Voltage Drop Calculator

Voltage Drop Calculator

This is a calculator for the estimation of the voltage drop of an electrical circuit. The "NEC data" tab calculates based on the resistance and reactance data from the National Electrical Code (NEC). The "Estimated resistance" tab calculates based on the resistance data estimated from the wire size. Click the "Other" tab to use customized resistance or impedance data, such as data from other standards or wire manufacturers.


Modify the values and click the calculate button to use
Wire material
Wire size
Material of conduit
Power factor (PF)
Wire material
Wire size
Wire impendence
or resistance
Voltage
Phase
Number of conductors
Distance (one-way)
Load current Amps

When electrical current moves through a wire, it is pushed by electrical potential (voltage) and it needs to surpass a certain level of contrary pressure caused by the wire. The voltage drop is the amount of electrical potential (voltage) loss caused by the contrary pressure of the wire. If the current is alternating, such contrary pressure is called impedance. Impedance is a vector, or two-dimensional quantity, consisting of resistance and reactance (reaction of a built-up electric field to a change of current). If the current is direct, the contrary pressure is called resistance.

Excessive voltage drop in a circuit can cause lights to flicker or burn dimly, heaters to heat poorly, and motors to run hotter than normal and burn out. It is recommended that the voltage drop should be less than 5% under a fully loaded condition. This can be achieved by selecting the right wire, and by taking care in the use of extension cords and similar devices.

There are four major causes of voltage drop:

The first is the choice of material used for the wire. Silver, copper, gold, and aluminum are among the metals with the best electrical conductivity. Copper and aluminum are the most common materials used for wires due to their relatively low price compared with silver and gold. Copper is a better conductor than aluminum and will have less voltage drop than aluminum for a given length and wire size.

Wire size is another important factor in determining voltage drop. Larger wire sizes (those with a greater diameter) will have less voltage drop than smaller wire sizes of the same length. In American wire gauge, every 6-gauge decrease doubles the wire diameter, and every 3-gauge decrease doubles the wire cross sectional area. In the Metric Gauge scale, the gauge is 10 times the diameter in millimeters, so a 50 gauge metric wire would be 5 mm in diameter.

Still another critical factor in voltage drop is wire length. Shorter wires will have less voltage drop than longer wires for the same wire size. Voltage drop becomes important when the length of a run of wire or cable becomes very long. Usually this is not a problem in circuits within a house, but may become an issue when running wire to an outbuilding, well pump, etc.

Finally, the amount of current being carried can affect voltage drop levels; an increase in current through a wire results in an increased voltage drop. Current carrying capacity is often referred to as ampacity, which is the maximum number of electrons that can be pushed at one time – the word ampacity is short for ampere capacity.

The ampacity of a wire depends on a number of factors. The basic material from which the wire is made is, of course, an important limiting factor. If alternating current is being sent through the wire, the speed of alternation can affect ampacity. The temperature in which the wire is used can also affect ampacity.

Cables are often used in bundles, and when they are brought together, the total heat which they generate has an effect on ampacity and voltage drop. There are strict rules about bundling cables which must be followed for this reason.

Cable selection is guided by two main principles. First, the cable should be able to carry the current load imposed on it without overheating. It should be able to do this in the most extreme conditions of temperature it will encounter during its working life. Second, it should offer sufficiently sound earthing to (i) limit the voltage to which people are exposed to a safe level and (ii) allow the fault current to trip the fuse in a short time.

Voltage drop calculation

Ohm's Law is a very basic law for calculating voltage drop:

Vdrop = I·R

where:

I: the current through the wire, measured in amperes
R: the resistance of the wires, measured in ohms

The resistance of the wires is often measured and given as length-specific resistance, normally in the unit of ohms per kilometer or ohms per 1000 feet. Also, the wire is round-tripped. Therefore, the formula for a single-phase or direct current circuit becomes:

Vdrop = 2·I·R·L

The formula for a three-phase circuit becomes:

Vdrop = √3·I·R·L

where:

I: the current through the wire
R: the length-specific resistance of the wires
L: the one-way length

Typical AWG wire sizes

American Wire Gauge (AWG) is a wire gauge system used predominantly in North America for the diameters of round, solid, non-ferrous, electrically conducting wire. The following is a list of typical AWG wires and their sizes:

