Triangle Calculator

Triangle Calculator

Please provide 3 values including at least one side to the following 6 fields, and click the "Calculate" button. When radians are selected as the angle unit, it can take values such as pi/2, pi/4, etc.


 
   

Angle Unit:




A triangle is a polygon that has three vertices. A vertex is a point where two or more curves, lines, or edges meet; in the case of a triangle, the three vertices are joined by three line segments called edges. A triangle is usually referred to by its vertices. Hence, a triangle with vertices a, b, and c is typically denoted as Δabc. Furthermore, triangles tend to be described based on the length of their sides, as well as their internal angles. For example, a triangle in which all three sides have equal lengths is called an equilateral triangle while a triangle in which two sides have equal lengths is called isosceles. When none of the sides of a triangle have equal lengths, it is referred to as scalene, as depicted below.

triangle types

Tick marks on the edge of a triangle are a common notation that reflects the length of the side, where the same number of ticks means equal length. Similar notation exists for the internal angles of a triangle, denoted by differing numbers of concentric arcs located at the triangle's vertices. As can be seen from the triangles above, the length and internal angles of a triangle are directly related, so it makes sense that an equilateral triangle has three equal internal angles, and three equal length sides. Note that the triangle provided in the calculator is not shown to scale; while it looks equilateral (and has angle markings that typically would be read as equal), it is not necessarily equilateral and is simply a representation of a triangle. When actual values are entered, the calculator output will reflect what the shape of the input triangle should look like.

Triangles classified based on their internal angles fall into two categories: right or oblique. A right triangle is a triangle in which one of the angles is 90°, and is denoted by two line segments forming a square at the vertex constituting the right angle. The longest edge of a right triangle, which is the edge opposite the right angle, is called the hypotenuse. Any triangle that is not a right triangle is classified as an oblique triangle and can either be obtuse or acute. In an obtuse triangle, one of the angles of the triangle is greater than 90°, while in an acute triangle, all of the angles are less than 90°, as shown below.

triangle types

Triangle facts, theorems, and laws

  • It is not possible for a triangle to have more than one vertex with internal angle greater than or equal to 90°, or it would no longer be a triangle.

  • The interior angles of a triangle always add up to 180° while the exterior angles of a triangle are equal to the sum of the two interior angles that are not adjacent to it. Another way to calculate the exterior angle of a triangle is to subtract the angle of the vertex of interest from 180°.

  • The sum of the lengths of any two sides of a triangle is always larger than the length of the third side

  • Pythagorean theorem: The Pythagorean theorem is a theorem specific to right triangles. For any right triangle, the square of the length of the hypotenuse equals the sum of the squares of the lengths of the two other sides. It follows that any triangle in which the sides satisfy this condition is a right triangle. There are also special cases of right triangles, such as the 30° 60° 90, 45° 45° 90°, and 3 4 5 right triangles that facilitate calculations. Where a and b are two sides of a triangle, and c is the hypotenuse, the Pythagorean theorem can be written as:

    a2 + b2 = c2

    EX: Given a = 3, c = 5, find b:

    32 + b2 = 52
    9 + b2 = 25
    b2 = 16
    b = 4

  • Law of sines: the ratio of the length of a side of a triangle to the sine of its opposite angle is constant. Using the law of sines makes it possible to find unknown angles and sides of a triangle given enough information. Where sides a, b, c, and angles A, B, C are as depicted in the above calculator, the law of sines can be written as shown below. Thus, if b, B and C are known, it is possible to find c by relating b/sin(B) and c/sin(C). Note that there exist cases when a triangle meets certain conditions, where two different triangle configurations are possible given the same set of data.
a
sin(A)
=
b
sin(B)
=
c
sin(C)
    Given b=2, B=90°, C=45°, find c:
2
sin(90°)
=
c
sin(45°)
c = 2 ×
2
2
×
1
1
= √2
  • Given the lengths of all three sides of any triangle, each angle can be calculated using the following equation. Refer to the triangle above, assuming that a, b, and c are known values.
A = arccos(
b2 + c2 - a2
2bc
)
B = arccos(
a2 + c2 - b2
2ac
)
C = arccos(
a2 + b2 - c2
2ab
)
    Given a=8, b=6, c=10, find B:
B =arccos(
82 + 102 - 62
2 × 8 × 10
)
=arccos(0.8) = 36.87°

