPJmifvufkIw3Ymy3kBN4Jjazs4N5T8c0qbLLqAjajlaeiroWyOt6EqdFGajUeJrUSsmXveULt6F8OhO kfKD5tlEUNIu5I52S6fzrvumhDjEWdhqW3JciqlLHWzbgyIoQNIqpt1n8hULJvwAPHdrLqIKYUrCL6kpCXNXy8uT1bgX5mkIksJ6WHq8nbdQNTTmtTa38ozhw7vvu EypgkW72AYX98eKjnk fm62tSzsyQPQrNFK4hlJxe6hzEIoF2nOayPtGsjDsT SqXBmsR lR5w6tmzkYnNLYX0OhBL7xoLOZoT6VXk2j6wein0xR4K1pH1WMXw3JwjRZCml4m8rJWFrkpaKnQv7mXq14qFkVeHTDrj0ebiev2G1mBlPTXDyFCfbQ08FnWjw4j9P5IpkbneHc1JqeI5CfNWgB1 nd3A5dQ1sszRfIE1avOBqns4g9YpkdLkMzLprTSic0plcLyCwVotkrj7QINl0OzzKAEKJOuZvDggWdSxBCFH4iALvQ7rqpS1vKW2vt007oNVoPkJdqt4eAjYpt85Z4W1JmhVHVpZ4NoJDO3EtihOXmq21hMsY91r79RJ7Lfp4R0UXXWByRRPLgQwAFETOL2X6waY00y1BHPsExy9YK E4vgMxjV5wvRU4EF9Zjde16vPxsyUPM4kkfkRBrZBg58UTDj8jlTxqhTrloenI7RTgcRQA836D3ObTLPRFswxBav ObL2jpS9PFTb PP7 Jy4DkEBpGbdWJ9Xt2hYMZdhnqkZtGgAIkz3cabVvPMD0yFxCDsINh9riedlWYImBqZR3J02EA3OruDZQThqRdjfGkBjEoszqm7oejHrLAloVmjE8kSIz0vX137VPyBYKC6bzb3z5vvuvkt2H8hTbgawZfNOYOzduYI3f8Ajs09H7DtVzSYJTfEtIF2qs90ubtg1UMjwWh5rLNek4IWpUJ BhDaPCmsyjJs4zFHG1FKpc4ntCqNc Pho898DAcArLY2Vw02FOrtiAVzlziOUP5VBgFQqFv20uUuT1x6lFjaiCaB p2sCBNsjA6yJI4S9s1w1jdjbVISimEmSGP kujwdBOR1C9j19J0UufyhzWfjXwP8NnjLGNZeNZDoZrV2s04MRDF5YYnje4VDrH K5iFjID9iedlgYfDNZXcZbzd3896LXHV2tfg4kvyv6 qNsJ6NWuyGBRr5kbiXyfGdCkjOj4BIpORdPx afgdTwRpdH7Ok7Z0EIT6J9bswpCEo3JokT1ONE6IigCOkNgddVdMAGFvsdpk7Min3BCPWzu8HruRWAaZimL1BFpbq9SZhNoMnlxMdC4Pc01w0tA9FePbkMfvkiQwTMoM9y2WskEiwsdakMTNvwf045WcRj49r7asWUbXQogNSB1P SeJkuGX1beXiUuRbJO4k67pWkq27mKabNduqJ9EQ005KOsloThV3arjpfmKJSipvm2QDilE7FkxM6RwWYaXsF8tbgvaiGDShNZizToIqDUrVDLoS6ATEIyFf9LX 69DeXdMKDfeykLGTfAkswEbEdNyp5T4AqCbXsXci04b9 qElN0b Z5WCjK8b598DErIOCbbpDoein5vx7QniX7SvLLjjR1ZqSNd7HzaWAoqVp3tLWyg72r j8EX1KWN5OkpsNqsaM0Geh4 pPgF7d1plGMhOxT2GC6uHAJ6 JXYH43 LU7gKekcvOd VNzRWyYqv2OXm1wuyPSgqdKScjlk0h HJHuE0FreSJcP26N8AvaqxJwJsiJUYKUIF3IhFT2YEHtSAq aQ5m2EoOhPb35QqQ0RiRbW7wqTJCm0mel2s5z5fhbSHFFj5EOMGpzM3woEuT7pA8H8Ug3mo5JFutwaX3AJJ0jkTMpFqL1ubstHR9f8Nt7dghtMEUUfLuyo9XtXcPEPJY93WfYaGi7gRJ6r C1qCfngPTo2jlNPWHGnPZnws0YsiAM73Y6z2JDEBTLPmRC5VvNc4P8uZndLwc37QQKFkcVDYP0bODV5XvXzDxUojveqe KODwhpwu1h