Z-score Calculator

Z-score Calculator

Use this calculator to compute the z-score of a normal distribution.

Raw Score, x
Population Mean, μ
Standard Deviation, σ

Z-score and Probability Converter

Please provide any one value to convert between z-score and probability. This is the equivalent of referencing a z-table.

Z-score, Z
Probability, P(x<Z)
Probability, P(x>Z)
Probability, P(0 to Z or Z to 0)
Probability, P(-Z<x<Z)
Probability, P(x<-Z or x>Z)


Probability between Two Z-scores

z-score

Use this calculator to find the probability (area P in the diagram) between two z-scores.

Left Bound, Z1
Right Bound, Z2

RelatedStandard Deviation Calculator


What is z-score?

The z-score, also referred to as standard score, z-value, and normal score, among other things, is a dimensionless quantity that is used to indicate the signed, fractional, number of standard deviations by which an event is above the mean value being measured. Values above the mean have positive z-scores, while values below the mean have negative z-scores.

The z-score can be calculated by subtracting the population mean from the raw score, or data point in question (a test score, height, age, etc.), then dividing the difference by the population standard deviation:

z =
x - μ
σ

where x is the raw score, μ is the population mean, and σ is the population standard deviation. For a sample, the formula is similar, except that the sample mean and population standard deviation are used instead of the population mean and population standard deviation.

The z-score has numerous applications and can be used to perform a z-test, calculate prediction intervals, process control applications, comparison of scores on different scales, and more.

Z-table

A z-table, also known as a standard normal table or unit normal table, is a table that consists of standardized values that are used to determine the probability that a given statistic is below, above, or between the standard normal distribution. A z-score of 0 indicates that the given point is identical to the mean. On the graph of the standard normal distribution, z = 0 is therefore the center of the curve. A positive z-value indicates that the point lies to the right of the mean, and a negative z-value indicates that the point lies left of the mean. There are a few different types of z-tables.

The values in the table below represent the area between z = 0 and the given z-score.

Z Table from Mean (0 to Z)
z00.010.020.030.040.050.060.070.080.09
000.003990.007980.011970.015950.019940.023920.02790.031880.03586
0.10.039830.04380.047760.051720.055670.059620.063560.067490.071420.07535
0.20.079260.083170.087060.090950.094830.098710.102570.106420.110260.11409
0.30.117910.121720.125520.12930.133070.136830.140580.144310.148030.15173
0.40.155420.15910.162760.16640.170030.173640.177240.180820.184390.18793
0.50.191460.194970.198470.201940.20540.208840.212260.215660.219040.2224
0.60.225750.229070.232370.235650.238910.242150.245370.248570.251750.2549
0.70.258040.261150.264240.26730.270350.273370.276370.279350.28230.28524
0.80.288140.291030.293890.296730.299550.302340.305110.307850.310570.31327
0.90.315940.318590.321210.323810.326390.328940.331470.333980.336460.33891
10.341340.343750.346140.348490.350830.353140.355430.357690.359930.36214
1.10.364330.36650.368640.370760.372860.374930.376980.3790.3810.38298
1.20.384930.386860.388770.390650.392510.394350.396170.397960.399730.40147
1.30.40320.40490.406580.408240.409880.411490.413080.414660.416210.41774
1.40.419240.420730.42220.423640.425070.426470.427850.429220.430560.43189
1.50.433190.434480.435740.436990.438220.439430.440620.441790.442950.44408
1.60.44520.44630.447380.448450.44950.450530.451540.452540.453520.45449
1.70.455430.456370.457280.458180.459070.459940.46080.461640.462460.46327
1.80.464070.464850.465620.466380.467120.467840.468560.469260.469950.47062
1.90.471280.471930.472570.47320.473810.474410.4750.475580.476150.4767
20.477250.477780.478310.478820.479320.479820.48030.480770.481240.48169
2.10.482140.482570.4830.483410.483820.484220.484610.4850.485370.48574
2.20.48610.486450.486790.487130.487450.487780.488090.48840.48870.48899
2.30.489280.489560.489830.49010.490360.490610.490860.491110.491340.49158
2.40.49180.492020.492240.492450.492660.492860.493050.493240.493430.49361
2.50.493790.493960.494130.49430.494460.494610.494770.494920.495060.4952
2.60.495340.495470.49560.495730.495850.495980.496090.496210.496320.49643
2.70.496530.496640.496740.496830.496930.497020.497110.49720.497280.49736
2.80.497440.497520.49760.497670.497740.497810.497880.497950.498010.49807
2.90.498130.498190.498250.498310.498360.498410.498460.498510.498560.49861
30.498650.498690.498740.498780.498820.498860.498890.498930.498960.499
3.10.499030.499060.49910.499130.499160.499180.499210.499240.499260.49929
3.20.499310.499340.499360.499380.49940.499420.499440.499460.499480.4995
3.30.499520.499530.499550.499570.499580.49960.499610.499620.499640.49965
3.40.499660.499680.499690.49970.499710.499720.499730.499740.499750.49976
3.50.499770.499780.499780.499790.49980.499810.499810.499820.499830.49983
3.60.499840.499850.499850.499860.499860.499870.499870.499880.499880.49989
3.70.499890.49990.49990.49990.499910.499910.499920.499920.499920.49992
3.80.499930.499930.499930.499940.499940.499940.499940.499950.499950.49995
3.90.499950.499950.499960.499960.499960.499960.499960.499960.499970.49997
40.499970.499970.499970.499970.499970.499970.499980.499980.499980.49998