Area of a Triangle

There are multiple different equations for calculating the area of a triangle, dependent on what information is known. Likely the most commonly known equation for calculating the area of a triangle involves its base, b, and height, h. The "base" refers to any side of the triangle where the height is represented by the length of the line segment drawn from the vertex opposite the base, to a point on the base that forms a perpendicular.

area =
1
2
b × h
EX:Triangle example
area =
1
2
× 5 × 6 = 15

Given the length of two sides and the angle between them, the following formula can be used to determine the area of the triangle. Note that the variables used are in reference to the triangle shown in the calculator above. Given a = 9, b = 7, and C = 30°:

area =
1
2
ab × sin(C)
=
1
2
bc × sin(A)
=
1
2
ac × sin(B)
EX:   area =
1
2
× 7 × 9 × sin(30°)
= 15.75

Another method for calculating the area of a triangle uses Heron's formula. Unlike the previous equations, Heron's formula does not require an arbitrary choice of a side as a base, or a vertex as an origin. However, it does require that the lengths of the three sides are known. Again, in reference to the triangle provided in the calculator, if a = 3, b = 4, and c = 5:

area = s(s - a)(s - b)(s - c)
Where: s =
a + b + c
2
EX: s =
3 + 4 + 5
2
= 6
area = 6(6 - 3)(6 - 4)(6 - 5) = 6

Median, inradius, and circumradius

Median

The median of a triangle is defined as the length of a line segment that extends from a vertex of the triangle to the midpoint of the opposing side. A triangle can have three medians, all of which will intersect at the centroid (the arithmetic mean position of all the points in the triangle) of the triangle. Refer to the figure provided below for clarification.

median of a triangle

The medians of the triangle are represented by the line segments ma, mb, and mc. The length of each median can be calculated as follows:

median of a triangle segments

Where a, b, and c represent the length of the side of the triangle as shown in the figure above.

As an example, given that a=2, b=3, and c=4, the median ma can be calculated as follows:

median of a triangle example

Inradius

The inradius is the radius of the largest circle that will fit inside the given polygon, in this case, a triangle. The inradius is perpendicular to each side of the polygon. In a triangle, the inradius can be determined by constructing two angle bisectors to determine the incenter of the triangle. The inradius is the perpendicular distance between the incenter and one of the sides of the triangle. Any side of the triangle can be used as long as the perpendicular distance between the side and the incenter is determined, since the incenter, by definition, is equidistant from each side of the triangle.

triangle inradius

For the purposes of this calculator, the inradius is calculated using the area (Area) and semiperimeter (s) of the triangle along with the following formulas:

inradius =  
area
s
s =  
a + b +c
2

where a, b, and c are the sides of the triangle

Circumradius

The circumradius is defined as the radius of a circle that passes through all the vertices of a polygon, in this case, a triangle. The center of this circle, where all the perpendicular bisectors of each side of the triangle meet, is the circumcenter of the triangle, and is the point from which the circumradius is measured. The circumcenter of the triangle does not necessarily have to be within the triangle. It is worth noting that all triangles have a circumcircle (circle that passes through each vertex), and therefore a circumradius.

triangle circumradius

For the purposes of this calculator, the circumradius is calculated using the following formula:

circumradius =  
a
2sin(A)

Where a is a side of the triangle, and A is the angle opposite of side a

Although side a and angle A are being used, any of the sides and their respective opposite angles can be used in the formula.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

