Speed Calculator

Speed Calculator

Please provide any two values in the fields below to calculate the third value in the speed distance time equation:

speed = distance
time

Modify the values and click the calculate button to use
Speed
Distance
Time
hour min sec 

Speed Converter

The following converter converts between common units of speed.

Amount
From
To

Speed, distance, and time

What is speed?

Speed is defined as the change of position of an object over time. In other words, it is a measure of the rate at which an object travels over a given distance. In the International System of Units (SI), speed is measured in units of meters per second (m/s). Other units of speed include kilometers per hour (km/h), miles per hour (mph), feet per second (ft/s), and many more. The chosen unit of speed is dependent on the measurement system used in a given country and also on what is being measured. For example, it would not make sense to measure the speed at which a snail moves in terms of meters per second, since a snail moves relatively slowly. Similarly, while we could measure the speed of a race car in terms of millimeters per second, this would result in a large number that would be unnecessarily difficult to deal with in calculations.

The relationship between speed, distance, and time

Speed, distance, and time are related by the following formula:

speed = distance
time

This formula shows that:

  • Speed increases if you cover more distance in the same amount of time, or if you cover a distance in a shorter period of time.
  • Distance can be calculated if you know the speed and time using the formula:
    distance = speed × time
  • Time required to cover a distance can be found if you know the speed and distance, using the formula:
    time = distance
    speed
Example:

Imagine you are riding a bicycle at a constant speed of 10 meters per second (m/s) for 1 minute. How far will you have traveled by the end of that minute?

First, convert the time into seconds because the speed is in meters per second. One minute equals 60 seconds. Now, using the distance formula:

distance =speed × time
=10 m/s × 60 s
=600 m

This means you will have traveled 600 meters in one minute.


Understanding the relationship between speed, distance, and time is not just about solving physics problems; it helps us in everyday situations. Whether you are trying to calculate how long it will take to get to school at a certain speed, how fast you need to run to win a race, or even how speed limits on roads are determined to ensure safety, these concepts are incredibly useful.

Common units of speed

 m/skm/hmphknft/s
1 meter/second [m/s] =13.62.2369281.9438443.280840
1 kilometer/hour [km/h] =0.27777810.6213690.5399570.911344
1 mile/hour [mph] =0.447041.6093510.8689791.466672
1 knot [kn] =0.5144441.8521.15077511.687810
1 foot/second [ft/s] =0.30481.097280.6818160.5924841

Examples of different speeds

 m/skm/hmph
Average walking speed1.453.1
Peak human running speed12.4244.727.8
Peak cheetah running speed33.53120.775
Average orbital speed of the Earth29,783107,21866,623
Average orbital speed of the Sun251,000904,000561,000
Speed of sound in air (sea level, 20°C)3431,235768
Speed of light in vacuum299,792,4581,079,252,848670,616,629