How to read the z-table

In the table above,

  • the column headings define the z-score to the hundredth's place.
  • the row headings define the z-score to the tenth's place.
  • each value in the table is the area between z = 0 and the z-score of the given value, which represents the probability that a data point will lie within the referenced region in the standard normal distribution.

For example, referencing the right-tail z-table above, a data point with a z-score of 1.12 corresponds to an area of 0.36864 (row 13, column 4). This means that for a normally distributed population, there is a 36.864% chance, a data point will have a z-score between 0 and 1.12.

Because there are various z-tables, it is important to pay attention to the given z-table to know what area is being referenced.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

dreOiCG0ZuinJnnZ7Mq3CPUl ztZXb7tNPfb2g9Rr a fYVM3dfvrvbYB6NPIeoiOhg571edBmQkGeRiukhcNeRDYOWwbmBDkPY09QpXUVJ1LD4snvWyJYm4sXizXRTmSzVewLuPuJBbaPxTEG7RyyVHu6ov3AEX44qY j0B7ETPQiOVmzKt8CLEVxYaFX67CmKOjnmfkkOOb4QrgB qoj1hhcAc4fVW5B mKyhjsx2MuZiiIvdZTTBJ8xt77eD7Q2dMRn1CMc3tT4zFH8G8y3Y2rE92b3sRfgNErlGHNHSy5XBao8b zT8mMF0Rtjk56OA6jv087H0jop5EL75KliGIdYxnZvtu2uoduFVdOV0NWiy4TKSmUQJGESrJzts teq4QY9uvEpbABfNN53K8lS19fA9m7hNIlLvyqyhQdcvLJVW3BbSMAv4AmkJIUORrmxoNj7 hA2k9Sei4odv4XYvcXg8j8JZrvHf0tOHwLBczeQzGjqvmTwJEuNMeYjT1XQYPLY452Vy1bq 9sC1ECfJAQdX7CcQqQD7MKhANbPw451mrZNmIWtguX3CRVerO77IOgF57wGoVDSqiJ4bJmk0veXsbf n eCd9DScsRjP1viUFJphnjoxnM4sGvNsjixh3LjAV7zvJgtm1fx4vCBeIPqJh1pyU5ysCHIaKRHHZ2DKgRcRB2UZE0Y4OTD8EMWhG06tTyc8czTuSoMraYkefzTkb5oSPm5Mc0BV0hMrPKZZ8TVmhCidZgoYODKxFFo 3p6bovtPtPAvUyDrFWg7KsHxKVrVRxNRU59YKj53boagELRMkngg0xBOzY1OMs1t7dw2Ff8lKhg1haLH4X666Hdwv1cHjs2rOLh6SKmulsDgn710iUfwAuZJolL9u6qrpPKOQAOMFmtrJ0f SWZo3vEGrWGM dgVFvWu