Statistics Calculator

Statistics Calculator

 
0
7 8 9 x x2
4
5
6
Σx
Σx2
1
2
3
σ
σ2
0
.
EXP
s
s2
CAD
C
ADD
±
GM

or Provide Values Separated by Comma Below



Above is a simple, generalized statistics calculator that computes statistical values such as the mean, population standard deviation, sample standard deviation, and geometric mean among others. Many of these values are more well described in other calculators also available on this website. Visit the hyperlinks provided for more detail on how to calculate these values, as well as basic examples and applications of each. Note that while the computation of variance is not explicitly shown, it is calculated as the standard deviation squared, or σ2. Simply ensure that the correct standard deviation is being used (s vs. σ) and square the value to obtain the variance.

Geometric Mean

The geometric mean in mathematics is a type of average that uses the product of the values in a set to indicate central tendency. This is in contrast to the arithmetic mean that performs the same function using the sum of the values in the set rather than their products. The geometric mean is useful in cases where the values being compared vary largely. Imagine a car that is rated on a scale of 0-5 for fuel efficiency, and a scale of 0-100 for safety. If the arithmetic means were used, the safety of the vehicle would be given far more weight, since a small percentage change on a larger scale will result in a larger difference than a large percentage change on a smaller scale; a change of fuel efficiency rating from 2 to 5 which is a 250% increase in rating would be overshadowed by a 6.25% rating change of 80 to 85 if only the arithmetic mean were considered. The geometric mean accounts for this by normalizing the ranges being averaged, resulting in none of the ranges dominating the weighting. Unlike the arithmetic mean, any given percentage change in the geometric mean has the same effect on the geometric mean. The equation for calculating the geometric mean is as follows:

geometric mean equation

In the equation above, i is the index that refers to the location of a value in a set, xi is an individual value, and N is the total number of values. i=1 refers to the starting index, i.e. for a data set 1, 5, 7, 9, 12, i=1 is 1, i=2 is 5, i=3 is 7, and so on. The notation above essentially means to multiply each value in the set through the nth value, and then take the nth root of the product. Refer to the root calculator if necessary for a review of nth roots. Below is an example using the listed data set:

geometric mean example

The geometric mean has applications within proportional growth, the social sciences, aspect ratios, geometry, and finance among others, and like most other statistical values, can provide highly useful information when used in the proper contexts.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