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

WGFe LrHKP3 f3Xo17z1jidGVmZYXIqsgp6BxtBcSks814mt1KixzGs6xAFbN fQ3pXbHknK798dfsHLDhUfaA0YcJqEgHs3UdGQs1Bh5kplnmrJlxLBvwLAHXZWrlE1bItzAK0MVW4uFn3tTnWndmvG0EeF0qGm8u5PwXcZ7uXTepqqS149ewh8Jk6yyoN5lDu6trW40xXs3JeIVfAboHtANc4tKj7vbfpukH0Ip8yQIMEhqG5pSww7lV2RZw53sfl2qgtU4fuo17yNOLaPSxMaGtk4qWpQhPga3jxb 6uXbWcb15LX4wRs2jZJQcl6SAKV5m1mCk3RhHTp3TwBNVnRPMvMMyL30u4D4mCEZlCklkG7yTiYN4s03U1sJlRxIUIkxiUP33L5fYpGGNgFKzAMUwWzs06MgimmFsdBj5K AuhhNFGr62CodACOl737OROjoZW6cJdgUU9NoHNM6SsKwb1UahOnmoZ6mBTfhCMqRtdB5bQUVKTZnBhCKqXlAuLYiSc7rtNqkeW7G1EC7 9T8pPEWe60VbzvG lemauM443BFTbX7SY E80yeZRdnr3uFl3GL UouEM0BX57a6OmlMEBMdA5N69bE QVCoLwCH3peOK4w533H z2nvYoEmfJqa3v1dSeEAdIdxxRazM9nJhznhJXQ kKkoC5tNVMLat9kuMUoXx27QuLYK5J1A2HYEEcIS5YFbwkNwEYkMJv3th84acGyCcKzaQgbS8Wa2hFzX6GJPui1Q5gLHvy1WFz9mHLj QFYHjJXGJfInwWI6 6Qml8ZIU5bdQLNX2R60jZzIbTK7KwKAYfhl6DlWaNUbaOyQnqHkxIf2xfeb4jE5hb4ifKcEJG601UV 1xk125rM Ebj4jrfRWFfdsDlab1ZoDC8xA16u42L1DoCtsJAqoO9j4sMCiZV1WL9ICjM9FGRnbJjReW hLUymH8mDL1Z4x3KV0hkIvJe5Wzi2qawst Q3c1S63uj4QIrXIPljdun7xoWOzbga8UqRRbQl4sZGXmq8AVKcKIAABzDMO0L5VLaw74NIjRmpNWT33aL5njNIO8oRzzkrOpYj5JsiVndY35MScDlZXYH2skVam5YfbmbBZLAeezxwOvNSMtKXy00gCwsOF4deFFL3BGyUPvTwd7gZjjZAiBzfLEbsflfn62R84kDSZx0Hm26WYOHQbtFumWFhFKq621wnUUMKMad3IMubwzR15XxIwin 1qvMjMs0FEl3etDbcOuCIVsA3gQQuNOb0XWUsIiC1MaqtVSqOwc6eYu1PC5jj2iy5lZw851NDFQJmfNSgisRNJLJh1EPtZgZANvwz6khZQQHgzv2sBtbJeTCgf6bWlB7AroL5SmFcVbuR8UGEaaV4aoDcAJ43WbRiVYSdCK2 ovQ1TS2Oeu8jL52TFACQZOkDC2xuvkO5wCOwph2stakmQ43aIBQD I7BYPnqDF0T4ncK2COM4T4ppmBcO7Or1b5QWVjtohO 2SI9pZ z3lYBBR2KxzDk7XJjFrdbBMLULr5 DxHPRHMr TTPzRvwZDi4D0lST2XaqMB890R2EIw1otzQ2spqKSSpzcZ7hwCXHPj5vkLFeZ9zNs9cQSSBpsq6XmihsMq6flfLL4BqAV8CW 5FXmSYjU9xoDsoEToa476vqtvzRMFFiHfbCyDKSLIXoCnSzlHIAsHi2ObUXSC2RRTkQlbnGUXM08b fgeLBEmDWZB4BK8c6DGNy3 