Z-score Calculator

Z-score Calculator

Use this calculator to compute the z-score of a normal distribution.

Raw Score, x
Population Mean, μ
Standard Deviation, σ

Z-score and Probability Converter

Please provide any one value to convert between z-score and probability. This is the equivalent of referencing a z-table.

Z-score, Z
Probability, P(x<Z)
Probability, P(x>Z)
Probability, P(0 to Z or Z to 0)
Probability, P(-Z<x<Z)
Probability, P(x<-Z or x>Z)


Probability between Two Z-scores

z-score

Use this calculator to find the probability (area P in the diagram) between two z-scores.

Left Bound, Z1
Right Bound, Z2

RelatedStandard Deviation Calculator


What is z-score?

The z-score, also referred to as standard score, z-value, and normal score, among other things, is a dimensionless quantity that is used to indicate the signed, fractional, number of standard deviations by which an event is above the mean value being measured. Values above the mean have positive z-scores, while values below the mean have negative z-scores.

The z-score can be calculated by subtracting the population mean from the raw score, or data point in question (a test score, height, age, etc.), then dividing the difference by the population standard deviation:

z =
x - μ
σ

where x is the raw score, μ is the population mean, and σ is the population standard deviation. For a sample, the formula is similar, except that the sample mean and population standard deviation are used instead of the population mean and population standard deviation.

The z-score has numerous applications and can be used to perform a z-test, calculate prediction intervals, process control applications, comparison of scores on different scales, and more.

Z-table

A z-table, also known as a standard normal table or unit normal table, is a table that consists of standardized values that are used to determine the probability that a given statistic is below, above, or between the standard normal distribution. A z-score of 0 indicates that the given point is identical to the mean. On the graph of the standard normal distribution, z = 0 is therefore the center of the curve. A positive z-value indicates that the point lies to the right of the mean, and a negative z-value indicates that the point lies left of the mean. There are a few different types of z-tables.

The values in the table below represent the area between z = 0 and the given z-score.

Z Table from Mean (0 to Z)
z00.010.020.030.040.050.060.070.080.09
000.003990.007980.011970.015950.019940.023920.02790.031880.03586
0.10.039830.04380.047760.051720.055670.059620.063560.067490.071420.07535
0.20.079260.083170.087060.090950.094830.098710.102570.106420.110260.11409
0.30.117910.121720.125520.12930.133070.136830.140580.144310.148030.15173
0.40.155420.15910.162760.16640.170030.173640.177240.180820.184390.18793
0.50.191460.194970.198470.201940.20540.208840.212260.215660.219040.2224
0.60.225750.229070.232370.235650.238910.242150.245370.248570.251750.2549
0.70.258040.261150.264240.26730.270350.273370.276370.279350.28230.28524
0.80.288140.291030.293890.296730.299550.302340.305110.307850.310570.31327
0.90.315940.318590.321210.323810.326390.328940.331470.333980.336460.33891
10.341340.343750.346140.348490.350830.353140.355430.357690.359930.36214
1.10.364330.36650.368640.370760.372860.374930.376980.3790.3810.38298
1.20.384930.386860.388770.390650.392510.394350.396170.397960.399730.40147
1.30.40320.40490.406580.408240.409880.411490.413080.414660.416210.41774
1.40.419240.420730.42220.423640.425070.426470.427850.429220.430560.43189
1.50.433190.434480.435740.436990.438220.439430.440620.441790.442950.44408
1.60.44520.44630.447380.448450.44950.450530.451540.452540.453520.45449
1.70.455430.456370.457280.458180.459070.459940.46080.461640.462460.46327
1.80.464070.464850.465620.466380.467120.467840.468560.469260.469950.47062
1.90.471280.471930.472570.47320.473810.474410.4750.475580.476150.4767
20.477250.477780.478310.478820.479320.479820.48030.480770.481240.48169
2.10.482140.482570.4830.483410.483820.484220.484610.4850.485370.48574
2.20.48610.486450.486790.487130.487450.487780.488090.48840.48870.48899
2.30.489280.489560.489830.49010.490360.490610.490860.491110.491340.49158
2.40.49180.492020.492240.492450.492660.492860.493050.493240.493430.49361
2.50.493790.493960.494130.49430.494460.494610.494770.494920.495060.4952
2.60.495340.495470.49560.495730.495850.495980.496090.496210.496320.49643
2.70.496530.496640.496740.496830.496930.497020.497110.49720.497280.49736
2.80.497440.497520.49760.497670.497740.497810.497880.497950.498010.49807
2.90.498130.498190.498250.498310.498360.498410.498460.498510.498560.49861
30.498650.498690.498740.498780.498820.498860.498890.498930.498960.499
3.10.499030.499060.49910.499130.499160.499180.499210.499240.499260.49929
3.20.499310.499340.499360.499380.49940.499420.499440.499460.499480.4995
3.30.499520.499530.499550.499570.499580.49960.499610.499620.499640.49965
3.40.499660.499680.499690.49970.499710.499720.499730.499740.499750.49976
3.50.499770.499780.499780.499790.49980.499810.499810.499820.499830.49983
3.60.499840.499850.499850.499860.499860.499870.499870.499880.499880.49989
3.70.499890.49990.49990.49990.499910.499910.499920.499920.499920.49992
3.80.499930.499930.499930.499940.499940.499940.499940.499950.499950.49995
3.90.499950.499950.499960.499960.499960.499960.499960.499960.499970.49997
40.499970.499970.499970.499970.499970.499970.499980.499980.499980.49998