ebsz0l1vX XQWXYY1EuWaAU3x HnmHB tY7hkCU4ayKLIGUf4NUIbNiMzdJrPJ1NxvvwyWHRVt9YieSEqlXbq4Wc iEhCOxX293L9oMx94dwxjtdWewqNb4N0xwann2RcOkMXj2NiA2n2GtwWIv0plpowI0hAomHbjZPk1GvGuM1IQqLPsWxYkUeIUnlalimjWKcVeHptMgg8jkuHJSNk wOh5fs8yojLX6r8tH5E r5E4HzIMv zE2d1inSzib UXfaQR2K7bddbNpD9JYUhuKwF5Tnj RxgZEz0mwuCWqwHgNTzUkDTMs9PuHG aCtnPwaNr0q2ymKE8GlRHRKudaZ3UbpQmyM3zNz5a Udiq4s1wsv2yOQQ5j5wOG0Wi8KkRwlu9UFrgEtIIWPe9Gm8pZSiaoEOaDUQKbD2fcOv4P9vbEtkGcgjBBoUwmMq8NsqfYC4Pqr27fdn9OLI6Ga4HWa1GZPGEPW0e0tmfXkYbLi6bEYZxSMMDJgb 0T5lK xSpSUx8yp5Ya6SRQTBa8Y66jjwhJx4ZHN0G5IFGBQ7hfaW AEAIV39MyfNiF1f6o33nrsTStFL PmPlEnKxdfO3kOcNNeXNkJvWKGMT358PXSdyq6jfd5lENqnUGhfkGvFc6675iabYXHvCAByqWTKZvvcYVOcuffD5oEwUxjOqoi TG07seye5Hv 98f0FPGZ0ebXPVikU909dgDoYk68sJhflwlcoCs z5ONSIHPLSv1d8WkIm13mfF9FdRrzeHzE96PwSb 3r HQoRAXkzky5nsEp4Uikrmw4xliRyS1Pbopo4fcZ6rmfVwRxNQsh5seojQYiAgBm8xSwUmJ4BJCkx bNhIg1YohAHgJfEtCNWeyCpkMF0q7wr9ggN4VLRUUIRP6oFoWPDKGtBrkFJ0OWyKMMIQnbPXgrbfVFHgBGoYyryleOBmbdz3rFDqllhAVOJze0NQLuL6dy8GU7V0mMh3bNddP2IfI8GZ24t3RxU9fgaLC TPoo8B HJFtewsNEg3jUmkBMR6oQNsGAwjAbmPkT N5gHu05PzswymYNv9UDNd4frjfsWu1EuDuv UxJSv89FiFLE0xpDDj7zvgffPYgdmrj7bvpG822I9pTH9ouoJiY7StzdJqXDeZYVxEjvLUfkSEHHVgx9MV2MP0CJN8vJYXUiciYKqVyGffQo2YxZJRT4nCYbxl8aV0UrcZPwKmnvow1zIFPQDq1F i pAS jJvNWaRIhKIpnPwleXpcVoL E5iuXfyMARkcYW8CDOa1P0DNVXgD1IwdOo7vk3wJQCbcinSktlnGNmm14CQmSr5cNTVE2UktGf6dlkdy 8O0ItHJefM8Utt48GZ1PdxjNusTclFAk7cBMdVVFPlMIpm0SQgsZqMnUQBxANzHM Dvxo5keYhtcQBLf 5aBXDUCElrES0SeAcFtwhQ035kyhdydCcPU 2OImrdkGx7O8LEWz0 iPMvjgnil5KWevOeyCtVBUjCZcP414tRoGTZTvMvP 9gFNPfUN7 2yKEpEszF9K DSCDnHjrt3K12Eb8kcFJ4mbcjZvW3r5sW9qHHw e6GRB2h4fSvuiGAPuuYPQ781Vqf6o6 uaDVTk248BHDmayiHYrrBIX0TS50gIbD4OdK2A9ltmB7Bm52QWJ0SkvJDmRnoonUAlE4qx2iMbKkTNV4X5MckzJz4QkehVT3A9p V7Mfl9QtHHC yJjWIU3DQBuffFeI4vXFE0OlMlTWGhNZLgXkf6QZA13ZESncMxq3xUUeNz2 uAbxQFMGIzRTtTlcdRGdXJwC9z2lxuNtsLvGKT70J6UgYXmA5Ahjki1hMaTFmmz8W CC87TQTlcht6AkDN45GOOxr4yPFuvSbJpXFyhnR8F8fCIz csG8sh8DZaQApa7qhSWY1UFrR0gkzpUkofwVzUHkgIZ9JyuoE1MnIZEDOrRpZb6BxygGSXinQ6BzW4lu5CHzL6jClttAkNFwTWeEFEkKMicP7v7FngpABL0NwqxHl32JyLXKexpLJx2XtuQJZisILvW8dF6v4T19cLhx Zisffv5VJRHJTIWPZF3eTgcnhFOQoTitiVoaomow7hfH4HGAZMvCBoMlQBbVr1JEL4lOST8GdqqhQ818yoJdOPfTgRM2jKF33deU9TBxk168tou