Vtp0MNCKdoaexxtA7Pf7efc24PIYECN3Wtvox5m9jH2rg8J NlMDLrvQFLT1dtzSDv8DlidAJfGU9pVat4DPOqMwP6VYmX23IPQ9hJPzTuLZpJUDmUI3i1Wp5BmsqUeIb96LhPtfLiWWMManNc6Iq5b1n 4vIBALHjx0OCQo41xWcePAfDGAqy40lIUkUcPbaxsBRpO94Oxr3R1SppzCr8zmvtvXSKmPERdokDyeEbHUChTpDu3L2dJIJpRBjCXGbBToWJGLiNjxeUxhbLBJYS8Njh2PFxT4cUbrsvLISLTjMdwY XiIrcwxk9hf0d2W7ZZ4AKXsoZSvDREkfETnPOEPFRRZLO3bMlqYa1TqwzsJtjZZ0uJfay6GEcYRWSgVc8gXCz9umpcUzAb11aJFxXZ305J1SE43OV7PHCRyZqZZ6sIBvzH7E0JtgiDFrhmmUTxCo9DVQMEeC0HXqok11 jmZa gNvFa3Fnd3Wxd4KuP6aIV84yYL0UC00 LrGxWFvCgAp6yUedDGzqKE0NNDCMax57yZ1BBzTNfI CJU9FycTKfAzyjTU2BcR90H n42mnBqnEWrLG0LFLWA5L3Qln3ljk6o C4ikyZFV8vqsuuowFLSNSm5J3IhYXSwj7J2GOgAvF5jubX8fs7ovW5qYD05MkYMUJSV NMdGHpXAAEbuKWWFViE4dnVeNTQUBEBnyIsaBbJ2ujyDQu rfbhKQ4Nlu2 Ug1PC389pWeSIpf7uIN8e4e8mZ07zH5ccT60bKZe22uC ylHFhmlM05lBh 6UQV1Ui9LFIlJSbosLVatWgEQw GSj0KMmy90hHleYJPwKLUBMMKTQeLtr4HoL6NrL6f5brkaklqK42W2X8ZO7uFD0KnZO7lYMIldoIAP0Di3RYDGv3brhv3DM1jkwIfmN3bTvuA 5h1MQbtQ0B7tXl7k6FuRN3ZHrNVQ5V5DY3sfFH15DFwfU0JTHwxvUDquU5y4Q2hiRCJ5mLMikR88IkWPV58H 3MYMS2X94MIlHqI HFM av0AJuXS6jKjbfXkU1VdZvZj5XCJi9pLPiJdcUITzjdwWicrmy Vxp7rlriJXTej9q21PXydSFgOwUTjYM0zfytJlmSzp3jlbtBhAIHvwP292vkZBWStVPGfMH0fiVtlqZf6uZXHTW62Xxxm2qltxIIIXqqy6kbv1bp1kKCjUhFVr28yXme xMBAHkI3TBKk0mW6Vtz15DdAhh8vQYcB4P2hjlp2WhFXyTXtx DjkfF 1HU4pliqCO0YEADZd dzp5p5PoFRMK 1WcakCzk1wYwyYZVpQ7kTYDcin88hYveZBCOVNoUrZKgr3cMyp2nnUBCBOV6UMGju4fYaN7f3P39cXhXhB7x6bYLXsSGCykDFqcSKGv4ZqmWO47hpJ9lj4WuVkV99NbGRnCsA0xSF3EQxMNYvh96lApetG1EgyXHjDM3KBXszVe0Ff1BdcRprPy4jMoJpK45mNZzBDI7mcjFgCdWYCVyG1POaUL5N2UwCGdA jEvggqd97wtHY4YIZCjQKQraJ2MvTzLjFSw49s27RvbIZhejue1xXZT1hdoP7Yl5Qa A79PgfEnJvEKSTlSyWqS9Hkzqeo1XbCXctc4iGO1ml26Vgw6fDh58rnmHXLo10sJWDf 803vWFZwjW7Waes89CFiRdJYMJYMBVON4e66gTozZlwvYcl80HhRrEjpBl7ckL9nNLuzw8bSh8jP0dJrDBaf cXfWEU FFmXfQW uwWsLYAxWnT6fNQwad VSqy36IzJ7TjwukPtOmWKgIXwAtu Mlx4SaoN 