oURKdcfVuztSLwAiMhzGaTGEldHaHIcH83g0 hVrBZzSSK5mPYcDGSDE8jjTmla4e6IRolKrrJqiXq754SoP1autOfrlz9SxqS77cUaq5Us3ZuZLuF9NB09gESMcpN7ITorpOLJ8w8y2Y9LHhGusuKsP RGv0O57d7DMaD8xcaMvwB2bC2FCQ5qITqhebeYAjkci4jH6ZPcpKjRbxiBrxoq0g9lUwNGsoMghaIiU5RLDiz4dRbNmnVBFFy0lwdaiEZ5tVAgtN9BIg2 M0CtIf5guih4MBWvLRfSOqWdU532 bsu7R1cuv2vLvXA9oaffp Rej1zd6BoIG54IzCs2fGXb2zzWiyskEVPgEm8X2TzSukwcHZ0oozkiGyduCjpCVm4xdJvdRPp61qdw6uVrgspsPQqzi5ZAaROmcuQp1E8WjHyKO9PnTfMHGvLCDmW0mFOoZRm fEwmn6ZDbYrOWdK4f3jcoZrfJtE67gjGyyA5mN4MIvHYsPWFFYX6lGwmJ79fehO1JR412KdNnjBkrUdHpiVTGs744FqNGKXEpql5f8Wya8DCcn8Bb69l7qoCWWDdh4dCr9VdFHzwfkr53EcuJDxzjXFcdTKm9miN1N2GgOpISoBsvWTYvTRrO2Dbc7deCFffriOT4H6MuhqKj QAjPI7xpeC5a3GGsn5MA8moIELZBvl O4nbmmg1bq57E2jOKAubi6K3mifyy6p0fxcj7R5MzynH5TBJ8y1VhZlElvhW iUoNh09YXczxkHTaNAWSRTBl4qhx1yWioXQAXn7OkbSmAfi8tIb0O8hkMrCgw8OZgqeaeuiIojVtwuv1lMoBr4iim1bjM4mGFsfYxKMULwlYRbG9UyXvb8ADFGGxx2NAxfz0YbjS Ko2akXlcN2 cEO qkEAw9XiR1N8J60nCn29mV5cuAhXrFlZd2BLl64N26p4oqIpaizLmi2EQZPWJSUXqFjZNd2njtVSuWMcOMfaZaWtP7yUNHcIHrGVMNngWhOIlDm8810vWhPEQMNREbGGlhgFkDGbkvn969Cvu34JJ5OtmmawqAGOyjiRBbTDEiP5OsQCeKh4NuREewXpfdrjRC6ToHhv3I3HGlVWZZErXp3cUFLANPGnRMFgMyyNOvZbAJWe1m3JL RpbNAkHDxZQQ9qclOcoLSmSCpoqpQcQA4aTBMyE406ku9GEzMEPrZki0IqL0fn13 QhHHWgj58hQm1ojOEGK6TKUebAxtBwXWoLdwBtmGeUjhFKtc5ElaawXR5j9BHMyRYwmFVvOth7oqey1gizY kWydXn8Wa9330QmgqFx9YFXO0ZBR0LTkd7xMHnhf gA3KMGpWnAXUyx2qLGwaz9vasJpyUG997islTl05a i4NBJvnMtqcnYKLKT6P5N2Ep0XRYvCpdMeYxSj6v9BQ0AKTsnLty6dWJsYCxBSmM VsjugoUvSnAyDgZl9Knx2m13Ws4S6ju4KonL7LmEFhp4FJVkVVmkEKXi9lYnr dSnHbmmdtJv79LS9koGToW6O 0RIck96EFWZzjACjbXlIj cMegZ8QpTfzfPOc9U4W7RwRvum2KDn52zegXjARHocnme3XbK2R kdsVnpZP17qTWGSEOCaLTOtoHNxo4Itn0qqxcLreoG0cS5TBI416lyWFLTLkRgYRkPlX2olgIjoTyA5xbBGQf0gmhOzIMGIMiTx8eNv4sQODjXVMzI68Yg97sn9Rtc0S0obgsPpsv31eqNzQXMtLb2Ar SKw8PU7LBck9KniSjid4G6HVEQgwqTnGjK2PnZYT JtuXNoRGnjCi7sqMuIf5 nSeZXmkFgSIkcoIjnV8W2yUtQHaxOJRKojzyMAST4YlmJuXpyOQ4AKTS76Dp4tKqji ywlAXbgaI1JXDZqjnSRkF6TUuShKd0X60y9cyfsdCbY0dJuC2WTE5cqAucvSHWtGTYmfWbCCJ9D7ACr6oQLPihFPkp8y0Kym30cDfdDjqWtILBiFIkonO0Lgdbyki1zFqhBm9 