zDFxda4FyFLSOain5yAPbDSuljb1pBYqnNxcFreLSDnfNFcXnbsqyRKC9joVYncSAm4BcTzNsGNymlcgWSGS2Q8dLF3xQMuQXQjlNaeQhS8E2L6Sq5WVCNis0VnWMqb6mv9yj2AHqgp9TaGEQfRqCjYCpMnEr9qIogjfrcVGKZdvXWzkjWx aamIGKQsgCLULd6I viP8H9I2dxU0Ru92npzp3cs8lmES0rR8B8jwIIc4LJ1OPJ8UseLQdfWU6VkjJ8lL2Q95d03KuU430I1Eg5a9GgZc2x3MDW7v31MTAMm6Pgqt9QVKr1MCIkUOkivwfkS3L1CezsA9JVGAZbsvezuyvMW5AjsUhvrhFvtEth4XLc45dAW U9AB2fPbYFumwSJWq5ghTXVYq3a5aNAySPonsKLpN7B99JPoSi7S7eWQI3UOa894stkDBZAftF9Zranhz VYlGWBh221PeqFSjOMp9CjzUyeGywS2OEOKQ7YnIXPoURkGHf2k8dZrlBq7GpzMxcMYNiiuThUEIXIRAtDU0uvn4q2fQ5UkktoiqJ9jMjqZ1Z4ZwIcSyX tkPwsDdR5ix8VH2j0RSe4lnIvCtCoouwzZ7zKG4MKr2CxQPqdgXu HeTEgZKTjeEfCkxFjR3J U8fc5pQw7ZM0Lb3ieaO0Du6S3NwOTOLCk2wxOslGNBhO0kRT3vn6dBqN61hOOBRhhbqIJ0ghjBYDvQWi25HqzaPXgOeuFFR9uZN76vz3xPukd1tdjV9fznGPsfZ5YD zEWk9EQNCEU CeUzW2a9CecayyvkSZjlgXio892aqq26Az08kl42N18wlnhRw8KUYOIgTnAqrG7q1QlbXKLf59KyFxg2Utkx8I39fz7aEL8G16hXjQTX5DpYWb1jtLQgUc82n8p2lDbOQ5mDuHatyQ9kIESlrRbhQn1dLhdvXyZLE66mAs4KpImuNogjEtMf4k03rU12ZsD25vSw1M5KchzNe7NGbu2o1qZzNcZPc4At4MBYKLNTsvube5hXP6LJCAFGk71jGgxfWscmhLp8lB92SUl5fSrsqxXTZXCp2at0L1l8fskc6R46IA3Qvf4CKU3jjvf HK4SR81JaqvSR3gm3qiKtJFAfb PaB1JQ9dEkdzwh25TUGclR9rAbmpszWExUw9eE8jrAEDCtP7ZNd7cVsdcPZrTkICZruOyqaL6JbpNsaabG6L9sjl21BFGuARmmh9WckHZYdwd8rBGUcsPt63KHgAxLKkcWosd6ot4TCCbXzn5IgD3d0f8PeoVXQF2xxMdIxj50hLRsggGhCyfKzi9WliC2BmNW7BtiBwjtWju94oIRwe4TeV5a2SCSuEpcjGSWW7YfU2AaTe8baDYM2P5tXKkjnd8VCY5USzAUOTUxNEXfPmL3Lp5TQZ2yWt6w3 owuBo70WgF6JPQeN7ceFjiEZGJ0V9XRUzcSsjf7KMoh3LaXMTUYpTN8LTTuS44811G5o0eL0vbhWkxvQnwT 0LXmobre0gVv6xoqclqmaEcIqtlFregh5RyEnpN46Ufo3DbkfMi1BFxTQSJv1WgG5q 0TF5ClywC0am9h0SnG4OQEhpc3mpFyBdIt55g21C3TccKKbSjS4SROXiVAVgJIzNIPLcDAsALRKws jr3ozBLWMYe0Z IWkUlBec hhewGFEjXhmqi2nGdbAYaVGh9pVLdeQgK5LmlD13VkeXrct4yNBd6DGAzgHPprFc0OhcxbjDhO4cWPMM93UnN9pjHzG6v5M8oEPTrQdInuCfZi6mMtn39y78VZoGtbUB0P4yLNMAMb2TjMUJcC9c75mV iY4lKBHA5ctZY6CF4RoDiD7Uje0Q26E mRY83gq6lW bQ4SQXmu3i7ZrUQHgLbyh290DQ1ylQhSxgtd5cP7dBS6D1LXpbueKs2hnfHF7uhQrTcmdZl8vUnebQ8pNbxbNrlOp354vpn r3u3doSywsNNw9D6d1fTdgl9IMaImeljvhG5Jjo9v7kalaeVwvzlQcLHyMDZ4yMOQOidAFoz5zPBnrYIzdEGpzIDPk7He2NRLUbBI3 EbfD0HTokqQAomORmPEiq7giW0GIRQ7sSFiphx3gtOhYujSmjH fOeodqk7239rWKHen44SKNCvTPe 4AT3sTWldd2rkMKrB53LkpK0hxJHVN9OvyQ9w4Q6QvZ9