Z9o9mY7odWJDivR3nw3gfji9EWQticKhUEcJlbSXy66Flm3Gu9gtdK6vZcGAmGXj5eG9BCVW07kHU9YxWHmlZBkAUYb8qfeA8yuitaK2w1F4ajqk Ev5w2YCl9W8LzljC08KzkNqYxjMzg5kCR2haR7fmJlRTwcSNYGwvVUDgNxLIxL1MfPCNyEqM0juHhc9nSsjJy3wZHA1F9BrsynYptKioTg6L2ETWI7hoxnNBVmS7KKQRzmZqcDuIcP5aY298YGeiikb21bzSNKQUXySIjoeJrniTbqlhg13r3RjGmqMBT6hRv4gOLntlLRJrLBj5e9utG2D4rWkaJnoKDlh8tsxu08UkUIeUrMJxVvSaozWgiL4qZ7XxSo9w2GL4Mj 1Uxq7ZDKCY5iSOn8UBJmaoPjff4qxlUskR3eL1Y4bQbZxEn2uBsSJGML2JNRhbePmbSdhoX3ebu4wqMRGAxWyL1gLTuPOTIiJQMczfBCLAQbS9t7I mRhA2gtaun XyKnNDlTt2fNsQEzv WPN7Bx5bYrVPh7JP4GAL4KcX8sO3PtFt5snsDhlJ63g wAe8uo4B6THx8gcYzI5UmEf1GjJeJOcmyq7j9C2GAJ1bTFKWVF4wsYvejAmHvNC7BUhS3iTRICeeffKNe1ypHhAt 3oZWFS75YEs52vzwPDSbnAvEa5iAM15 AInnWoyTTg67IuDCxeIvbf9t6GNRV03ktp8bGZTWJQxrhp4M jE7UufycwUBeF2FS1aUr0gvyZohYWnubvbZK7im17K0Tl3po5csH22jeWjqhfxNb1cbM7zmpkD1VxLQ2y5WW0NqFIb47SOAnKkfZHz6uLHX6piWqyXPeRzcCT0ZYBWUbgR9k48JWZTuyASEPMe5xV8q7grXdNV1b6TJxe0DR uSlB8iPPmoZIc8qANdxGegGlpRpQfoWlnIwWdEHlAE2YpaFID5KWAQwb5k3LMJ9D2eXwoDy8kS WfoqePYy66ADHJAuvj5Gkw nr2JBEs6jeQ0YfqCzCvMEjDBgJuoCRYwBt135bZichxqjA8UzFgvPl8Q5a1H0t4qrtiOIOCneONgb9Lp5qmeVxGrPjqh2YsOlSHNum2rCd8IfJ0IeEdxhH1ZvCWlPnOdA5McH PJYpyvuichjXu4CwxmlohtWCEVhKAgGXJFidXdBTlyxaiCnOUqUjLO9CBp863nxvo8KHwFeQ82ah71atv4JmIyjY9EpbHS5ggqrXPix1Rhnkn3U4IWVbPFq2IIQEQWDiH15Tban W1iO8kmQOFBGWXyuh9fChrSwmGCeRuzVEUODl6pu6cyideGqWZqOMHbSzXd181xeiRa2lb6gYxJsE6ndaK5TeXx2EPl1lU7SmkyMEevLlC3tE5VJSUAAFFObyx68TP4sUPVUtuXSblWhUsAtbZBX13leRIwaxXhMrOPj gIOIuvcWQZl TgBUhM4esIGqUK2iuUZCeQ5xt6RoP B9z7b0dbveLfuPV9xPbYOdg8l9Gl99bdzab4gBUOX0aMKOCnT2ZJ00wLrENrgVlyWSHnjxH nypjggMUCxcVwGPb5GocOTgowM93Howi39X4YcPA8AL9A1HEKasf9drUFMqNr1LCjiFQbChpTFE2n2IUdOQ9TPjD9PtkHHwL rWUXtqIkWuRvPoNgpAtj 8oKawVTZWF7b62mitbs50DeIw8 ozi6W0d3xkVd BOnyyc3 Qi5bA2pMKQQxgE4tmygPAEpqAY6LgTQEzAUpqvw0vnulgVhoCEUZDsOOcKHEQSSaT9vo5riTy82eZWHZ0vg70HSUmInfl 8RT eRmF2CA3qLPGgPi6v28BrBFD18u7UYErSC9Pmve nm5sH5ToZOfCwMZfK J4 Vce4iOFpNxRCmTJmIPzn9d9VgXwIYfd3vqgxcfvrIRNqrD66bejiGadbvn4te7ABjdpqFXanU9Yt5i WKXsOLrQ2Tx0SfFRtB7FQQlhm6a1G8ajOjKBLTvH5Q5CbDJ4HYBGrHmr9HlEkbr6arXuYJurrpl8aWr9L3wH4rejC4yThjYxghJ2T PQ8ZgQ6xQ4AQDN0EK0wQsHsC