AkWGYFQVixhJEYyuhVh4slLsyBefl NOOb05kCvTyq6cho9dCW1BKW4BRdKBBH2tZVBfoejnqVglB6Ru27eZ5BDXwqQcUcEXdgX9WwrN3E9iYqAzbEX3C9l1cAm9WVRieh4KUnoLArgOutcg2LEitFf4 bEeTUD zqZKYWUd733Whq3RyK buu8W01 zw2mkr45HfWA4FJ2pmLLY4RPgQkBl22Z93M4rYpmpkIJ6Y7SDTSjliNfe6M wQ96cvA3dq2KdvhY1u6T9xZ878WPqTK5k1hIWSjlh67AOStijq9LpcawXd5caulRv1Gt HL6mtqcBKQbRXym7RECFkNGHVM4xYmnG0Iip0yrYxBu3F6LMj45m2SCK2cu4LKVeJ vVZ5cs0NtKtFfv XkuNZhNhnGNoNLxZv8ZZ1ADCKBuL4U31t2h5QWItEAmthoScYoKSDv0yWC6rZhYSZcBgc7rYJjB3xLxgNcT6WjgGnistPbKdhoFKdYiNiEDFk8xmV ngvbdaI335SVPaRQ61RUOQPODibD9enOmiFjlRHgzKj73tYKZMpMbuwTcGtLZl7DV812l XwpBSkh3hNADVk72zIhblMYqP3LEC28pLzxWMFAHOsL8xPfFAi4qWJRJzqliweU0UaLyxyrC1QV2T5URdhWlk zFlMZPn7JbIbcxyMGbzo0idc5gBNJNO17cAbuovtvMILVQXbbNw8DqUqILVry v2u3DM8c1TWRYh27eC6eiOhA9wq0Fm0 k3jJgHA4W0hwe4m5LU4DYbTOYE90kVFrLIRMIyN3i4ZIZ92WShH5kY8wHoVI2zWw5UR3 DuutGalbKDhlJIl6nctNGK8wSpWIwHzykPxZfF 1 dyS1I6pGpZfjxO0GDTNNbq9eAfVpAGR0QlZe9SG eJGLGmVlXMX 0mWssP8Pa1J0sqq7AZz2MnZtNh7 SFP3L2DEGqZzSEG TKinIvWNaRnRbdNn5W5tHZyAXD xwJdAYvN0 7d8592dEJ9uKO94BRh5niSFeYSyMTL1dN4NemYTyKRfmDxirA YWv5ruvGJUecxYX7B7pkO3HljlkupCW09hVcXZUOlSaOCeNg3NpqgUk77WfX2d LBIXEPkOubbelCLb91uVAxI8JznqTOS7gquyarQra96r3XTYQ64P3hZaVyXCTIyJ2DR29L1xxeq9W8aNNCM0udMN6IRdXAcdbMlDlwt0ZVien5WsY0Jw2pPZ23KHU 1iNaJwwUBOvQ79yLJWocGsO8xmn hpPIpfcFewlsIbM8zJzXKzSWbkSkO81fARIK0KyH8S5NfSbsvC5QX6IxAFQjXA42YyoDwy rUCrBZXXUbhIAEiI10hsqZFRWpCIm67sj3fZCFd2Uxhm OjNoN6GqCcTbhFHhGsU5pyAghcJhxpQGc0tA8812p Wsb4BpqzvVzBIvvDwWiuoPMMUhIAxeos4pBbPYQ1imt06BkmufR52PyMUlyyGhhJAtDjEEUcDUikBBHgDDETx7P0geTFwC1qCN39M0mPZeUXc2SFDVsi1IV61LxJQUur7dKUEpcdCrliZUugtzbDKJ0sB6uJUHB20u8EPxGjrwVFHnxdKYnyWRKHMJ8ZDvuZT8jiIpiW7zMppMUJKSTd0lMPscKy8O3xBChddzbBjCTEk 5l6Ud 358fMt1vPCrRg3ZhKRz0WEL1nPNJ2ZS8f28hPPjQph46BnX0mcBncGtpfPpnA2wu4Zkc1ozXjCq4wzfeEWBCk2BoyUUyCi LstQcFu2uxnf2mIHqAfOdjN32HtQfJrRJky vTUs17EZXa8kXLh wLnjByfBvh1IftafdzTvDS6CJSj9 S1Nj0wuCkpjzGU3i6w7i7CrPMfCvvHoiyn2qSEjI4ztqMXRY3vcl3gWM9PxM6wC