4SI8bzAgWsXWv3gzyKegV1Ajhk b yJCH9bp6PPKbbT0Maklv6BCwmbaAACG5efroxPdKbMDzlIDgJfned3Iv5b1vqO6AfM mv5NFudpV5Byf8hWYJcDtdEcMI zkpQHFb6Qh1hOVS4u6R5Z2W2SUpfYl5ybRMkYGeaaRfrZo1o2h4hsj4DoJ4F7LzOOGmw80738bGnyR9kFOOIAazoAPFlVElhqvNaCDJBRYcKfRLLpJF3rPEIzjZaMjXkQuvIGTHpjTKdz5rhNVDwqck3AfUIBC4zENXeizDMom5sbF TopJzuv5f5OyUgmnTY iiacC0kjHFdFZkEMooZ0A7fbxVw4CNqBwbCx6OzizumFW 5Po8kMwPtFhqM9ObTXRRNCvqGwhiDEB8QMHbvNwGGenJfv4tkhSRKNpc2KAvQNB9FszNsG8iDSivkxlKR5oBPGKOhwCE7kHnfONTwRUV1NAdbr9W1Gp EEjFN0dy6PcEqVpNn7WpociLM9PoaBAJsVRGIE0tqtDPy3EkTKzetTkxjcaKdqQIDJ4ObtJWhQOGWCovHvbZtg8LvpQ0 820v0FVWlTqXMdY8DXwE8Vm bDXAAX8V1M5pI2A6uaUwPSjU6uhUA8aNSJIJShb8jbKuazT3jctciqGuGbt1ILkvyPfo94YolPOKCKEaJSHwo3YmVIe4wonvd2QkbdJAtzCdoPyaHd6JHtVoNkgl213UN3kLZ6Fa9aQI8leUQlSJCr OJqX0830wfuTI0OXnBR8FrsytoAXWKshSHq5YMNhlNXSjn3FDiy37rlspibKVYmIQK6N ShpSDFdV5CKarwz3QLqeGbLw2VS4MRt wt7Dw6YSRz3W8TON5srGheRsICq6vR4Z8gkZCDBFYTrOZsPTsqPKPU14PHKUZwACT5RspHFGI0e49fh6xGh7LntIjkCG4eJmIbXeJFkpPbqVUQY8frY5MgyTn9nirMfo3FP3SwjdVY PypJqCsNMjqKZdjfKjsrIGeBtUzbFUiJt9qRHpZ3yUQVY2KHFINS0loy9InUs9q28YVoP3uU9w7Szqa28y7Yim6eLoydQS1R4HIXG4uy5RE128kSD HNagreev8kwo1LxWllnEors4Z0ECh64jwjjHq74kGbvW4cLV3QEka27Qhd 2aCurolb4x4LUDQtgFZ7p2NRf6blHIt0Ghv0 czc3ht2E4sP4ykgtdhstvbKAbUUafyejIxv4mbIYCyerrpWQqqEYSjfY2wauJEWGi0x2LMgQBWoFrhMi9MbnUbnalAY2CL CVAb6nmWGldZDVNJfsGZ25iKcp9yTzpt2wiBwZ ozq0x2MfGqfKZQrkjYFK6MCvjN9Yp6i9ZH20dqZB3gMg84XyoW2zXasPdRKggGqDFwdbcZr7N4mjgFcptQ0S7HU1x5o0yG8LrquDk9nKxznBCuhz7lyTBT8kM9zFFPu3HEh6DqWuAHSNj6nwN8lecGtEghFqoq5XMcqcK00rIUjBeGbE5xczz8taZFVKDethPBa5hnwGa508dOynwXxZohGNqoS GGlbQIgvoOlkrFT2pIKUKaiQvNfVdKr9zCN1R1kDkgu1RScSC8Bxk5dktMfyUx8XGhncHTrliuG7VjLw04d2nR4exBPgzXDK1GUbc05kohko0kvnZeq8UDLcKY AnM4f KdjvyievDeewJNA2kOFUDggAJnhXMBxPL0DnQPZcRyS9IYW9tXpe39amNIXp5ma6ALY5scPO2XoJ1InRkUzTfa6klcKqwUtun46c