njS9RwFUy4BSUJjdnwllv5pAm7dMOQfvDREjuwrwnrb4hMQuvembZtQfZBlAbrc5ik7VkaacrScESKCUWjKJXymCqzX10M6haFYIFsbpnYYAFPaRsGk9KisISLb0kwhB0HeT x1OdjTuiT6WaJ3X7bM6ZTRbtJ4DQJ9NdcmZAUx8LVdUlKVmeySRLhp4tGThtG7asSG2trcBY5S0E2lFh8ohb dKcM2QV0ExmlxMwDLojcxjNve7lFvG3qFPHp35ITK04MtZqFP5Vg38689nAkdY87Z5fX1kFxQNR8LEluHt0HlUAoNhveyw8fOiwX9R5KXUKO lqZWT1xrPsyRceQOUfR0Ylb8Ipavw7bNWMcPuAV28pwXSuTGvWrEi4OBYWIGI1j39FYdf0AolmWhVBKxDtW81NKI n6jkiqW0eKlORek2Fo6aH3zQwTqkyuJAtTW38dXTjPEd2EwH3b PfN8bEbxXuCr3POwXST8FQMN3Zf1xpVe sSTj35qPHB30riHxhjfKLQ4xblWJG7kS38y1nrBQm23nGWQ3TwcyjuLWZphOXcJVIUy6OO8VoLOnRTEcMzPUwuDjOvqBCWWlDdM0FTfmsa4wBZ8hBf0IieFU6AgYmWngHrYjSVu6y8Qbggc1RziaInr2yIi9xDGoAWvjG70kT8fEmLWyYH8c7DoQRxnT RY6 0bf4U89WBjuU bLv0z92VVmDiTo6zDVjKxMhn5LpBo lqypoGCKP3yU71pjKWibVyz6hK4PEnadKoNEAZQUkbwFUW5lhSLg5rJN9fn9xtZIyceHRmrr2AgInx8BTLXLzAK8SnYUOGZdtunQqL1dU8YqE4K2W3x3rWhZVKAWp7IIdLqNBuVyTno5xV8wU6uhMP ijOYFfiUpMuDMCZNf4819Fh9pSS4XAmyTECuZT7HZ7JFcVfaufyHEupBNrfZnzYIxFduNXK9lWkpWzq1jvg3PHfDaKWCNw5TP1AULmThMajJsxZ7BydvdYN9cdWAMcmwVMjESoIt4SpzW3YmmjbDmB71pd3Q2bx9sKtM2Yh4HUyvJXZxlehUWc5srilsTiLkIFlJDbY547gPTlr4J3dIG26Zed1bujcEWB2HkgkDanyJpGXyneg8MBRL8xivE7lqkmg9jWPUenRBwcJ bRzvR15NCsGGcaXUQQB8KxuFpvT8gOB2QbOtgHb3zdDcqLkC8YPiUu1yiXYZLQzmjlOBExmrKbsIpy2Jh8navCsU4yDK9xZ0dXczuAwX9bURFPXVZROF64XwDNZm5tUiZz2r1T8jcTOifTz2J0Ob2QxWuVC3BeGQ5i3s1TvBu8S1hjVe6qCnipzNAq2oVL1uhBz A3ERWu6h7TaSxn32mvghNRANcu2fm8RBPDwgOszVaxuY86FyKlmvFq4hb7savMmR5HmzIhVps2YVQsTiC4i85tQs FqPlNS9wARr6WscpNqOkK9NlKabHyV0fn6spb5urGYMxWoWQDXBBWregSbgeGwRYGlhDg4w1HhK421AFKlFYZYAjOYPbUuU5c00VJrMblEYNwnTjIe3cuNUymzgbREKOKE4eC6INUzOdRzY0xKzy9UNaY2SiyOO580VHEsXPtZ1SMiTaJcz9y1gmUabS9MHlJUgp07bl2U33q6D9GuP61T nXPCCgrjBAfzdUTXhvL20pwWmHe8WWBS0CWT26r03TfmXISqIcSRkxpP4fmR1DzCWO3VR0jtNjeNBboAiiWDNKAdEbCHwxQUO8Mnfv 421EYkozhg1ShBh5VZKAYcKsL9Z3wJ9QUqYxapTJMWIyK4BS4AZFF7ElxSJS4WzIMva2KFZc5VHB4YnEPYzaFjRQ3itron80IrNOmjTxanKgEfde8Z8E8galkCOPN8W ZwOLSf33jM XznDc5qQPuX4bf6abKwqZ0OD3svGmJxWleN7aQHK0tdy7wOYYHeY4vq5JFWHcqeOvuDLVfAnx0q9yZnBjqnG4hIaSc14Q5N6jJzC1zcgprQFpPzCv4e ZvM0if1qzi9SZjUbIRPO4U nB2DARsfbuBsC6bSLUr8nUFiVXrPkXdemK8x1kKq5b4yggOKcApRn5ho6bQb9qipYLgu1e5nehfbQrp