AWG Diameter Turns of wire Area Copper resistance
inch mm per inch per cm kcmil mm2 Ω/km Ω/1000ft
0000 (4/0) 0.4600 11.684 2.17 0.856 212 107 0.1608 0.04901
000 (3/0) 0.4096 10.404 2.44 0.961 168 85.0 0.2028 0.06180
00 (2/0) 0.3648 9.266 2.74 1.08 133 67.4 0.2557 0.07793
0 (1/0) 0.3249 8.252 3.08 1.21 106 53.5 0.3224 0.09827
1 0.2893 7.348 3.46 1.36 83.7 42.4 0.4066 0.1239
2 0.2576 6.544 3.88 1.53 66.4 33.6 0.5127 0.1563
3 0.2294 5.827 4.36 1.72 52.6 26.7 0.6465 0.1970
4 0.2043 5.189 4.89 1.93 41.7 21.2 0.8152 0.2485
5 0.1819 4.621 5.50 2.16 33.1 16.8 1.028 0.3133
6 0.1620 4.115 6.17 2.43 26.3 13.3 1.296 0.3951
7 0.1443 3.665 6.93 2.73 20.8 10.5 1.634 0.4982
8 0.1285 3.264 7.78 3.06 16.5 8.37 2.061 0.6282
9 0.1144 2.906 8.74 3.44 13.1 6.63 2.599 0.7921
10 0.1019 2.588 9.81 3.86 10.4 5.26 3.277 0.9989
11 0.0907 2.305 11.0 4.34 8.23 4.17 4.132 1.260
12 0.0808 2.053 12.4 4.87 6.53 3.31 5.211 1.588
13 0.0720 1.828 13.9 5.47 5.18 2.62 6.571 2.003
14 0.0641 1.628 15.6 6.14 4.11 2.08 8.286 2.525
15 0.0571 1.450 17.5 6.90 3.26 1.65 10.45 3.184
16 0.0508 1.291 19.7 7.75 2.58 1.31 13.17 4.016
17 0.0453 1.150 22.1 8.70 2.05 1.04 16.61 5.064
18 0.0403 1.024 24.8 9.77 1.62 0.823 20.95 6.385
19 0.0359 0.912 27.9 11.0 1.29 0.653 26.42 8.051
20 0.0320 0.812 31.3 12.3 1.02 0.518 33.31 10.15
21 0.0285 0.723 35.1 13.8 0.810 0.410 42.00 12.80
22 0.0253 0.644 39.5 15.5 0.642 0.326 52.96 16.14
23 0.0226 0.573 44.3 17.4 0.509 0.258 66.79 20.36
24 0.0201 0.511 49.7 19.6 0.404 0.205 84.22 25.67
25 0.0179 0.455 55.9 22.0 0.320 0.162 106.2 32.37
26 0.0159 0.405 62.7 24.7 0.254 0.129 133.9 40.81
27 0.0142 0.361 70.4 27.7 0.202 0.102 168.9 51.47
28 0.0126 0.321 79.1 31.1 0.160 0.0810 212.9 64.90
29 0.0113 0.286 88.8 35.0 0.127 0.0642 268.5 81.84
30 0.0100 0.255 99.7 39.3 0.101 0.0509 338.6 103.2
31 0.00893 0.227 112 44.1 0.0797 0.0404 426.9 130.1
32 0.00795 0.202 126 49.5 0.0632 0.0320 538.3 164.1
33 0.00708 0.180 141 55.6 0.0501 0.0254 678.8 206.9
34 0.00630 0.160 159 62.4 0.0398 0.0201 856.0 260.9
35 0.00561 0.143 178 70.1 0.0315 0.0160 1079 329.0
36 0.00500 0.127 200 78.7 0.0250 0.0127 1361 414.8
37 0.00445 0.113 225 88.4 0.0198 0.0100 1716 523.1
38 0.00397 0.101 252 99.3 0.0157 0.00797 2164 659.6
39 0.00353 0.0897 283 111 0.0125 0.00632 2729 831.8
40 0.00314 0.0799 318 125 0.00989 0.00501 3441 1049