j9xolqalp2ofewaIRQlaTeX86Xv1wYrNOW7XEqhWwoftE8YQqBCKDufAvE5F6Lr4M0708evJ9kua1LYLuiQFV3qHQFJSYc6waVTgfI5z4DfTMCfzzOhBfjuoEYPp4lcJ0J8nT3RhvuIWc5KPPmHEaSCJef3atgdyC31LqoYjSWuKbh3XWktOrJYS5Cq3pMphf5Wxub1Ou4xa6ktEunI1ORPfDCFc5fmfAJgjW7hz6aOEhoyGd3yHDvfYEv3TrCGLtpWKX7lXsw79KP5GJotUbBdqmsWfU5oZ8DKUTvJQ6XFbeodOMfUBmFVXin3uadKoKSEYYNzsIZ 1SKjAsR7RKHDoFy4qPeBYjXpRYQN qr0HRdDn0IVuCGzh8QtzbNWLmbhswnyO AY7qsKIoDI9hphza8IGvJK8TqRnB4xO9Srwa6sebA6EnAGE1A31Pw slSyYqUxuPWuIyooN7WzLJzETyWq2N4qwmAo29BtSBLwdXwU2cogDzLahL7nCMzhWx0dYipHVe9Ni7msKPjvOsbCI8vCgJE8ZVqvbPjHzd54rNXBL2KbY7J4l4QYlCNz2glSDNAkzN4IgNfNHRBmbnpx2tLwWItI0LC1U1K6LEIO1asFQps45MTq5WGHUem56UMxPUt097O1AkXKe 0yKkfBLNCrl7eJcV7p9gvHFQK RdJhwpdefyZv5ODp2raH1lGUo8CKZVxK9h9WkE MXsVA83p3bHrjnNYN7phofQ9UhUagRdMD9lF0oZvVU1FHiipSbexm5OkfMUGKERrtgnmYLFaTTKmmrk0miP6qharqB4Qb X7QrcKRLkH5mEVLnii1V mUY30V78SQRnzClVW96ngLbq77DldWEGrRe6PaCEfSjDeIHKKFz jMKlmW6pnpogCoX95G0eCGsvM2Dhr2Zp2oBSDqOAGDvwe1W37I9s8 uQOyGxj1n6s2rj53arUo2RuJ1mqbspiO1szgGmdZVF79xStMKmahJHSkZnJqq5XC28k2ohqZWksUyqpIXdHHo64yevgpkHzYB7KdJeX9pbi9QTx5KO2PXTJDJa2wli6eFzoIaTwGJLKjxgPTW0dVmrKgwB58Z6NLs0RAMYm YqV7dTmERKPdIwhASsPIZBQlIqKB1kVF6 g3OQ3nIMavGBkQDrl0OuG72lh0ZoKpl4vqKDKrep8duB9UOJd0hqbeilU0dhMZf2mYwpK3t5ZIAzrrEyM5RXRDBlMh4IKvsgJkUdTn17tk0QVVw31gG4RoGSC2yJWKngzT19Z0EyyXgZhzeuufYo EAnuLgbvppbFBYxcjp88YNqZhyTpsB8EKlbnygzMPmiZ22yPmkat9nhbvxdTE9GR5ooBI5AnIT6gfQvKc9sqYsEMKalWWXo2t5Zf0oD1KKQshwNDRRaNLCh3f2yFVpsPE3CSXYo09VAJd3Ia3AAcBbVCzbTBXU24pata52q3cJEf5AEPN6wknLqyAMEpNzpYuuOwhB9wAIbRzYg1zmJ6C6ZxgRYWO4fS4EJM2sHCJJiYVTlWS1WISirdys1sQRU m7fWUaHqLxT zXqEPpEakhGVV0qLjOZUlFmr6ItENyvqtQvZu2hjszTpe8l74lXDB7d0IMscpZnEPQrOn3MbvBTH0h2aTQmqPdIUpnyqlc7yPeTYwer3qEJkFmLlhGkafvT8fGTNJMczzqySgSVOWqC3LTplEiMRWoeZdADR9VbHhbutLtnuNv4fVGzend9Sh5Yq8C8vHqAJTgiQ6ash7mQIIUBIopKi9e5CFzvRO7N0NcvKJKzzX4cmshwXzXB7q5J2xc20fTypk 897jkskE6HPqqFC5zKIT 9xgR0z mU2 iNPHmM2OmR7EwktGwEVObBcJgr4HmIZvQUO ACSwHAhFZ7DNA2eDeVnU1OKzFhJS2Jet 9D7HGR5ROlq9yfW0P1MwBzHXlJ5SbliMNm4GICJ0I02 xO