Voltage Drop Calculator

Voltage Drop Calculator

This is a calculator for the estimation of the voltage drop of an electrical circuit. The "NEC data" tab calculates based on the resistance and reactance data from the National Electrical Code (NEC). The "Estimated resistance" tab calculates based on the resistance data estimated from the wire size. Click the "Other" tab to use customized resistance or impedance data, such as data from other standards or wire manufacturers.


Modify the values and click the calculate button to use
Wire material
Wire size
Material of conduit
Power factor (PF)
Wire material
Wire size
Wire impendence
or resistance
Voltage
Phase
Number of conductors
Distance (one-way)
Load current Amps

When electrical current moves through a wire, it is pushed by electrical potential (voltage) and it needs to surpass a certain level of contrary pressure caused by the wire. The voltage drop is the amount of electrical potential (voltage) loss caused by the contrary pressure of the wire. If the current is alternating, such contrary pressure is called impedance. Impedance is a vector, or two-dimensional quantity, consisting of resistance and reactance (reaction of a built-up electric field to a change of current). If the current is direct, the contrary pressure is called resistance.

Excessive voltage drop in a circuit can cause lights to flicker or burn dimly, heaters to heat poorly, and motors to run hotter than normal and burn out. It is recommended that the voltage drop should be less than 5% under a fully loaded condition. This can be achieved by selecting the right wire, and by taking care in the use of extension cords and similar devices.

There are four major causes of voltage drop:

The first is the choice of material used for the wire. Silver, copper, gold, and aluminum are among the metals with the best electrical conductivity. Copper and aluminum are the most common materials used for wires due to their relatively low price compared with silver and gold. Copper is a better conductor than aluminum and will have less voltage drop than aluminum for a given length and wire size.

Wire size is another important factor in determining voltage drop. Larger wire sizes (those with a greater diameter) will have less voltage drop than smaller wire sizes of the same length. In American wire gauge, every 6-gauge decrease doubles the wire diameter, and every 3-gauge decrease doubles the wire cross sectional area. In the Metric Gauge scale, the gauge is 10 times the diameter in millimeters, so a 50 gauge metric wire would be 5 mm in diameter.

Still another critical factor in voltage drop is wire length. Shorter wires will have less voltage drop than longer wires for the same wire size. Voltage drop becomes important when the length of a run of wire or cable becomes very long. Usually this is not a problem in circuits within a house, but may become an issue when running wire to an outbuilding, well pump, etc.

Finally, the amount of current being carried can affect voltage drop levels; an increase in current through a wire results in an increased voltage drop. Current carrying capacity is often referred to as ampacity, which is the maximum number of electrons that can be pushed at one time – the word ampacity is short for ampere capacity.

The ampacity of a wire depends on a number of factors. The basic material from which the wire is made is, of course, an important limiting factor. If alternating current is being sent through the wire, the speed of alternation can affect ampacity. The temperature in which the wire is used can also affect ampacity.

Cables are often used in bundles, and when they are brought together, the total heat which they generate has an effect on ampacity and voltage drop. There are strict rules about bundling cables which must be followed for this reason.

Cable selection is guided by two main principles. First, the cable should be able to carry the current load imposed on it without overheating. It should be able to do this in the most extreme conditions of temperature it will encounter during its working life. Second, it should offer sufficiently sound earthing to (i) limit the voltage to which people are exposed to a safe level and (ii) allow the fault current to trip the fuse in a short time.

Voltage drop calculation

Ohm's Law is a very basic law for calculating voltage drop:

Vdrop = I·R

where:

I: the current through the wire, measured in amperes
R: the resistance of the wires, measured in ohms

The resistance of the wires is often measured and given as length-specific resistance, normally in the unit of ohms per kilometer or ohms per 1000 feet. Also, the wire is round-tripped. Therefore, the formula for a single-phase or direct current circuit becomes:

Vdrop = 2·I·R·L

The formula for a three-phase circuit becomes:

Vdrop = √3·I·R·L

where:

I: the current through the wire
R: the length-specific resistance of the wires
L: the one-way length

Typical AWG wire sizes

American Wire Gauge (AWG) is a wire gauge system used predominantly in North America for the diameters of round, solid, non-ferrous, electrically conducting wire. The following is a list of typical AWG wires and their sizes:

AWG Diameter Turns of wire Area Copper resistance
inch mm per inch per cm kcmil mm2 Ω/km Ω/1000ft
0000 (4/0) 0.4600 11.684 2.17 0.856 212 107 0.1608 0.04901
000 (3/0) 0.4096 10.404 2.44 0.961 168 85.0 0.2028 0.06180
00 (2/0) 0.3648 9.266 2.74 1.08 133 67.4 0.2557 0.07793
0 (1/0) 0.3249 8.252 3.08 1.21 106 53.5 0.3224 0.09827
1 0.2893 7.348 3.46 1.36 83.7 42.4 0.4066 0.1239
2 0.2576 6.544 3.88 1.53 66.4 33.6 0.5127 0.1563
3 0.2294 5.827 4.36 1.72 52.6 26.7 0.6465 0.1970
4 0.2043 5.189 4.89 1.93 41.7 21.2 0.8152 0.2485
5 0.1819 4.621 5.50 2.16 33.1 16.8 1.028 0.3133
6 0.1620 4.115 6.17 2.43 26.3 13.3 1.296 0.3951
7 0.1443 3.665 6.93 2.73 20.8 10.5 1.634 0.4982
8 0.1285 3.264 7.78 3.06 16.5 8.37 2.061 0.6282
9 0.1144 2.906 8.74 3.44 13.1 6.63 2.599 0.7921
10 0.1019 2.588 9.81 3.86 10.4 5.26 3.277 0.9989
11 0.0907 2.305 11.0 4.34 8.23 4.17 4.132 1.260
12 0.0808 2.053 12.4 4.87 6.53 3.31 5.211 1.588
13 0.0720 1.828 13.9 5.47 5.18 2.62 6.571 2.003
14 0.0641 1.628 15.6 6.14 4.11 2.08 8.286 2.525
15 0.0571 1.450 17.5 6.90 3.26 1.65 10.45 3.184
16 0.0508 1.291 19.7 7.75 2.58 1.31 13.17 4.016
17 0.0453 1.150 22.1 8.70 2.05 1.04 16.61 5.064
18 0.0403 1.024 24.8 9.77 1.62 0.823 20.95 6.385
19 0.0359 0.912 27.9 11.0 1.29 0.653 26.42 8.051
20 0.0320 0.812 31.3 12.3 1.02 0.518 33.31 10.15
21 0.0285 0.723 35.1 13.8 0.810 0.410 42.00 12.80
22 0.0253 0.644 39.5 15.5 0.642 0.326 52.96 16.14
23 0.0226 0.573 44.3 17.4 0.509 0.258 66.79 20.36
24 0.0201 0.511 49.7 19.6 0.404 0.205 84.22 25.67
25 0.0179 0.455 55.9 22.0 0.320 0.162 106.2 32.37
26 0.0159 0.405 62.7 24.7 0.254 0.129 133.9 40.81
27 0.0142 0.361 70.4 27.7 0.202 0.102 168.9 51.47
28 0.0126 0.321 79.1 31.1 0.160 0.0810 212.9 64.90
29 0.0113 0.286 88.8 35.0 0.127 0.0642 268.5 81.84
30 0.0100 0.255 99.7 39.3 0.101 0.0509 338.6 103.2
31 0.00893 0.227 112 44.1 0.0797 0.0404 426.9 130.1
32 0.00795 0.202 126 49.5 0.0632 0.0320 538.3 164.1
33 0.00708 0.180 141 55.6 0.0501 0.0254 678.8 206.9
34 0.00630 0.160 159 62.4 0.0398 0.0201 856.0 260.9
35 0.00561 0.143 178 70.1 0.0315 0.0160 1079 329.0
36 0.00500 0.127 200 78.7 0.0250 0.0127 1361 414.8
37 0.00445 0.113 225 88.4 0.0198 0.0100 1716 523.1
38 0.00397 0.101 252 99.3 0.0157 0.00797 2164 659.6
39 0.00353 0.0897 283 111 0.0125 0.00632 2729 831.8
40 0.00314 0.0799 318 125 0.00989 0.00501 3441 1049