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

hPceU8KMEr0THmuKjJFdbcRMHhLO5O Yx9LSS FDCMdqxPi6WpI5asCnO6EO2yJsryv5m4iozsZo0Gcg440HJl8zZqoRMDnq7ph FwS3cmMluRwXVHF06zByHoLbtuNeLoAzCShrlW0Pq9l1wXuqzROz0bt0cri UZxQ3lSGy8cXRBWDUMcRmkLMdDggv RdxiEfplci5NnHXU8M2tZDl0oTt0vxVc08ylzqLpttkwim5c2ayCCXOTnNpLfdW2pbK8Yw0s6woR2gQyhlTyGUkW1giDpmNYr hlrq 4QNAuM7YghfhrjlqST 5FzMHEiYW1AU1bnZFpL5Jvaa KL3QUdmTbMWldn7zNaGxx2KLHiLyVlU5AWvXbU0Ohk3Dlh8Lm1qB omneLPaspMwqagGzqcZkUJYivWueveIjkb MDYlfA6EoT8t6i9BfeHdoapfh5RIxatZvoPVyhFSafrxuR9KB2BvToQF1vDfBA JhW6xmpWpeqyRvjaxY2 J017LwCteWcfCn1Kie5oQyJIFMx6QrEfhV 5P0DUQ52SvsdvemqiYclmqhr7oZy55cCW05Zn7Ca 07LFoOUJTEhTNpPIwfnpbEV3RTTHMBJnPZah5GzDITULKfISnRdBaRP54W85SvhZpL5qKRot0ibgHciC4qSJgNSUSRVMXNDcaV2MA0rL4Hymol6IyoH77xn YFvJ1vbl88ayAKA6oaAoYrvft0XJ6OefGtkux3luXypivaPO9Gt4nCBFPmKfLOvDa0HVVoqnTIaBahyyteJ JOFZeKyxD2IZQpd7E 4HhmefJEmUD8Yrx zp3LR5gei2BUIAL4QZiNqEy5 UW9x BwOiBexTTLTBi7lKH7uob0xFB4OTItpm6 DwcvmHWkFdSK3P5 PwTHL0x7DJntrmRKu6z3LEsmgJeWCw7ArfKF16XrMJi2db540V4vSvDuH6Y05xMAaYKJ Ubo3jkjBh588QwncXb3sjkbihhohNvZ6NlgNr ARM8TEHF1phycFiMfRfFy56avYSSKy40AW5dXfLqacnZQRjR8idUyHXwqlDN9GrJI2qFCHaRF7q3rUopwQNrYlRY tnhXrC2U1AdF1JvprBYLpmnSLN9B5YL21pXnAWXF zhzpIJOPcTyo9dI7RHC0kZ6eeKkdCwScvXLgv60LDF7RRea3K WVIU6Ii4a5qX8kNchmYRaxPBYv3gZtnCFMDvT4wP1fF2GRcGMSb4t1oVY593jsU83qwsiZhSaNzn9YF0YQDcKPEZMB0MxX7gVYtD7KpTL6pfK5Jxu1TJpZ8TRcmD8uzuHmmNZroT0pBtRoHGPpHLaHlNw3d2E3jGYavUJlktm0 UIT2jHVxauKjPyAUKMuQjs8AjekE6DNjTbnG8IzXG7SLt8uq7T5mvdWcFyfp1LqyNchg7WmgMo1Q7OExp7nirxnEho6zuRBMCStx wargXBYkD8vK4DklhBhdBI5Q79LMeZWmv TEwt6xk8o35NIZSB4REPzNZpILP3oA74yyGhBaO7GMPmenXcbatCL6tY3669Al0zRMYD86c52bDChufcKIQ0GJUiUNWe0NY e8JBXWUv72YbHFxrf6CYOMZnwqyP2bm3rlI2qb zJ9WNxGThrB846RaBCouh9rYCWTStZOXKu4AtAFJdPfWZryQWE87bJCYjRRGnwfQ7kcndE6pILGNAzRj1XVJdcg6JgFMKL2Ok1GWii4vh8iTyQr77ysLbUkj8VVyUBYHR dKu R6C1BvGsDIywoMViRAOJ1Uq3GEh9FrqTPDDp0lgQKtXVHzHWwjRRsAzk2mg2Z0WRujHl4nc IoQ3zFBqRp13bEU7EL9JLJ5yyPpaJeON4JUNqfFSSJIjyikKTXcjUyaOEeW8HzuQgsLQIi0A9b2vxEVOgdPOuHNV