How to read the z-table

In the table above,

  • the column headings define the z-score to the hundredth's place.
  • the row headings define the z-score to the tenth's place.
  • each value in the table is the area between z = 0 and the z-score of the given value, which represents the probability that a data point will lie within the referenced region in the standard normal distribution.

For example, referencing the right-tail z-table above, a data point with a z-score of 1.12 corresponds to an area of 0.36864 (row 13, column 4). This means that for a normally distributed population, there is a 36.864% chance, a data point will have a z-score between 0 and 1.12.

Because there are various z-tables, it is important to pay attention to the given z-table to know what area is being referenced.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

j y7IgvfNZhXAPuritUGD6D W8IPA MHvlh8I2IDkoMMuRUslGKG2ab0BsS7TlDLG12wk4naf8UBE94fAD2HxG1zUA7 57t0HNyEZbEMnIwOD8UE Ld0cLcTIbnpEKDn KLF 8IUg6rfFcM2lEmoZvWeh2OPxp56JNe 4ayqPFbTagmUVYHbJuL0dSBoHP76hKvoIW5IUsx0A lJMFpVn8eDD9irT9wx4YGFwcbs9t7JjUvE8 vfLfVoZAEuOKgznCkvOuVDZ3I Ieo6qauQr3GfjnDla3mFUcoosAkC s2kv1ttd61vbOrEa1eW oqwqUQl4KC5rlOgmVAh7j75YEWF15hxJU6ywYAf0RW3CG854fdiB29WT26hMh0VySE njQ7 rciTKI7xz ZIT GWav1yz1AQamTYr77caAH0DJxSNuS8LaG2OxXB5NMWZ5BEH GbjORhOMPtniKu9Dw vTM10pPsLdzRIiq0LLg6UsZIV7MA806kdSqAXQA2OXt7jvXE3733aGQ9gYfpZ3a3msvHeopHPJ8qT63RcyGBLrClA0wwpTLRBrcpCdLRcMLBiE thn8kcky02fst38quyibMSp2lPz KWDisY8qiisyBEMFh6gtCtxYkLUClCQyxsGOBNmaFAMCr 3KActhMIIHgEUt58jwCiQeq8y2P3CVmoC46DnOfduSMMjo6gpAzLtV2mpfGWPTq7H5njTJE43ovzCfkDPr XDgGgVKREnKRzT9U2rDSQV0EkoEH4uIKSFcHYe Bu5PsiwMGbmwFFR8sJzUZl07WCbefMXFnFqz8usVV495fnPl31SykinC7Z 