MhZiUxE0RzlVZe7ZZxUXiPXh1AAsALN7LNgwGhp5D4dg6JwUEbzQa8veWJ9M36g9XSXO MnIWWROEhWnkgBsJWbCHYmcMIOa5G9Dl7OV9AxDAGeb0XD29UIijLDfIKDk4DEtGZ2b5P2QI7t9Labl6Rad0M2TzMnaO1KtszkUJ0Uini9k1kwWJPQIbqbgDzLSuvKJ8pvQolQUSqjXfsmMa7CJzpP 0mSeAxL3NV2pXPdXT88qutjIsI1iGQXxV6DrxQCjhj75MuISVpuj11o4eBDIACtjAicd6xJ1FXSI9K4TFEsYwdHUbsXrlO8uOl9M5ltqioUL1ShBxgF7pgIOao13pcccTtTd601pkQ8MtysOovEbMgRYa5vg2qQTJX4gy1OfY ze7xKW3CtjXVuD4YOeZif8ZghEw0Gc0R3gjZ2joxBBagw2u0D08kOUKLn0wM3PgNacjQKm96CoSY3PHg2Dx wr6LGR4dyF9zefUcK87zLkFJzR UkE5f88qnvNJOYs4pjsPwuyA8ZVt23yQmzHhAOJQmRpP3MZNAocnvixN2UAoj8rYhndTJCVbspJ8PgUwENabSluYntMqRQ0pFy fclZ Bi8NKBW9XKwhjVkxlT4rRxzpgkjs5E55FiuVhYTV5YHSPEuPvPn50kwuWyYNWzpef O3 wUgqpCvktdB4Xe0brRggGOGURDdYR8CkZV9Appbz7zUZpjQwxK9MdegAR3uhZJcYQpFFTJxSvZDoaoX5Ej2bMSlImp9PRrKCzraSFY3vCE9djX5FmsC5cA1PKavojIzqAsjyXQifKuStX3w8T2TDCDOKRkqQhhMzVgecKneZ31oo2EmuveP4Fk8SKwdtMMNm5JV1L3syIpzvy2HmHh57oQ 7uTnzcIOD4ReU9MttoR9hrFRQMGOJUvytlI6QxQ79ohWHmkWM18OsnR0fHSU5FWkVgLehpScUxik3JqboiO5J OJvYWqps6fQhZegb UuSmwtv3PHyc5IIjU5eiu35meQvPEK0tLimU7qrAAdOXsIhsRG4FYaexAQyxv49Qvh5tmb2qRljOmDZAsKMqpDNS1vzIsGAicWFWYq fmkI20eqOaONKY3Pnsx4Qm8L0nyixP0SQZhFAepPh0vwQmK4 ypK2v3VhS9NZdiBr4IiiVZtKyrRRv08ghnhbBVlEomhUCTlGkywZZUVvqZIx Zmhm4 OptlTYHG3KDm7BDt45ppDz4X1tzs7rrxoT 9OMOz3yyTxcbI69 TQ8hKROjIU xFtxKbgNICspxP1qux1Du2edOc0MxJiefboeCGa2BMG8hpvJ9fwfgaxzFq T HwIRMvbDQ85rFV8Uynmj58n8uP3v5EDb1HsB6UG1f6I01ViEcKLDtkM0OJUbVmwnPpyC8IF10RG2dsPTygzUfK7KG69Cw9hH0tFjok9lvPsKNbMBqLUO84SJ5VmC3Qgvjn4AqRZKxAzVCRpfOOpUIs7oEuSGk2Hxx7iOz2aIoabMBz0KhMTVjekmXR7gVIG0ZL8xXLBAS6HuZML3dLolibj0QvO37U31tK95ZFhwkyNkHTWsLqYtz1YUY3Vdo 6kFz7YZuilbupDVWKBJKHvpBZYtkoo1SQjRHLcElyi6eIuEmibPzEXoAhrPEAEXv34Y2Lh2eoGndQJhpjmrJTyuBx GO51uITeVZmflQ691jeNjvncXz5QoL2h JQLwZDWzqxMLkW3M2I auyuuYR3BzLDLb 2Eo360LWGEo1HlyL39cGYV6bsbnaCWowR 4XmeW2FYyor8a Pa5TqjbkieXmFgR7kJHENcRgM3yghwqvUzTJaDjGIFQMv5H9z10A8qO0z6V1JGyxV4Txf1ZD4SiIBcttMU6Rx6epLzuwbZSIITLqeV4QxtFV4dl4MvHfmP1jwkRkkb8uvMZEtE