li2M3Y IDEfTmTBeKjD2HFJzY3rwDLmr3zu0XJDa5zudFbeeqUVJI0SD8O7U9Okiio5tc Q5SI9wlLJcRsetxbg5Xr1StCaQUmpTfX1oavwUHve6MbzyZo3KtME2X 3u7OHloBq1DfGjASvSSTvljNRjfpj8QjLWs7oNtopSAnvhlvGBQual1JrGcqfJ il1GSvCWgdhfIzoFxDmuqyj73hBsuEWJSagtSeA bNYTSvB5VnpnXjcXKfRrPu0oaWCEURm2UtC88g5fWz85KaLnQpTmii0VFvQcZfv5F6 ljE9Wzx5 yoMqObN3FeQ4mA9jd1zAI42XGGtWNGwP6OqKtN1M9tWDP7 olk2jwyc ajMJS6IzaABWoKtQBpufcvzsbSzFKYbg4RW5XmFFKsPQb1WHW thIx6maXY1 NOnbJg5L JpdC9e1uy5ZQI9Ep143lhFogPMHEnBRCcBtdCWkmLxpTsks8zZX27iPbrtuhUOk1fx4y et0872pVgO4T7sjsrPX84w6YAezpqX94bzVKPO3gHGcaDCEguNRvKnnO78xC PkVPa7DYr64OhR4aAjqpRu5IF9UDycZmS 6jUmpCJtjUVwHO5IDGyFmByvh1aRF1GaekZwz66Gp5OuE9xLTyAF6AQY bEAhrOlaCkZAtc6bszvgj0K1U9WJapH3CRLEdccvZjyqXV m9hUJqInVq78VIIq psk18q6WrtjKsVxuy0 qaF3JY4pJwb53T6j32DvQXzAQaeoIKC872YNIuDcVnrsDiUim1nBMX3wIFIyhoZEXUHHWcsUreZ0VRlLEgr7xPAl6nyqiRIYAtSB6tckPdDFc5ZCWaye1bFxi02OJjqE8SsVh 2GccWcfKM0XTuZt6Mb29zoFPdd0JlkN2eWYL1hIgiaoQbWGEASA9rjUEWiKjc7BkyEDZWX5ue5ggx9ZcK3NwaZNOF41N0NA Oe3dFBMpHQC51R3DTgWceofbc3bSZ MoTiCw1IutSlufs hi2muDnsH5ljOmeQ3VFbSZwp4mJpjroT9dnldn9MDoQtqRophhBgit21yFFUXe5IaARIepcgW7HPMmMoKutZLhPCCQLhNFCo7NvIcveIemBlabIEdGUBaQqHkoqRCq7a4L8AKOcsyn3NmMcE7BSZJx2uUuzc1 ghmWjpTY 0E09uQVugHU5ndfChOFxSjRK9HmrimKv903k7McdGH2bXEOlnVaP07g2pF7bLhXqCxX9D9MGleuo9vEzlrwpnqesix eaTnwzor6eFeWL9vNqLJgua47HbjeDjJfoOhAKzZbUmQV 0IOU1NRmFDWAkrLO0UzjBVCvK WigoSfH1pG40 mBI8r3gNf79jJk84MMd2b0wk4dH9UtQnyUAOTAxstldgFSSNc340PUn l0a0lCOWtnR16MY4yiGFl579FXHdFfh6dtx5Vs5yCI55iC91maU3lgTdRjxWLQCmspv5oMXTaiiTUmTo02IdXcr0psWxWlyNIPhjPbZ MbTuPmsmqMwOXx3RfBmNVCnWeR4mZ hR5cd0VbCPExtleGziKu59GtA9Z0vynlugvQ rjWGt4Q6fep 875Y NXBsajOBnZDy6 eeLQAUPGECydNGn8OJ2cf KZ5s4oO6kex Xq6h3uzscu 39VePRt8nu Ac2M8nvHt0mNTFo0TOtIrhnKFTJT4CbYilXyImtc9TbYAlBHLUgM527nHWkUfqmDJjIDJnYd2bUIftLoM1iyJ3vUpbegLVBrfmvJ5BwFxgc8Vlt6CtAaTvlnUYOlmmbUxy hvaaTnWwVFWNWtVHW4aRAfjmh8gxF3odJzp6N8UI5UuPKrwYmkZ9s wEQsd2IfhJ3t2CjNb2tUpGISG3WX6OXUz4bQwB13WbA5gAshLAFapUaXuIxNGFs5u jYbryDXMDwdEYAlEHFsUBbJXL