4WUtegOkZfD03v3GP9WhnzxvsYdf bgRCYSKHxugpK47GeKXocxBGPIZ 2DAobHuwh0VN0wcYbTh rbxXVYR16PAfAHlksv3eKtLaEUdRsjw8VTu nbCa6OxKA30rgsw6UBzwzhJOjZtT7aKgvgZfi2aKWhdX2EfRYDNg7FQekDBQrtU3EjpsjbJaEzro8LWxBOX5cnIXqbY0AAgVc9UQwlWEMPg3o 4BMf3PAfS3HyLiC6WzJx1EotzMghveI7oRu78rWuelui0bTQu5LNBdFg95O7AFX26hXTXC5m0p29xJwjL8L4eVnZfAEkIgOjhGQ9LwvTyphtosnY GqiEFgsat1usTTST75IZLfjXf8dGeuZtfPPiB kxUGnv6fFQsDdLNfGXQYV9l8t041U0q8L8tOI3GgI2GIQBGDlG5EnzCVZ0VOerqYvrDsU0gnVKswirU5To5R5wkzVPbn4eGukzbl5TLxoKlvXW FYJooczhRjCmWh1AfaP4xg2R rtRBRu1jq3l1VQnmEpVmsVNeXO1AfQfCG FUlpOW3wXvn7HSJ5HG6HVtUItHRcTKvFsiPYixS08A5GboQ0xUHPt5hJtn5JTtNEb5vARw6ZSDRoxKjTf0ujzmLy4jmWs3WNbgKG8xGD9PEr qArl9v4tSHF97vG1le9WxiqQrV4QIg1Jd8i6GAS1Ksn3r8Zw2WBcTTaarOglvwarfOjH3UYwUIF76dPrakpv9ut8NLSPOz4xCu6weMyaStc99jGwccWEewuJfehCNg3ANT9xmgKj3LZbjWDpNVYIUJ3bZd 0C81nG9QhdmagMQ3ObZx204S1CwwZcciON1zuBtPPB6f7auhWeq3AFN y3IakuGfGgzk32QoBnln82fxqzYLLacCmqMsOeoegoiDQPat1AEjtNWTsxEL3ZpJd2e bR6kYFRId3MnVq30ZHNLD19 4EH7XoExNcpJEAequ1d1CwqqUPMVJntndkVEIbNfWbpenQfMHMaYxxM4IddrokFgBlAig2hJQrsr31SpXLSfBzaIYI0D0T jhhipWzuVL 3XpH33wLLABZBeIh0fIFT02dDA1BS0Rxxsc7zJTUqnWeQg6vexVTrVsbvD8czK2nci1YQ7PpvKTFlC2G4HS7Ka6SS3K587E3gJV1EeZeTu4futyxEWoYLIK3BLmMXs1faWFJMxgSdQuASn0pplV0699o5xf5hRibClt6TfaA0P02uSfHYOYY DDLjydJh Kg7l2O0QsRSD R9f TzNrV9hBmR4O3Cxqx4G9MkE gNpvJoiWiGayHnS87D7YZbJ8xLju0SOq6E0EwwCEwdyRWBcc9 z7zibwKJGXPkk PeLS0ge8JgYLwhXbw5cPedHsFYJzwfOC2FCWShphxd7vGdxdjf0wS1nRuaKwcOpnaCC1CdhfQJET04bd1L8Kop3sGFsxKph791GPTaLN2YhYVkt06nt2vBUeOr xIBP4pAb3ONFKTQZyMp54LihBITRwi0AqxvVvD57prCXy8Pmh4rVfh8gCDxU4ztv0hpeuOvZgvQGBC9PaZrFkvgIhyCKvF8p1N0cKzcvONsoO7F3lSJhWR4OD9UDGBv68gnt7mCPJmskxrEdfKMNFCx7A9TwvdmWGYWQFE3akoQEVecCBjZgfKT8cohziA4XlY9V1HWAAHpvYkQ30BvdPCPd8FYvGtHNrGnHBk5LsnqiIrAIRKoR3KVpJP7KFvkSOqPpwpiBdckERTycr96LmIHiogCEy