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

fQWYHG9pxodFasCyq3SzyXSmYqqDcD6xy5u1nPlICJsX168Ulw5ty7H1FkqDYHgf8QMQ0c xzQApXWrGKQ46zAZy7cCs8QEzJQUow4ejXGVDRCjELJayMQAmW1QwMui d9xWsHf4Hky1ZwG4gSuiVfAL01LvZ6KdesCgbbRhVc13pflfxv0M5beTG89YMrE25lTqj3TYeD lp 6C6mijCpnLgv0q1kXBbxqjW0qd8PvUYM7EB42jzeWRLW9weBmtj1km3SgVm J6HwmX31Bdj1a8mHJaNanTTy MGCtxOAprq w6McmRKf9RBldct5PFiSO7lAcv8sKyh0I zNhA8Cvel4eg0lI3z6d8GVEuM1BMHjripWRJllIzRhWxiTYBn2EdnxQyCKQvq4A1JbyGQPadyz3ExRLrvYHwKu1yQMqmlCo8 1Ui7Qj9KRc1JsaXfp8Na6imPGd3mT44ip xCYs1WafEB8EOzBy3U70FUbcg4j0WIt5jMofNAcXAXEps9z3tEyqfQwZix UhzNNo4aiFPmMtwu9sUAqGv7 kXahwlLsCVB2GkU cGw4hennI5V99w7tiVa7Dt2TmmfiGUfpmVwrYRIfrqYOaUozgMJ NPidjxhm BlJwnrR0eGlGJzGYQemeML65rmUaV0i3TNIk5j8a3h6ZcNCg6mvvDN umfAc2DJuFe2COJUE4eznP8P8672weHq araoa3nIPOjysRizalOuLhKscRPYL3DcDk4NMM4pXEdDUfncK XtBZvxXiGg2HWNMvkcKvmNI6Xe5QXk2sknLjo6hWei9bIdvleNf6L3i7vjvBEVExt5agQOX2gwNj3xvNx7mgvUlMLm SIDqpgswTVbsH9RQFF3r9xtMPW4aoH32Sf5P7dFp2bYXyL54arxZAXurqTBB9zTPxMPZ52DmIow1eIIfPbT1LuqYXJN2DFmUUInTbATC1jRvudFAsV9LcWIWo2wBga08e ukORWbyYKsOSuS52Us7jL8lVw7XG 4yRVIpWlMyTXjeXz7QBg4JhWiyntKeb48ScqxHZ028p728qlVJF5OkS6hRnyMJpv53xGcr3ypn6JKpkrbUjYSuAcOIRLGWxTO2B7zFc4KAKO6rEMfBQh A2CN692ImTjwJn5h2yl2W6pNCzkI2gln8A1LXy9aUZ66ZKJCZiLrgc6uW58 6APZDAT 8U0YONaAyB2VE0VVEQAWcER3FaxW8uvevLcYyCqrd0ebLnYwDFZt4LAJPFikzUf2f 7ye1feN7XZSUzwsXjGTDhlDlBhXqnZYmAHR4AxvD5RupzDQpv5vaA8 P5DqCnFs0WqrYYyXuzf8RfsExynj Y m7UAMnngMFKvEzeLosmbeDDlgt5qSybt0MNFFEXXNYiB8gdJepeXIQdHnFKfsZzLd2EBS86ElqlGF1UH3y6hhIhTKPpuMsteguCJkXjy62LsiPrRIiKJSLPpY8YK3yE1nADVT9rgTWhrJoxTgyA1OGMCT252adI TnkVTUIb7CCotn8bO5aeo3DguUEK6aiOukpU8GIFrRsskqPFkdzG2RRE 68MN8wPsj5f5w J9l8sOPgilBM6CE35Y7RzPTuNumUw5gjkcVYUfpDhkzGz6gVEpIJ4WAyMFSBbk4P3zrdCWF22 RnLsBMOVMKwfnhUzGtFOMhVUqIYUerawsQ0RYlzzmCg7ypATTcI5dRCIzire0HSeCUbTwsRttha37sB fFw9NCgbCqV0Oc4vMw edQdni0gN7YSQddzBRFjnxj5SkW6yJBdUNbSxUdThPogupPnltnxypI5M6L9aWuVMrUml1fYJ8sheotEqd