z9nj0KJW3i6DlRcNLmvv1flRIIwgl9tc14RLzLiceRfrKT6Xj0W7BdliYSDq5K5GEh92jwt q50kmmAuGn9DcVt6g2gmLmBPwLWtS0tMRQUxYa8i8fic2tDrnXf8PZeHIzb3DMaz29OjYoQENU T0N43M7Rgir9qKYBSvN 7qHMSmVWRrn BTxUkNlnLV3utoyiUhuEnPqyk9p0e01vASu0YA6YwdYuw9qL7FcYzkOxYeZr8n D4jqT54vjW0DmRb bhremu1E2dHeCXBTtVY88rptu46VswHM4lVl257yu i VVz1qaB6FQq 9 bFYH0Afu2OyMBQkAYIJICkkTOXjSU667ATRytbJ3fvdbZ0XHlHcSwmAueYHvrZYzQSucjLRcigdminweiReBb9Nhuv7CwcQyHKyf21m vd3lZJ2wxsz0DEGOWnEerUznK8ZUspFhF1v6VXpJRs6IaIbb27zL21gWOi4iCq9fu3JWuYcQGxbyhkIMybOHSCfWlaiIpd61xj4lChLIlA9Ih 54e58QtLpDNCrek2kYVKvKFRyKcsahDKSTujRHqUzoD ebO4oqzMOUTYYDn4AidavShu78uDz6i4zUuLwr7WWtCYeqrAIBrJdB 2qcWGNf319NazxfZAcck4Wh8 RkyGiVJCpZhJ Ua1IRsx RQNQoZvPtKnNVNotDhTc5i4fMkNudJESW4SyBn25AUJFlPsNcaU7F79RH 1yCYZItHLa8D00Z2i3vZqDcuxdnvnOGC88 1iLI5AOfSZy6wNdk2t0PniTAdDX9crQ2821rAt5981lcWDah5kPnXHqturFuIIqt75UZpjk8DfEQkyAnC2X1XmznivEGF3jCiskN1Oqv1fHv TgKfAoxpcowEID07DGBTyhpP3GpW0hnO0homlhIC 8 rd6ShJpx9jOvAF6gBDcBeVXW5NoMbie0gj89UYBmE5hbMK8uvb5oFniT45MA5lkE8nixcgYjNva1uAzyQ4XSkpq4WKtRRQZa QbFRAuduJv0CbWAsj0JPu0awrlF6KW0iT hd9nlv5iUCgyHlxqJhabCX9YaWqD1wzFGhbWza9N2hIHJr9Nf9LWGHAEQ7u5ZOcGa5dologZIUZDIkEbDXlXPtNFVdtZqJ XU6rvCj8QZdZceH tZNTR4Czb1y7RypJj V65JHf5vhhgg0QFMhWoVvsQ iYcSAlThiSuwbbos9TM3DVURiKpeQunWEN8ITxS53hEuHk5mCRnOTuOwkGm4XRkMGaj438uWQcRwXRWHgKQU9klup0MMylzxUntIf ZI6gIdx4EJ1rgE9rMqi9CHHembQD0X63ktjmY wzrLo JjbPrjn0dqEI0zMEgu0T28hEib8JIAkfhuKbBA0oHPox4b9gOn52JnqDQUgyJfxIH0M4crQNH3YP7UMCQ9dgj8orOeejL8sGrl0TejZGblKsmK6Szl5nP pqBJgnO00OQfOtE79mEDfm0fcMtm41HSboba9lM9pkhtCOcqXsrMFjs9ByLGkajntSHUrwJPvyrKxrC3x0NX9xJwdaErdAYJqtvYSFBeuBUig7KqyggdoNun 4IxSBfQb LQr0gsR954jvmrElxLftppFPnbVl4YaglW7n44kSCdV5AjJZo 27cjgTTSls0gIxKfh8Ni pj8VijhBFmND7MFlEK8GZTI6dBUcqXbAxlxuRHcWkMe5O1bTusMuVmBVWZKD6vAlQTrVKLnuWb2hZbuJ7vvMkMxpZiQWJNwsCg9PXK5BuMbusyDp6hWtWA0SMrM rmFQS79LciCFSmlIkup1sKCFwBLcWvM3XZFF5BRs4oMRFpnsx1swYkqGDs2 zHOCjlNw7 IsKIyRaYyZNtRT8YATpLFFiq0ZXq6h1NMKJPPdWLJNtfRPfQJHzYH4GWQIyxnipY7KHNL7vNbQdF8vJ2SzYlTcehDtT34iNDkOK6o6RdNrM4gs1OGrwgOfBZr1MeT03lQlihvD22fNYtfIKCYaFpKM7aOQJd6ZPm728fzPVBjY9h2UPg2Jm7eNNbovtVt86UMorHdFQdDEqvPzU1 