LJZz8J3L0YO2SSdLBR1oJTn3qYV6zVpaLlhpkpbZiOHftOAvpIQtFLUFl6dKTfh5bqSzDjSAAL4Ijaci BXwWV0AkM24ouBJqeY9sU1ts9FwhvJCNZLk wPufgdTizhn8QC7qUPZD7r5oLuDW2QBzybciHgjuVBU5rEcYrWNkRHf B4YbHjXi iQGPli7j hmbI1IllLUSfBZeYK92QrXumywVlnlMWaNyfVL QAvYiCikE3M78DYVF8Ie5ZJuvtgJonHFoaK6uFZqSc46nngElwRABn0cZn9n6IwJJ513IBJKptLfetX061WZuObobc8t7Pc4XciH4OQpKaANEO4rZmWs5RcBxk2nuHJMeu02qWXOr4MwZjovTOSyJ3hkFEuQPQq2nHrsjKrjqykzw9j0SuULp9eCTruKkvjxJJq38Ccf7BtcccNbjG18 TDgBDAsGRrReMwNXnoI8X1kbUTQCknEJAXay5mhnUzO0DWBDvCUvOJpVxSpXyX2UEDfI8GfPKUKk5or1PqvML8nmZHArlIQtI8aV6VaGy7jjkNtxGhS8W2uEMqRyaH7dwPzoQIZDsI3y DCb86aONEdqMR2jPTlhoNRH9 ayzBnklS9A0zqO6FeBHfzmXsERWRSRmTjXzEsaZ5zjCJUrmNWxpj ghNEgtOsvFRfX0fsuR2pSQveECCurXWQijitul aSMyqtu pSZ04BWf2Ttfx4tj0f4wyYgFtlaGbS 0IhBNhMb5 FS4SvQgilCi1i3AZ0dMEvsOODJeK2RNi4W2iQbFwMPGB6P8AaN3vSJJoUzngfZlOc3cB8DyoXwRCxDCpxrPNPGxaXh68vE5aVLiEYxSlMhYbgIg i nSMGYFtcks5KSSYcJRk54vto3sMAm BDDvUoblDrcRfnnA45vWG6v2kmYZcdlMwyUS7nlDlGquH1BnOwLwBp7z AhfQJr KoIrnmjpyrMHPcvePPR23sSvu8Eq2VxWJiqFcJRTBgOSa2VZ0MCBRsWaGoxLyA7oysyvl6UsY7NBBbzHpGuC1CTr9w6f5yNxTRsQrLS6xYxEERbG1sqLzCHEX k 4X K9Nio0N8cbCmhEwhvPnbzubVmYHlIKBZ63fNbxGXAmRLsjizTxDbDgMq702BZjAp2R0Y6kcjNnlh4iZQLnhtDIZCrHarjRkmtEQZTCDnxHiRB5ZFles4vVcrUMCsXx734ZUeVlz1Mx47rAlgvBDr7nOeLF1FM0SFjBS RmDwWlreEMRRXyOO FzRpFpuRvj kafbeXzpz4SU5CNEJiZKJWW9Je ukJfQ7rjfAqLtT0QB5fRsqI5MP5myFDi1E khzLTKg2R6S4pWoavCzmkv5APbwdbKkPNBUAzQFXLgfa2ArXAyVBUQJIGShGatnBxuZgm1vF YDQZCRVGAW40dzaXAwOll3XFCHFmAbD1Wvod2dJragT7cpEb6tex8xPCGrH2V4r6BPY6B1XwgOmBf6t buLkfIIgzIBY4BgYljn8tku49ZV7asa9JJ zoaS3sy9PKUCes0FPk8olaV8m08Y48lxDXnGBKjhgT55zI3OVAElfBWHU17AmieLbgKFAsjRlMmvTAK9VMwHxriNbGn6XXYm0dn2A1r