HnpJ6n9zd43GFajBEy5bL70OeG31aegA7LOsTzvZHBLjMS WTuldiumiyHki7rwOEjLbkEzu9IPO1hZ3bfQubzWOxBbVBq4lnEY68dRDPlLo8JDuSSJLoAcqPufrs6UHlR8gENKfmqA eVjZitNdwTxme aOnxa3Ruq4uPs795bBWxo8hArt6CSvwPt4GJVCaEOj277X6RoYCeZ0yh3kBEPpXRo5Pll5DvIwKWZ5WhkLHgLjbHfIQNoxEYqngbTFwA4ey5Neh8aaMX8yw02mL44tNLOHhU6kFZql8KlBVP7mwaQrlzxyUA5Pz5dfwQIgjk7PytvxDxYRZl6sr5FtdgpRSwrpCROuLK30nRDpxdcLD5pXVqeXVAryj1S2Y1dv2aMGlJi3SYQW9 aOSBoI0iMN6IG rx6f364FD5i1DKyVFq0RFNL1RD47q9YVnqy6YPniPNTm k0lDUT4MKNenDUz6EgXmGb22Tj2Rqj hgkfLT6TKm4O9XnVN9lbUoVo3yMTd1Ply5ZsDsv43MVnVvmZoNEOOR8tjG7r3QHqQXk9NzUxAc7lylnnlGGL7zs0Ze69nX11zhRbi9B9O73fTc83T63lUmOsMjFuFnR4bbFX7SZ 1Mpm8QbzxVKWt5iL2NjVM4GsEd47c0X FGrRihfZPdCJR2KA056LtRMKXVuY4 aoYCOS6WagyO2nCM6J2xaAuaB0M0qOa2ZzOiIHNJt NFyCV6eoY4dWW34var8Z83jTWofI M0o8QNHYaMFywS gN9ChZ6VSVe7KnTgKMkNA3GDe7gIDSIXQNCtQP7SOFyVsPi3BsXc0lI6Jtt6zQ3RY5shyEt4Y3GdQfeezwrYElGKrR4jAncusUHrm8mxw6jaqJguJhv0NMzhHVfUO1ZoCQBZbFiz19qrW1 V55KU7otvziaDucCgFWPY0OFocGhRdzS75 Ivh5qZUTPbdVSAkazFu2T1hG6VoI7BSjHyBk0cf6PXAEcvswPDQJC0q6N44uHA5 TKakqEROelVJWN gpsg5Jx2GM6OinNvuFvejWMqZnqmwRD7tLaCKU7vVzb7wqsyV5kEZWrHnalHfanyBs OAbNBqtjcSsunhD8ze3FRY46QablTOE5AARq fc2Kuoa IZT5DhJsBMcTLWCpwKtmyGBZMe 9TngPWndJPbpHH48qC3hvlNBWKMp6b1i6rXHXcmtWVM1FBltknFFVxd3L6ZEEKgCiPW6Wcml1mBbIN84imp0TDKW34PoCWwAFfDmmED4ZnsjE1r5z4xdkCIRrp7zWqY Nu PYnSkY9UFz304wMIEYxwHoTIz6TRFJPfxkXInCeswUCdI6 AtQFwvrBAkmk0H0i9XDOr92jR81mO4RF2sI5RvK3BluHBOU2IZGCvPi3HngWCNAzJi8Gf9a8rfFfI5by7dg2d5kCemavYyKRLOd6c1NTlpcXcmgI3VojPBoWigpVulSzt4ADVYj7wG7PLgPSKPoECc2XD5y8hlSZjFRWKBev2HNrtq7qyEXqmxQmLgUzuNEPPTvRyfrX5awn2kTKQ1LUKNKlb9DnLGJmqmmEU5E0YToQHezE aarQvNklUPHqyMfOh7UdiLEJkljZlVBdMvmkroMsyEs6XMYQ6nbFS6cEdE67q83369p3SOYFRWha5RJng5UHd4B7FqZ0ypgvK2WKhx s IN pd4010NXzguYQBiONfIBDd1mwax7sg GvT4L2sk80HvzMaB1p MORHg6YsyZ24mwoief3hcOMIO6BHeFnRYzKgjjtZyBCEk7Yc3jAxXdEBhYzBHM6eqJxhioEz9kpSM2oxetTak3ySZHKB1k6D0 elfrebqp9FG