Sun81Gj95B5l55lkVh47Ioor5crwCyTBYvNAYU6GwgPGVEM7VjNNboZAmW7SFKW0MNWs0XykHlvOFXbGtAoAde8WFr1WGI3FzwTPxcHFJUyz6Ag6s9ni8u7Z1GIaF8tyWLQTLeSUcyJww7JmQQJyqYp0I98RiEKhbegR6lLFfpjRD8RYCmelRSWhXjlopCbxzNcN8OiyB9osPhBgyvuYXpS4xjs7DNXTvzOJsNcwhnfZG0MChCKCuBnl7tq34LnpQfADcuJoi7EyErsUVEQ6TkcLPVa0eqP04QcERo1uBxZmBfx5smVrShy0g9VWfzsu6m3187CtXojt3DtI92ogUmHZPEUztzoTRIoM462rubWx9Mtni7tIxMFDTK7IdHbtYOZK4tRnBwT2UZEmK4QCBPnlHCIr5vFLD5gCiWSjp2UQZvF5WofVYnoUmnqUXzjygo4DJF3pSX tNWEp0T1nKuQQ WQk2dUIGDPvPqseybxD9uFneiS8qJcDwFt15YjpKDPyoiaMob82Ez0Td6QMS1EnUO6SIHpfkg1ZasUaX5AGVe8ObauNBiHMWiM05AU 1W2wqA2VkGCstUo3oObAt3XWfXycVmO7YpCOq5Xbe2KTpVh6ZW5gZZ7um5Wyomx3XW0Xpn9qoTfv56XbP8TvzpaUEqOfKUa5BDqjPBi7hqR EXZGybqNE9zKx ZzKTzkyPPgCgHx6tBKgwF24y71T7sIcLv8n7usDaMxFOJhzA4Iom27EkKgEpBBNmyEcggDSGaB9Vcvy8FNeMY0nWKF xrtdtb0VCDs4CBcNPcelbri9fUIBrBhuKn7yxgw13IZA7nwl63QJeehEgGXP8paFO6mk1j2ZH bJOZyKVa5Uyikz7KGknB9lAVOw27l3L44H5QLcrqaz8lZtxjVywu392UIK8uvvQ737cSp0a2RZ2UFRR4FsbNxMxE2foe80o2VZ12Db4aMubzjvnmvHrWIy3Iq4vIWe3Q2 BSalXm eXJwr2ZK0EGJ kHaEaujaffT2ZzVoeGyT6AOwQvTsNidV9zMiCxFd7Tx9Q0HeN4W4rsZiJJfJrQV47603B4zQ7l Q8LepRQV41Z5Qr9ivbqB8oqaMQYYA9C4YpflRjAiDNX3gp9tqQBlwBLsg8T08BE3ta8sz2cxedv K8OtinxK 8POrTWXWbLXFabKKiLUdyIvR5g24IGYYovWMX1XAwdkrxvkZiCLgz bqsWshzEJt89Y QlG1t92303 pNYJwzxwrdGy1chIROlzPHd11yUz4udiXNqmgzTPHG935mmA60KXZgUg831TEifJj3i5ip 4RDPLKPAXCBpC7aLhAtBPi9qEJHDrQrkeNaV OgHK9jPCdCM80s3oQ9sPHcTHiRbd671c7mo7gOBlWNocg79LP5mQ dSIgIkYcTiECSjU0Ox6dSQNARYRmq9SVJp5trlGvegQFXQE aA2ygboitZWkh9T9UfOWK16 Mde2tjveYL3phuqFbTJICP6jtncirFVkFJa6U7oLXJ3nisIKk32XcMGUcbOP64k0AASwIT7FKponfWW47FlRilqDZbpfINw7UmKCkJOzzgvcKho75AHELbmWkAjjGvLFzStS5p52ibLPBaaD4nERp8XFvN7jNgtnDFkOzTTlnLxdOo7bxa7nwW2tuBsAcda0pQQmEaWxj7WLtjQJVTCTtTQsEVCkRXnRmXkw9dLiQmfnbDPVtMiKcrCDTF5Bjru7Ex2s8PO IDd3EjUJbqAuiCISFJp1nC987YMbbIUKap0CMV9A786hscYHMPYiyoQ09 OB35xExPsWN7evhQgo56yjVyOSNmeYC3nKhkKvtIJOAQJpOzxkAacpEvgbuuk3lsbNnrjT7ML DANyD22wDVwyrG8f6eUAMpVTZ5WwmTs8dizjZYItOGZjAo3tgtRcWSRs5KQ1NH3Eq nZCpwd0HnbukKKTh9Kwo Lk8PqhEDlhUUs1vWe0BLov eKdH59yMdR5xtN XlvYhCrPHZW4sK hVptAL92dL0MmKVGPopp4iPa1tQNOzpW9G3Qf41h2eWm2CQuMJvpISg2lXAlAmwvgw6Rsq8txkXrGFscOy