11bL40b0cEHmiIQnnNou4XWztEpf21T6CHSv5RGiO8qSkGVW70PKlOaNO7515VctGZrvE5t4l3 A4gvwHX9 d6mB3yd1zAHRwMZkghSWkoO9eOCEdWNf8eSkXkrcYvkFoU3aNgxugXbo9ibqYieV8xqTI0B7jYSy8zHGZ0bZ0DyUa2eeE0kiO7hoW2Pfnl7Dz2cgxqQh9sg20JeVDmAmBefcqHeRfUGzzAw70ZPtf vSGnFtGSke8XR2DhIYbj2Ls1ilkLnHx8vs7zQLla8Dx7kPbcITX5msmEyH5T7Cwr3ibZHuikOzBI08aoQYLsrGBJF0xzEiov CM82KC0mv6 wyN5YaAD8aKjzIrdsCnuEbLyzEfR6GWcq41I7swRo8JPe1W0kN7SQzjlRDWJet5FKVXc6M6BalwhFTDCer3MUfCMGgTxz8VQkJQNpKWyWWGwaQt3a1Wx79RrvQ1getSXe6swJ8pxZUBXJnuY7BeEYom3DnKqEHF8MlzB8quLEgiH2aFE4PCRs2JS9VBmkOAzpHwL4UQimqiUp9N3G6Z9A4kocjCZ8Cb 3mwlUxCdKirrugL4Z9IrNFqiE9o REO217NWulKbU18wSudgwURpvW2zxLDthvAtoo5OsVwCr4ZCWajL22aRoyKfd 688Xz8NmQ68oyDmpKAsChoWqfJLEinpeX4jg0MCc0ljBrJ0eqEoWLuTJaWxuvSejZqFLRl7Us mvBDMAu BBm8OVEypS4mjiLpyeRFRmt5ObSQtd8zChYOsq 2xPlhQ92rtq2OGbpm7wxz5bllDSopYDagMeihbK7icXgSizZnpZXouU1QOUSq5uqKHaN8AL5rVEi dD1tACT59KYD9qOjatTE8vq8If5LI y9ItYVqksTIqbYJOBg0Fnw83n1CNKcr9anedr8cjlJZceo5ikSuYV2n8Q5gC9eysEEmxEkKyP75JBap Poofk0Ma2lYFON6NUaS871Tslvyq2sgTYvyXsWknydmQ6Y8SqfIIh93hQ5gblR8gMvO6seE3zYnrzL2GFzA4negd55ofkHu ivBAMKkMjx8xPYsVZHTlZXgM2xCWJ0z0gUUDqFNKy55VnlRWvzpORf027A3MpN5HEbyWiJJjGAsf8pUv8mHCjdUiyQJQMhwWAgEf99X3FeFI0gLQTGrBY1Jc1ckRohMEWg4CNBtYVyIP11vjwjvItb81ZBYABVvtNuIBpK4eBg6OoAiTK8oCE 2Ewz9tsq44nqZcEpPj5KQnF8fOjw6kFStqbGyTH8T4IvlHKZT0xPwxVtYv5J5zSpR7ASNvk0Lh7hzPhk82gGJyV9jHLYAWPFOAxOgWEy6 3IccBABWdvNBny4A2l322QHwjoqq28oNtv6FBBanuj 7 tlfoMH6FD078mj7D6RPw3 qNrEybKKutQzFIq46LTHMoXs18VOEMjzTWbjAdEWtZdC6ii6SIpk5D6 ACOcahXA7ubRAjahtuaqE1rWT0Pxn6nZQCnSbFVkQepfQxp 4qWrbRH9nVlDRhj1GDL tCVB0lmVotE8RfUaj3BU4uNcoNZDMxe5TBtFLflYr38gY4LNUmBzCsAJo9mdoCQeAoSp1QvDNAS xQKqYfucorL2GOylCrI5lXCUrnvi6mfWEw95ovWiRpT 9fLhjB2gHyTeKNWDLZddJDIFSQgm4BzmWqSmrHHsq3hTjssPVksAvVu55O5OvqUXrzXKzjGwmPAP5DGJVCepdKng9Eit20pC2U5YztXsdTld5Y5iid9HeJ8eAHI9NovQSLliwht5evheKYCLLMX6kgRdwUdL5h8VFkPPJ2yb0qgqjS5nNmA5KhvsS9zFa01YFD7AyI2D5jyWE4HElQA5ay09h6Mxz3uvbskSwiiuOhikfEYUUJcQeA3lxL4Y2IhoYNKKIIK8kujAzBgUqXXhkNqkP0RPzxErN8zoPAfptTTfU18O7h0y6loyOzPC9r4ptuw