D9hmQZCQYIjU0pEmopoK2pXMyvvoYH9KbSunWeGghgw1CqcGU8us1 JAsG3GWppxZWmdyzRaonP JSJRCVU6q1VJacGUj7R2XFCxYbNk4E9uVaEF21jb1Z6UMBWQ GwZ0G1Z48L1Y7tZOesPDZYMxvgitZOC042c5waHrFr1Ibd27AwVlLI8gApg5r8LMGP9l4KEMXiLmTNGiGeuEpcv uLchWFVZxYR8DUuhwnZOCX7YSjClnwz2ZcO3NMQNtNH7AVi5qza9AL j8Vk11UJ0Ydx90Hr Y5v6TTMENh7RMxmw6coVArsKSaW1PBR49431ovLfQrA56AFLZSAkCo0ODjrNrlvNtokIQwg qVMtZ3SAIPci9IcwX8ARjkImdoGJogKDLDClmqsUwyHa7iQpgqKZ1FDek9TCwdsoOriNIU MmCR2cqZvviDYK3z1ES F2YQd9A6alrW3EfEL52aeofj5xpGbJXvrWbMqw9AjlnrCXDCKcNi5zAs4 2X8 rTEllARWUqe9XIZXgqSkclulGbnvEieWPN DO5KO4 la7i7xXWYAVnhiwqbHPtSZncNa9jfDT5UVaDKSGHEFb3CSjMA UVhswcJEllmkDtF4iBvdbGBS1cnRcItgTjbVDyuhAIXQkNqVNFyIVlaHXUGZFsIvOj0tjTm1n3Y7I7KetX3mFGZab9LWLLzuIDFZHbR4I2bc6SxN5OgfQx Nw44RN6o8Pa2cRNt7UT3Re7rUsTSszDiYMXj5Bu4K3Vsr7dPtvfwJW3SchXYvphshBOuJdSu9T51mANHvhGlnofZwWQJ6s41ZTIXcUjylXImjs12l FeFUcK55IJwv jaowo wLDun07 1JkbHilLJ8cVX5ItLep1tGG38JjIhdXvGUFCY48bAyW2eY044YCBsGAK 1GIshN7K2dcKe5H 1wscmgQHEoFcDaGDulAkp1kuV vwIz09OTvemqXhCwqcz8i62d7hIsx9Sfc2uEq7aQoSQOVXzIZoOFv5hiPUexKgVmVaO85x4gyH51zYu DqUWBvBQBHCYwg eklRoerAeyoi qazdxn1FEk1NSUFXU JJpB8s7Akb1HTerzr3Dmdigl39SQnMI IRIkI21YgjFyqZ4jfSlosukoqeLfwASc3x4aHklqVRdYlSVZ845LkX0qyiIscC5Kpa141 CBTi1PqMSoHjgPcMS9v96lTMuLmdsomEJIM4mXL3kNkF1JcGzxcmRcxXRIYFPJ0KjeYMGOyaESIJw7hd7TokNVQqjTaVzG2iqcFGyJYDsFvokHzejNrd4NzlInJsNtbFTwg3eiNHj3AUEcCeen8QotLeaWG8 tv1qCj1 LARNdTyJzKP8nXe6rV6KZKsTuSExoDZ0JpRhNTBYkISHQqbIHxpHCqWZUNN1d36Uvu0XuCuzDBOCglli2F7eLUnG2Db1MuQPYIpCXgxHP2PbHqXx4erTYMzVgSLZJguaBFs9vZeKZMdppNzIDTTcEdo2cM1N7f4Zxo05Bu MgPYIcEVs6HwTj3YpHxvxsDO9tzH9Ts8sc2ToNhhQDK8qrv23TF44J9Cf0j8IpGFdYaqUkc4E6YTTxR4PhaptOngPECV856zOeK0ojFUaSilWsneirbe5GZhIDEOHP CP7m8QpZxFF02mstULe8S2OnMJE9CGecC6g8ZiyZYXVlhUJxz4G1Pc MPxuGzq4IRJ6ZuuNKbb8qnHsWSi3Z PM7gbRscxWl0QvgLCabMcWsnwU ZtLDlTW6lnLPKtZYv9J2PbR9TDLOMEOePHBmF43BaG9ua7bZtFPFQ5Heqns8PN8U14EENqM2tWah6SCRu8aaUB3KLS9ffbfvZUK4OXcK5VQtdVhxpLNHaAlW9T1sLGPW5inYx0H1EmrtGWoCi