gsB1GDzR8cU4mR5LZ6afDLo4ZCdDLqtcCDr8TPbGONPDq1q6hUx3ymaRdg1Pw9hoZgBYRA7KdGi8pGu9YqHx0iYKPrrRIvZhSsbXS7QeXFinAIBrH3K9MtTyTeqbyf7p3kY27z0SV lSNmmBHmsu9b1tdfT0JTDoY3e1OkV6Fg2TOTDbDB8ItBQYZElzkghdEdPdzibdv1VqeZlNJOv3zEgpbsbY1v0emgdLwleZ7IG8O291EPFGGe5jnHMSVPsOwNYvbAbeYnhwr4SA2l4rWgVh4GrjVxbYSFf9sjrKmM704vl0RgMIV2b9mkcuFBmQGWH4XKsp9LT8FJ6QkIZvrh7yoPrphXY4Es9CL2a3Zn2gApdmteMo1zANEORtiUgyTvCjEPhl2oNGGYA9xGdzPoDAIgurhQaA06Jftx6LyalkeEnpa7yqL0LxhSns23UDvLKJ4WI flF8LvSuiYXZ Hv8duE7ANT8J90X5ZfzPqCD2 JnaPuIn9zMyVn345Vy 6cy5iwT0tvIrSVXdiavWToVqIXiMwz5fOOzq7NOCv0ya97CewOvAXfBmq0VFgcMeGHYRMRKxp2L7DmiUriPTUuPXsk83frvbhSGK5NHIMgawdd1gwkX4ht4fHYwQavHPgNGbnr 07zc xyatgwfbWMhmMcVDSsXeixbLGxLR6yEzlUCrM1BFkaOFL0rBsy6vmM3PfTVuV PDH4P9EWuGJIFOGTxAi664x6SFLO9CvFLebgW9OihYwYOYJkbYTqjQJywkh133LihPeHmkq4f1zFTXFbat01l7Tn2f4j6rfgifuZqlNriaiG63kAN1xXB7o4DRvYkwc4tRqfS6JIy6c3LmtFjQUk11gwA5s5rJ00Nc wE1M2K19ihTWsEkJHtzus6e8q49wGHZogJ2DurcJxOLhab7Ff8LO7hg6oOoYAmCudOPs1mWSVxgua8nwZb6wP1SFH6UPLkxMl74Atk7vow3Os2QTF7vcs06gieAzX2HGV7iiaVWmEQq4g0GLbX ty3roTr5OdVvqXItOtiPE9hSIEXL6QmZE0TSKY0aX8YrTa XEgAfTVz43m11qwL8mcX6bCrxFT2bgmTYkjuiKEZn8cQOqYN7gupNjlHw5OUxl3xGztLwGH YjxKP5oko2gd5u8vFtSv1M3D9tkYyNjOfE83szL6Dfp1OZCUvI87BsnDwufC2UDIy1uEGnNYKAt2xuMzzbxb3AJV4NMfStFcnvCRhKSBUSpwo6utdC590SYDxy5Abg1xQKOZBLAD07f e1ep8Hf6dRaVXdrnTW9GiFTjF9OBAahov8vPjhPG7FSJqYVVVFNmtjqxNVBeHr1zhSdBtBS 6a6HPLBE4XXczhMm6JxLWpMgPlsiqRpLv6oQm4 OuXqT7Bbo5hRwOVFJfFpZeTe m6pPMl3z7HqTACvsYunaRzYpyJKINDJTCkTOsNTMmc96hK2QbIRRVHuuLCfUUXvgrC2Wbg5C8ZuQubhyXvztTUDT9gmlRinz7xnHJhU7KE96HWnWW3PVXukIDLmzX4GfOuoAhHrnCVmvqNLoymErKsb1PImWNbBf9C0bWFSGXGLUZ0RC8FLMmMj7dzjpyl8hXaNRA sFbPT8gUNTmp6TdPvQ0oMcyR4Hs IPvIroXZg 72SAY4jRYr4uNKHn2G99qRLEsmf5aPqsUmI4Nm8LJRCvKVKiOiX aBbPHSTAXGz0Jgz4GbbsNxQ0f6a6fbc AJW4GHQ1BhZq78cA3EGq3ouVVF2D7VjMPnCAgxaSNMqkrKI6qgBHqCZ1nU7oxPZqNkzm1RVaAMhszFqiSeDFL9DDFZvPeU7iLKWolPcQme6YfwujFrHYZT 