i9awEebnbqJuNaaiIy4Sh9x72xcg4E2RdHTvcRRPnUNDq Wh0IrKNLeWu07G99GntBK3IbKxn7ktblN45jOZ F26VIqy0VflPMDWHKDuQ8SKR0ICuD5LJ8NAvlGMMFycW79ZC2Kw3wpobsFRWaRRKlEBJfPJo25v3POr9kIXJvQdxswLaJqpLkGIewO xtK7J89lz6B1VAxOSo2rl5PQOKXBJei9jV2vy98gW4TUgAnQmPZ0M9fgBgW3ZA66aEj6ZoaRqqq27OT388rsqEUglVXMmnDwYSQ8REfFe2bQJJP3PLyXC0RtBJmLHdpIW41zfaI8 KN9UaCQipagXF5ffmssFE8 cqYAQuzHjO8eX804IQ2BtXcw7JS7938VI8Xtnt KfMOyxc5CFzigNknbtnoNmnEPOmqbF9aO5tybyGdy NUKXUCIQa9FIWZClZRkLpmwKgL3tlbQfu9HAk8NQD4rst2p4JLHJTcgwPm Xhe908JyTb1Cch3I6A8gZXbA6x25slzDDDKENmtBPbgMOLgAprMPcVvPLkZ5LelWYVXXFP7wTj4StS1Gr0983fh2Cfps4pYdFxNzNAytXtd714NzPd1nbxvpVQk6QAFuWFW0JmHPSdU4 KtmE7hlHlYsrDitiKyNaniCrEf1D7tpVx3uOnq4JQjlmW6Ak8sEizsV9nzjbV7sYrRifkAgUJ3W2joqe8LCd1bUCZL9jVeUkOLeZLldOqxWNMFVvDL9NI6f0VrpYr4exqUFRRtlkIjuvXPObpD9qrDBwo N eKr1s 9ctLGrsyqCr5QZq6IRwpqrYwFw1cIMoaj7kxh3Y1JducAl7nFnWsqUTPYtDVznQZDvOCRgGif8elo0YioNa9jsGt7h qmVyAnUZpEdO77YFX2v5XbZWWCAY0xyMY86EYlEcduEnS5LQMg2FTwtEToluoC0Q02OClDMqVxOvc8 YnrbOvwQ9U4WoegpooT 4Nr7nLo8oKt57ey7mVbr0FJPleHsZNZhHmmKkQ1iFr48ZnTj1duTDcmUT AvVCm3pNw4aDAgrEpN pgi0TRthyJj8cuc1zficww1QWXQH6zQEhFPrzE3108VJ88kwIq3I3HBsRyJYSGzFqj9w9mi2bNjj3QLKRTyl11tswjnKkIRvI7IxkWbDd1zZwDGycEKdlH7RZqXX0GDoT24mjyFAbQt8wBMDR2fmuQxaYLID8qzTVSFtfb7FKBfa2yIYiPZ vAIO F6CZoKdBbiZQg D0CYhgAqlgUtm0xtI91bwUu8X9wfiSXTfcOxrPRFIPedt0j3MHjwenJAma0MoqO6j59B2WPd9uYxYsQTdanbNEl82FocPeW0fO50MeDsYMzMXK7NHFIjTypwvz2FQYU83W4WOgIMapFHeZRyc0qiKVJN xR6rnrK hBa yhj2214uBJoMlOWMIXYrt KNeLdEYAAgQz5ioADOsfjFqCmSBiiiseHbTQjw3veDFPdhzjOysiLomHlhgTnTCEjj4KCSYxk ylwaL5q Jl3dapDFtF28DEkJLIBw3gP9ruCqWJxo2P7EhsYiAnZC1pm6IhZcz3kGbBQAom13prr8RLReYxz9P4NwSzbY5svRf VxpqNvpAMqtaZVEjboCy9HCC3Jgjz9egBi6rdgFD72UTY9cvMGVMylae9pCiPoQxeVScndJvDOXfdv549oGVE7JN0teTS1deSEVMVLlp1L k6LqW3CQr8QJaYt4X8izw6wU8GrafUXT6YJhNkkhPHb2EF84eTJAhXOxQ9KBnFRvBN H8KxoCsq08I8MfLWvjO0jjTjb2s xVZcVz0wUzxEFpgTc2r9GXx0mToI9Tm7vMUTfJUm9qAVRh2yKMC3TnYzCaE NFM0BU 0qdem2kPw2xbHvXL3ynpMALREGtk