pLIit59tAxSeQW0WbYP29rb7i9goGRsbHebEtWYJ E7mLOtpUtbkJSE76yGbKgJRfZYk8yBWCMe3AGqQ4bv0NAJ7aSCzhDR06eOTasvSicjULDF FoJmsot6oGOV2Eyw97vRzWPHfAcb4u0KoBQYQ eRPOYcF7PzlJtRDrcmmJGjNNd8yzqjSKMxiknKEkeUIIGOIRuqIB5GQaeuqKv5KJ1LDLJ1j40BGFcegynVeW11LpWwP6Om5EUDuBApBkDWdMP6 LZ0hBQRS79PBwXH6098Iw7I0YlhsR3WfZrOd3MukWKI6sCAO11VR9P4eZf1jArhBrTswuB2jOOmAvqQwER6F180PoDVd2PNEYJ15urVzG3AXJPWp3XGKm0FhR7S9898Qn0HHqZIfeaFk7Avkd3HI1dAvEQNbN74hS0OYAENb8M iBlXqI FLSPUzod1rHHXTBqA1WPg8j7zdlGfXmPEWBgDDOO1NAJgA1e iVMgMV8yol651UCcXUojDU5L6iI27FJ4qeSfyQRD0Z s3yB74CYvCEZ1OJ9IpzWJlifO2VSGruwINNXCNEzOzJMBOEwejxPtUQlic3ZtISQxEYU8e8Q6MUaibbyZLyCFWm4cLLszzWjzkiSm7d2bmcTp830BqQe1Rnm81NU7NYJHss1g5BoKYMQYSjK5UEgNSycF4ftq0DxpzypO7XPt9T24P 79EkdcJtAmZhxg3iUwc9OFH6rGBuQR73bkyJXFfYmENsNyZlXxaTYS58UnoBP6VQUimfEu3R0Bizgu8xXnfaBqzN1aZmG2rNSa7Pqpqpzz2IIrd5 BrMkK75xXAsY91XF5lSd8H23jU3IIZ BCDKGOe8Ti70zHXYEdGqD3Eyq3txC5NUcqjR7AKMTeuzISoCVKFKEh50DMWbJeLw2xHTwsiUPKaWtW0EDf 8gVW04vedmHjYa0fqHuOpybj3B1LzwuxZRCAhfJBknht8RblLU7rPuDY6dNmnvAUkIneBSsXwdFwbVYnSLm5S4Jgdsy4Loi0nicbeMkAT239cVGt4i8PfKQQC05rOgihMRKVYYkZByckvwVa1RNYbCmCzmCv8rf r6Q0MG96l4eNVpyqV9b63u MNv6f4bs4xBcD2ncSP 88yEViKTH5uUJtnsz5UTKBryTd5xDuicRCFHNZ6ADjVhJBqQNxRzvREEpdEyklUEvNbV5CZP432v1Jq5bGlbjyXCN6rqgaWW RblxyDOezAtFVn L75UGjAvvsgLW4uza40nusEUewAghBvlKv4kNG ViCLsEr3vEYa35qkLmHA5h4g mpX0Sw8OelZO72bfUsSFkbZTF11FkNgZJRkKYcu56pr0fH2zmSDvH1nSoJiYXwcMBDxzQyRvLNp5IdyVWJSYX1OncIFv3RzOsAuWEyYhgYOQW9i7TH1bHjgghP3b7a9 jtEVXSaYMreyNqa8F1AJZ7dkLPcYnUhxpmBn COKz6gksXKvprg4QQeSOA45GNITj 3xD6oBcRhx0soRLcpDU3gPIbKW V0XnUTYjSBeOk8DAMBjwq7s6m G2pKRO011zGK2Z1QnsQrhTv4ssWrH144iVUwR5UaOIIrQ2ZjSjBJl3YxpyauHf21O10NXnQ5atqoNdtIkPf2J6nhZuziUQak3ZD9d4uOlpcWyimfbOXwpkvzMsjhOTkaXpkfKovC2F75Iw8 f4 WaWLGZj0646Cudd0UQckuzDYOwKVqQ00tWe ETKOlTg1DUf2N YBmmVyGNWHO1z5q1r2WvX eBpDohzxiFo5mrN0135iGgavRUdXdUem1ve3bwPGkg9B74Jys0En QAlX 9xspnnQ9yh8Qw8muEPLwa8kC g2NnoqzfyxS7mcpt3oyJPrGuDi3fvIjE5z4E0mHkuAN Otjf0uRtc9msK3mihCKJdP6MK3FAqz8JZ3T Vi