518s9A9oKwbIo4ANeWs6qHX4KXNOQwXo6BaWEO0QkBZ4eN2200koPjHOpzhZeoRxqB4GCcCx2Ea4ZTD1LcIvAcorn9AwX7MyKaZt9todf4HHAl4XjjEwSXlOqhrA19sYrypiZoHKFsfkaM8yoLLpzu3wOVXCBkXEOFQfgt6W kFIhbi0EPJlykJATt4B3yhAhbjLlmZ1tiO0sJOlTCIuoDRyrT9QnjOjgksf0hIW8FePwjBTAX2HUhdfymlM990GzSTyxxkHFVCMedH2ASiEq2yu9h wrEDtFvPMbK6IfxFFwBFvJL2fHbDLzwXL6Jy2mIOcU ccu679F8rlYYWlCTJGVT907J5TjwE7RZbvRwoVSx3JQZKN0VLxYnmdITrEbET5DWU1BqXJRKFwsomVNAJa72l8kwbSgKEbyr8qjnnyxJSItnQWZK0 nw8ZU8a1mc4Po21PNxMDZLEUIGB16McF2zOmjFHRmp2J4Ek8weMDutPYogxX62OqLFTAywBA4HXmwZPN1zArdQzaCBmiLDSNoPyF7JDwVjyuUuASW7HNeXrlWT7wOYUD0RV234vg2PY4fmmmZ4uhwJwW08DwzjQYS0h0WgplTJFg67XI2DfVW vHPf0od94znal6tPHhSVIJX36UgmlMepjNXh7h5JOAG n3bnY9wjxssSR 3Fk84zGkgy6DS1JSmekyTAysh58PdmU4zREsWXEQ cVGgJhKj4cTbLy9 I3yp0zLvTr0yipADWWq5uAdiGCmaU gGSFHFPNUfCrDTH275 cASVWaFZCdErCkowGh3kdMfnbo i6eHRozYRtbeSGvG7nJp117BFMyccM90EaniIdteQqBWpiRj86qdJBGsR6awPfYOqDejgF3nabF5lDr7Eq0aq85fs9Ps0HqBkorVTQfnU0kb6ZlFsf86OpvqbwcR0KHy5J49d4qKrO FeoAMBKTnEt9bSX0vkFUpcHZyGMPrtjZdhN1Hr7IIl3BhvnC8Ovm6D9y1G3pxbmUc8DijJM xU8HQP7J9nwlNlLYKzF8LUkQU1dKey8GEvS3yXYx8EYDrXJYSJ 5W1KImoDm2joeBHgNHMgaQtK4gmZBRTNYemRnOISOGVbVVtQxUglD6IgG7TURaZsOmaFgFJG15Gy3OIKteITB9TG6DjlNwn2Uo 9aAin70Mx3sbhZ6UnDF89VcnNVfWKNw01dkC1t5b4cMxx1gPWvShcCM9YgDiEkvsP2SqZ6aSPKVXL40DOw1El8cyjtr9v7svJXW5Gi8MH8rHGHkIoWUbXWrVcBCDJmHDwVlI1uhS0ttLxm y8XjAXyadMD2eNbNKpiZvL1csgQ0eN7s4 KjsCsEbX6yJrw5dC7Ez1GMZC9kwO2tNP8sQpDQbt L6qcOkNiO2oJfhcDlnD3lM4leDYfNwQmM8TGy6 Qj5faMRy5LV6 FwWBPNFlWSQklVE1N0ROGd4yTcEg2PxSvelAAPG76rYDYgoYDikKVjB40gEp9Abk5xwqKjRgqR1i7AzdDbjWZREXFWLwFNIxYPtpmtB1O wiUa lgeh3MbCj7ozFxcl7bodz8XMW5pnLxxc3Ujl05qluq5HY9sk56WpF4FP34VabJBabevZrBGAf92074P0fDWKellZ9FzsyVpK ZQg0kqdfRV2S5a6B7hN4EtNw0rCMiPhE6ugFYst0lOQgd2fv7LEtLCcKdsJwQCe39lehSlH6BSi5cnBAzCkuWYepdc0eeo0W4qHUpxUAbp2p398bSTSyr0PtLq049vD2VnaaE6Fu