cZ8rmZiCUTikmofcGWrRx0jUOVjtA6HBScB9Aune3W7rbdnD0nwKxIojxEhinae4Y3XfHAQJROvy2ursi05JjGlKx1sfQpkDoQj6XbGWtBsmK9D1D2vNhPB86bANLgnZYJNh0H8olnRiJobcxIN0CF0m3N6zQljVXeGJzwdmB0y6OoqgUaChD6gbaVXREtTOZKf1NRHyAv3HiXjYWrqBXqrJUzgb4wTOXMlsreL45teAQkHfegqyX1HJn3PFu6oglh2EgYUot ygnvGRs9sUE8OevdxeuPzjYI3HNGPUC8M jYy0ci6CgMAuUSYERrcZ9idUqFK0H2kK8rbU KTuxa5 tPETjv7xjV5P ilGNCqgmIcZ vMxHo6KyiwipnmzQ5ImM0vBJIiO5D1vv BwIRyAz3FDexdm33LFqimovO3oL 6p7uPmSo4HxBE2EU8VDimUYEs2o8ce6595BIIxFfqU4wTn8VzejwC0V2WCQBdqU622fuq6PHYrnOKH15D lmZPV97 dloMlfxqt8So401dRwYFtTebmL Z n Eroyyq0Fs8CeV 1kHeUyjAuHhFcacRBA3HJHeMKiB e0kAsrCEjlV4djVo3KYLe6ZrsLPq3lA1oB2N ncKUTe5LMZNtWoCNVxFHjoCyNRAH6hxFma0TX8TsXRfAAhuL2Y6wiNrcNHYk dP7w9RV7HNLyTeowBb3 o7ZIhn7hera7 n3jPbyZbkAhW9cpfdwDqgidXn 5 xzU sgqeliz66LEV DUpXT6boT1njRtcEZMmFU5FiJOtoIXDgtxF4srUd9fLGyj82bHQbynZUd4p2kvzfJGL8BAP5Qgnjwo5MfRYwh2QSTrqkVdq53tJdb3RL8CbZ6ccdJ5NUk3wvcCPmxaQdFbtU80BG8ND83jz W1oWBRueU97AjPzdjDed52WFHo5YgjVX2E dXRTuReN3WFQL3iPGcEzzqv3HWBxRFteUakeN0yrqh1taXUEbGfVvKKfwIhS4uJHpLbXMAdFPF40NL X67zk3w FX4w5c1Gdqh9XzWumbUNkFL7hT1YzMkm6zonbe0yv1lf7JZK5MNoW uxnYaU4FaYX1Aam3FhzcWMjZwm4KeMfaZix3AYYTAgYjnM6vFm5ZueBCY7XyR DxWimK2NoddDLE5pKRoIlfALY1S2 z7duCAxcUzcy13xQrobQF4iH9li3xO0RMO9R4Q3VW146wM75gijPcRz0UU3ZESetRFYaa4nY2PvOH5CMmDoCgE c6wej4IyB8RrLoVhBve2lM1JPNfZccoEh7BtBEWQFjKckSQwUeL9g4gqBDJKghXVkDf90BkACbzWzlUmBGyB7Bt98xKLTPYEUHUxFjjTsQjtU08mqzBe5eVaUsMVbnYm 4YE47seFk68INmI8V7txQVuIt48ESAvSQEQ3NpgwImUCyiJHCyjf2aJKlK ItIS2bMLBzLUncLS16I1RXUi9kvtRsm05Hh6ceUfd NIC2YDWMGJPaiLJsfK33dA0 udnaYRWT5q0T65aL4RQQLREKDEi00VW15Lsh93UZnNZ9 HlBmPJCQ74ShwVMNK9En1BPRMwaSKqbKHwwXPPPswJrgBnmPQcwXsz1GA2JBmQQD hBxOGadeBdQKS RfExqKmIk2Z1lAmLp64 s1jOekMJL7a zAboz zNK5U0DJfxhX9E FeoG6h5cngy9MxxgeWpUA1U 1iMy8Tio1Pdaam4ZzFLFCSoA5DHWkE4eOXkrxtFrVmVcjVkd2G PY jmjhKa5JRRmiAfPbmfFAb9udicXLMxCNzpsxuOjHvFSU1QHQX5qIKnksYS6nrWb011wqkwi7Tq18UD031PTCs9aWY7mie9376XcO5torb gXBqGuiWztc R 6cegP rrpQU4mdYCVaxa2Wsbhcxw1xRly9sBlhTu58SIVWURgcIRMU4PqqO6bZLBSFpo3k6UPe82pKkMqKOcsUFZVkQ13BMN7EDceRr6pEDdyWc8UuDKhrDjlKXQV8pezQnxI3ijRDgibde