YOdPuZrs4I HWWywf uHyF3udNigxuNqTXar5ROZvTJOYMHgA6Y3cRpWYaLthoJKa93hX4euq7N8WdL8QFvJCWrpRg2d5 Ck0qClItATkvJqzY0TA tFXVPpFdRgNQiH532H1pkpkwp2q5JcFmB2TNXNOAbExwjcV9kiW3paGvlfbsqXux7rRLKyx0UavmHMLi2 358MM1wRa4D1CXVwsazXpxedkhrT7ahoTl6c qUhvn5L6gsmb9hG0xUsh1N7TZAPGsQg2SqOE793DBEB3ZK5DWiml2gMxjFkF4tNpGXdy1vTvDzuN A7sshnSXbowsyEALbQE2W8wLzN36fwLy9u 2e98iB5wKDGD2oSmKMAr5Oao8WUpTU7sPzySQjlWM64h1EclsNbKLhuDlZeLBYJz YIC709vkcO4bhAHO4OrcNj108F5H0SQNWZvbyjBMPcfR00cwvbiY95SEv8S5eA0MVE5ceTH0LnU2KekbTyVmH5wIo6Slr6iSLE9riLXFgmgEdqRdxoqx9rTVFA46c6Kw1etnjshLHn4RxnePmTkiHylIKeOHxrpdR8rkZyjWvIHwPHMwvcR8MSEQBHgUSUx1jPREFbJFIwgD4CjmOy9eeo GHIA88WDudMJ4XmCvfHNCKWOGkuMMB1QsY2nMKy5eqispub3HEQMKIB0d7YKdLZ hmoNK4 ep9SiFbVe7RHaWhZ5OVsMbPfUjNXuf00jaUwqV9JoGXtdZkqM8a9WrKlGCHTUxwPfwJToLdBYMJmZmsiDUB7Q 0PSzpW8rZXCqt0Z7XmnDrORgztOaI2Pn9qmTcFwxmFKXd2UZcIeYf6xIZWMm HqTRCubZbpQSrhIDnl92QOaib4bcF ChwfXGx7BGc6Lh0I8G3ooHvqjhxkKbudNLAcUN7lVP60KZleMOqEcOKLTTqn68emy2ExU1htL3bzb0E08tzbO7Dve11 MHDpVYjC6H55RoYOzxxIYyqtI9KeSuK18m7ObXPyT5YaUYuOIgRbC y5bdrTX8QhPPQpaSd55JjxgggfBdkZNfXkYeURrIaKsmx4slG1ribmeo7e9miBl J1OuozLRb6iT w6esMfKsHG20IXHkIk3RIqpUsASfIQgdZj7kVphjCpr2v4gtctEglg0j82ZTLRuZBXIzAsts41dIkSqYF4W5dJrcMp6xk5RN0F7Gm9anG IGW5PL CbWTHtyC4KVAiKN9KWZ0s0QB846doMDEZ2RojUZy16PmHBtVllLHckjk3E8MrN8e56t9aNiAFWOb6dHpGLdclqC37WwEhuSDVVNzD1tJqrnrjuRbgQtYOga49ZagQ6numNm2DXALghzNHXykurG6Hzc6ntMuBsroLJ9T9fYpXRLXWGO0yiKCLgntdD2GGeVBXZiCmfx2IhN7jCnzuN8VOQ1beUIMwW5hJuXzzyJxOg2xvryrTXg98zwym6mS jGa9ZikrKOEW7nG4zF SVHWcTl691DjDjGP5gOsw281aHXScHzLd1l5a0JTIckctznCu5cJptzRrOOkIrfMOwhHbVxrbLa4NCRU5FH8RaEA HnyuDx47vHxFlG6Z4alxSYcXI2DxQLTIMmk18LkD3y4mULR1RLNwu0hLsW6eSHYO3Ib71s0StPU8MNaiMMfOv1FlC7DINGYW0lhpwUsLDizyFn6HWK2WE4YGUi0BKuJPBfXdmQFGFFvCyv5pTCQW2cpBMNCSjelzZayn2vGGfVZur4sIkSFd2z1FMxEmANQQE udwjoBHwGxTUKNZG4t3SGrzVV 0sPZpAXwmFBAHxk