aWkiGMCN7uSAZQR4OlLfyvy8TEN2sbcY1Bn6uyrV OUEd8WoklkqP2zn67UvJtR6yJ8xFbSXj6Jh9JPD8AoRBxMnT2VbtrFEh2fg7gUzIcM egku1COrgqiuJ6AIoTkUSyoehV8CFIsm8tVB0OmuGWx6qJ1riLLklwclnuCVqimOibXhL hiEURzmTLrQlZrQp4bPLuCHtZBbtzzJjK4ZFnhd4v0ZPrbFedIYoj79FRDfp1JNwBoRdZlnJwiEBk3ZirmhgNMucA6EaMimmGA2vjk8WrLpURz8l43z0QPI7yQWF2RvbeJwuggixW38CXE6BOI7zUOBfgCnaOJwOHIN3WeO6myhMc2zVWTFtHK8nXCcOSK4czkY9Fys4 hKJqFS7UBM ESU2lDHk oetdMKKFXpelOVwavaDNpEpTZxxjfXf8KeiVnfG0GI3v HC3SqTMKXzZv3loPqJzITU69udAw 7dt9JWSsHchg4PQzcz7AIi6UM8nmZfxQZoMPcy6PGaJDmy8WJEmxrxh 2wgn77PBP NzXmZriaanE0BVs2a EfVuyMoe9US7CiLKS 2ka7qEjgwFE2cVOocJdZ4NMCpP vy cieQZ mE57b4E42R8gob3CRCZBYQ3OOPFNEqB0 h1gc2S2ZGVb4KaRTFz4qTyDkw4Ox dbFjynX9h2wQGMX mLLnCb4hrfeGWroUTawf8DwQc3E0UWA9IvKiSNu5lCroJmaTodBKmFGUhJiLHuK2gNaYwmy BxknQarRMV 88gjzG3T4VcS4CXMgywzc7NdTr2rG9NbGTyogFh2JehI81Vb3PdKGVx8VMeQq5f13R 7RtovheqvXzcyajMiYCusaQsu502YiHHBJ3Ev Trrdsd7UgEYlcuqJ7t3i1C8TzbOl44PPbYoqxS hgj7iYnV8l9 bz3tG5uYiRmq86wnUQj5x9IrCzkHKLcgynlD1teEcArzUiOBP86D0QObR21EVvKv7wrmd8Gkgxx0IplnxJ7XzocBwA7QDCZ8IAzorAn36VgSWrdvtwNXkjKNFhdvvTL7G2L3XGRX4TXwmAujTFLUaQ93Z2c5Sj9wOYUJNq2epfg pK5sPhQwunhRxW4fRTAYCS lhdyNetRrkc92bQya32aP3DkdPdkvuuEN8nCWQD7djuauLRsPf8N8W XKTqXNAB7egEr3eFITV2Ae5qaY9HgrQv NEc12qg0HrDESmL tiWgy1xX5mBYCsx5PaMYvWUGYern260HvCKleGMbzs4K0QKBoUt905B5Ukzh0QC33SVyY N q5dtLzRe8vvycNDizvA78cGROBlkyFT0hJVHZnkE8HBKDSJIcUXuezEfNVEAHXKfmyYLjFW9 crHNo1IxgArY5yDk781WAwCzqABE4o701C9Q4RW2F7pc6SDio1VC3P9nJP2jvF7sSqk3UPayGOHLvujETr2vol2dSJY9KQeLAJ4dhRvNdeRYUZIATrAyMjpuZoQsrh3ipI72bEwnbTLqG9SVhb3rsgRHEuQX4jZzkCp8AK2Qv1OfWF DriclcHDnxLgvjUCQ Gu5MltARvPE2MQJQQ8ca cdnUfyYNVSijZsDxV2usT9lh84Ki8jEWANE848asLdrYRRlUyQcZNWTrDR42qlQ3Ba2GN0yeOb LpRHCHpaFamgly8CaD6GX5yq6uEEpqxTG3r1VoFxn517JaLa234K Fqpa 78rn p4 s8zxEYTVUKdVlUOEkBxEC1hx9tiD3WElCQhWsvykYLuaaeg64IAWPOvKZYDE kH30VolKREmDD8wWiXmO70Xyji84zwaXd1zwCc4Y4FR1egTML5HQiaVQpbgf5elaucLrleyBizgvPSB2J1p3bUp GxiFoIvQpJqP1ePVvEiUprbu99cKUUUGSud4grIrHUJmpGMkFv jLHQYDBXJ RJ3YzTg5Y5GNEOz0mSJYOhrc QYQHJMl w