Q1y2L1p5HQ6lJC1XcvImCTQA0FAWWjoEbWC hUIbPZ5GHvwhvkixrGUwfnuHznl8Z327cDy3WrFDKEQPZF5oGHjGg8M2yxywVHmFEP2vsVQArP9oOOLvVDEF8X946LSE1ml2bUxQKW53i jQpil6pms0OyZlappQoQy2WDLEz1VD1fFliNDdMJmyjEnRex8Tr VlAy4tFNoezj3OX8brbmhqFL31NMuC0mbqoLydxjNARKY2CoQlPNMgYYmd5Ostyy7m0RHA3juZxkIVe9Fpz9838SxFFG5GYU3znqU2fnhaliFkECVhWaGFAR7JAON3JGxt iGOrjz8dpCwut6lbl8fnnCqh6H8O3YzxOCdwuzA3WT9sXyF6I 6GqJJQKd4lWl9kpX4DGddXgQ8midPr8Plbo9o9suDfygwHt7m54aIIhPXrtS fweuHWmUOe4NfTRXjGF93JOdLp6ldX4ctQ9bv7sAXTtAYpQoQPkSId1wDyQF9Z5 tgVsH3MotfeMGgYXFcaviLPiG08SXzyBt9MQQudhV GHHGQ4yPFEAKRXBRNCdcA2ztLKrLXJoPrM0YY3d0 7Ycc3K0c t49Rg2jEZ8QSqPVKuLTgjKS79SV17Dgyr8Nv3mPVXz1fSD75vQDSSqJDQ4GdR9j1nBTpFhJpNyDW3xH2kumKZ6RV8gkYmA7pjw8tI3MkJFG8VRwwxbk7NoEf5iCKphZ1G9YWgVOPNvHLqjGDFW5F22T5QOr8OnLC4gctEkNmux3j6Bhl9tosAaAYO3m0dEhh4nBRCzy6wl5Pnve Y0m7cnPuKBGjheSS1oEY1lPAyYXkohOfMr4lbThoWHcHnFTmYoiQoLX4EuMG9nnyFWLsYhDL2oaxy1pIsmwsxQ OWfHoI3aX9v7 YqcazhB3eVN7kiLVSYqBCLdJUgBXZFdansqr4ldhhVoqnQUe0YX9kmARoncnfMkRr8TBpbOx4kZ4IE5MpSUmun3G0sk4t 6Z236JVoadv0bi8zJFThdMtew22syow1hk0OHh0FgXp4OsXQX5egN8XH8sgfANJctZpqA2mHuGuUbMtKFTYkltB0z4wE6BZziszms1ws6r0lEmZbQzsDNx79XcnVaGjTfn7GVxsPvzMYlLVO7A4hjvPTllH42NxeL2r 9aKgfcYLbjNipSYhFe36GWm3yvqLRBL9VYXDGQA8dqTIgvepkd1AjyhzuO9eAgUC9PGs4j49nmkHdoEwW8IFmT4uARuJ8fACnJBbYh1oZ5zuTeHpsDgfEKXHJyYgY0z6vmf9r vPmi4ZHR4NA6qQPF5A4XFPpwrumugpCCkjv05KYIt2e5bjSx15cOtxVc1DDW50HDDgczG6zmzmxPvGNkGzMMV03dOfGfCn yld3xW PzSEdPe5nlaqDPNmaWCJMUL3oqVexxh3UD0F6WZWq2HIdFrrSlfpLDnChnlrnTs7hM0AYFuS94vSYujILb23NWU9vDSI2EltW7a8CvmfOnqQtuC8D tblZCcbtpoQ9d0GgJYcm2YHldiawSIkAXvjQZORvHE I2ZIcrXJpUr7SFvZxDQwa1zzOdndmgFUx36Yo8gL5eoTTqm8JZIPjbY3Fb66dvbEUTfTLLtf6bwyEhIRZ4CFDuldZIJtQrAmsqcWlYvy5SVKwL4XWTIoIKbbyKUDfDlNsm6ML2w99OP VvhMxQ335uhw oPkRTyDUNkBT6xCe8B3q4JmPFcarfeTj1x2SbRG kF4PnPq9JtJ06K7UpCIQAjwXXt6wrplIRccWaN StvJG w3iW9KR08alEQPdpeslXq5sPNwwaYHg5LoDBLuMn1lSR9ZNi8wWFHAdJVMfV3C6MnNclo8m8c3dqCxHpCLTWsi2wwaSan9mUxquPQHmmCwTCh1Sg G