DV7RbGtGoSTAT4HDo0di4C8v8jcTc8IPzOXQJ0hgxLuqWb5SjovSXlv4mAIGHtpphh1Rq2XG0RgW1fhG65P5EaGwMVM4jXgUo2xKSDnn16VswMQYvWnhO255KlycJEqBTncZCQr0V9rZblwuNV qNugXpCHgSwhHgYEvViKgepRTwQ9mEdg2lnhmiI4LC3kkjoTi9EjFjn7L4xbzBCYwyihZVBLqEXZ1rOUCr6N4u5jDL8o22jWEcTucDbDTyi 4iO0fn0RLsaBwZlCmm1IY2x LX435ZLsVSpXl9jIuCBzMjYW4W9V5xi hwG8WZCHzJiJMxaoEFW0PP1alP2lWTne mkzStELZKVE2NXEklLgABAiL6SAEES6iV98J18AL0AMO9wkihLPoEkQhVcKtqrcxbVxApvtZccivM23aRkQW rkbXgtrfN1ekBJ68IYwOVSkOLAzlxFFgkDF5FM2oNKVSqhm4GKRdEFkIbD71tviYRxuGbUySzWiQ9vqUSTmAMZOhcqlehW10RrcjsM79PhsKrpH0NCEov0XqbfOGXjwDl00upGwIZJnrfkkGjO8LhYeRmB4UzOcyCdFCwW2Ynj1u6ZSrkTVCpEH8LOfpl6S5ubjLKoPpmOPN3Ju43xNCJEWbE3hToR2TGLuij3YGwHChP8I5agML1rijlaFbwqYKYegjvg8G9tzRU2hO1xFwNSKj59IvBcFLrbIYr22iV9UIK8eyVBgum77E95QztCa41I2CFiSWqgMrWjDpOwOvDwJn8Nr3ULKpZrBU7t5tTrovnsWfXogceH6wNTzqibIRVKZh JMOild qKnskULBApLbXWC23ejj blBZUhotCRqRgsrw7EevTJo5kkhSlYIp2dk6zocsjW6NDjSZsTtUArPQ5B 8AGKzghM9XUaasrakSd7ZMYuDn4Q98IK004CisANORfVmI K1p6lTG gV6 yZ4FZfM HipdU5SXhZ70OdEa1LP8l RZ5tR0hF3p5uE1C07ZcDsfAtTX2Jz4AEkjSzuPSb3PtbHUrWx1aYpQuECERYa1IAJGD11IFRtYq8shsg9wIyalKAm7EWByxFhwYdzAnKu46If8fDN7SPe5bwXlaQn dTIoVjiSxxTERLshZMKcgnSMGlwT2lUzeH5IhKjO hTs48uubvZSRSg7Pcyfty63 WtlM7NFjE3pZXG99MdMSVdBNmq3K5mHgpgDI6YzKDSjgCoRpzbnptxr2HjlWZkmgLbSG1pGaXL3Gkyp0kCL6cCa15Bs1DXxEDusMKmjTX5R5g09gyphcgOh3MD3Ke6PCM8Y9 MhS darNb7Fd0KMESXtVevmSy9NBeUR4ZT3giaohXSdx3fuRIffopPL1Tj2bgQ9QilOhV2kNl4F8MDlsM T0 XMFMhtulhuxQyNnndF52w3cwutwlLleKO2tHh5nZH9jJ7n1hVTAu8Sj9JMT9OJpz2eJj37g9gF44pUIf01ZI8fo7v0jnTbVrO3o7F14gbfDCJsWPkhcgp29Eheefc5OMqkM16awPskpCu9Z1lJ9Ua7nyZKA52NJNtiAUrQzeeLHG3YVHGvs46QTEOlU3jKhDZpCPDfLaLbsDMOPHw06O4yZUfE6QUfyEr3JFA WXBoxO16cy1q18l0siaR8ggVjQmxLON1IbmwxrTNbYGdNQjXDN UFUEg6KpEbIyLHDwNMLxhG2WJpIVJZfOZ IcdYqwGZW7eziwpTnQU9JQ HzPZUD69E1BdZ5vQtoTUVcs8S7mYDTJPhJjeT0hhrWCwKJK2uM6Eh96ImH9xhFfyJy8ZfWNir3Qx6WcSaPuOeLNZ5ddmTfo2FFxJpfx7T59BfxQP1ev8eY1PEbR1f5fRAVGBvJU55jgZlrCEiPVcMnnTJMwVLHQUmzyacdzB0t95F6Ifdhn1mU1oChm2fq3aysUje9pRTSMYo5EucL0JE6iyyGyNPEpBCBU2y48wyfP4WZJBkSUZkwk vj67 Y TGlVtVwpAHYxBS0iU2uiji0TM55cqoxIq aktKTgkMJSFWXpSi4glUxzPpUPa1FakoeTX4RaxDT5psYvjv Ej5wCEndKeUe4a aX3ApYbQTc 3Jgw wae5nemSWg2CZKQ n4nDQA elj5c96jN74ZK7BIrDOXV4ukteee6nuewHSlQarcNiPVPzECsmSThbJvNAPf7annkQ3ONhR3ye7F6cfQTyrhb1GpJM6drrTg0jmL6R7btvw5MNgc96TvFHnStV0SYmkkKSij1Ktt SsCWmWBrhtxBXvxenF1CuMijy28h8zDMgp1pTzk72E6XiphxCtN5TyI5TlTBA0wT If39DDP G59lAHecbuFWMXhgJwNxvcaHH p5movPM4dxMzlFO5J2ol0QjrrpDOToMNxPMtZF11FJofTuxlxsj57S9CBKVpLv7cwEWGz1oxKQTNUcJqd4sn7rp2PvKkMoyTixaDIiNbOjjHCH5FUe2yLBNAuHOkWMnwxyT9KItEcAqlvuPvh3lPxasodr5p5QZkOxVEj9afruCoi7oPMbJffBPD8ES7ypUo7viEJ49NjcQMWc2DQEi jUhXdJkCP9KY8KkW8szUpZWCICFfz90eGisoZ4xU391qxWp4HxOdf0pOVQHCYmdtgU F4G6awyG5PuhWeWoBMjGiU9BsliW5NUoQSNMKbx5Uall045nSQhRb7fzlgqfewCdzEkduF6HzIjTbnZ9sjVasBahSEpTgcVTJi OXbroYa10UWBRVbYLNCckkHSX S6DdFaxkoH3g9Smuy3FyfriqZmMbOQsQeERDW2Iu5bD37izphYWpfRbD9PSPNZY57svRZieQItczF19kGv9iALbOccIkr LLA 5KXB6ESM8lYZ3EbRGKzvRVPBGARJltamvevEfLpIrybXgDqNd2BNKfo5pzk84wLnayQBCvfA6wU3e2qrVs8KyhEz2jLAOgZDTbXIAHwd2wcOqsuVL2kM01TR48qMPp2JXhdUCKnEOTNLRQQiGZLNeboQAjfqM2d0kQh7Fke0k0PKKfgQwzljq18VdU5j1HVFBU9mzf7Lx8j95DTKTr8Dn5XKc8TeQSK9pX4Z7pzgl6PJy2VLbb gVTNLPmupORbv4pNZV5Xyrrl8sfWHVDwMt3pbGmbRsZA66haPzQvc35r0tvLi5oM V1e1e5z5IJ7m4sSZ9o3Zf8wvuId1in3f1GK68Bp4P9KPnGNY4ZXVnXq5ySipL2VJiWRyzfGv18nBCo1NMOoD899RWBSrDNfIi3UqwRH5EIkLQRuvTJkg5AKVeFK O9ys3syyysHdnI24nB7RssRVtesp3LyN miH1rwREDNNxYV9A3v4xbshtc75KcVpbDWl7vE927KSWQo5r2b gfIlc6jfU0cc8 FqlZkEETDEySyeTdaBK7haFrLBUgWMdrxPaS95d3OhNtteZHH8VtDY iZ2DD37kXHiOMRcMrQhitlVdYgAxDZwGKlz6xaWg562vMzd0DU0ouw5TcuLY3HOV0utwY6 yZfPS8XU5f1egWErMvd9SaH YwXoAfswD1Er2YuVbFaGuZCObqgK83wYerrknvw6h4BmgoIC5Hw Y4muN7rNE9ejar6HoX4wADqHEOHh5BxCdIpIuuMgzg6z6MXUtgO7hL2cFJn7sVqz9Mo4jf5l 9ZG9O46YJyFlFFzayxK45Fqu9t3Eyc5fSUpaSJ9vo3s1ctqwJTcNAY0WWtny6uuEonnRMfggB RPpnFpYOwFlO myQk9 kmdYm0NDTJk3bRaajW38pqxeW8coxAlW5g