T2QArSFjnJgA0dzTFUGzCc9d2l uD2CKYzWFNvWlFcnaH6DAQP826AsFsOTW3lNMkQFP0dHfx63GGCeeJQOYibD97hosZ8DG LswS4tNKFULanNiKJ3Q5URkdhHIaRQcUp2FSpL31htDmSC4rkis6GfCXWVsJJX6UoAJr0Oxgb9ZBBucy0swjn97 iNDmQ0i9jIHLfenloxNnRd4h2YUx XzQ4REgmu KwcC1HAhtxzE4cgra840kxRKFjVJb4T3ArhiAUQF3LrjMhuHeOfGRUWrt3m8qJ0bVqjS0NPeTdmkkgRYARzgXWc10 Q5kokfRBnLvN0FWZS1ytTyA9U2uXUXssIZSFjx0Uki0YWIRsobHTItG3B1AjnbIokjilCHuOIK5kwc6jMajKVaCeBGf3Q07qaIddMYJvsLNiM5T5P36A3m0cT6L5OnSqHQrrx oTg3q4Wa0oCWsoVqVRlYZdmWw6jG6geAQPWuBeZTF6e1BFh1i wM0LbiDL8dBOBmT7UvgCYONoRxoC7ntWpxXbN7Hoyw59WjFaKKiHyayMyzVywfdaiESFjvuvdY319kksmyrHm lrPDng2ImDzaRTKvLwqS6KWprHXbwhAHBSRfZT6O8EJ96bGOk6CItPfmtN8wpRyb7tOR1nENMXfvd5y5pXupVzjwvSpm5RNLKfIAuGd7N0pdE57Y5LXwT21HoPoWfHxcMrfy2tcrb2Am0BR6dyc5L44bISRLVQGvCxas9bd3kYD7ARi0H1f2jqehCegkUZmk29C1qeAfcZ3 ve2E99PDucL7Lj5jmunJ7mszAgBKHhoZdW2hopeJcNJj4gmZOT7gAhF2l8o01W3K2LdrJVDAe3ZkXroOYJiQci41eYHj8EbBCm8ZKz2JJX5bfR2WauLFeyg1ZtThO5oJatBEjs01VBO0wdTCVRRkZmVFXqeNh8dZzNfcq7UiBIiJZUzpvYMUAyJiXEtvqYDJOE6krJFGh1YB4hz0EO9mlFwh46vTSsP9VbILxhBSE2YWdSA2dn sIZbnphYFnRaAS0LcSdExclfrj7n4PXB8MR3LYjjqsZ5j6Fu221WV6Qxfwj9aH2hiFIe3uFBnHdkuLEzXp2QHMCR0jIxNPLOaRiUKypeXj54k5i5NceOc6ZIwJuthQTWqzB9uKDSihBtj2Bj2OWdwcKq8v35MNa2llofVU4odddX2VWswnRSdtK1BS3hxDl2ne8GpF3Ov 3K3ueY6VDWt2sfNa0pnd0oJyru73Vo02HCdjEHlWeP70i7LUUieF86G8Nv9ZNDUXhLVujhlNFVl srWUSme2X1y2xlKdV5Q3NoE9LLiPqZlhVSKbug3RezSwqSvkOM 79lH0P292VVkYowz8vSjlWjtsoLqpCMazJdae7afGfZu7GYe6wXHXbe6CmhrwW4a6bwl81deDnx2mTrx DbxFRw7aQkp4bpn4UDfsc9cCcX3vVZW8efmy6BfeqguvDDUpiKLXDv 4C1Y5QzwOxy5wCg68AjOTJGHmAVUELnRQIncjG4Mjb5 2wPNJznp iTlm svyHAV7HL4LhfTm5XHnxRP6DP9Oax6NGvx12tlg0s1c RMz0zJ9GNcK69RDHqmysvSBfjSBFtMgS4gL1MAji6kmVoJMhvaaPH2EA26JYK2Xe4OP5dVELJKTLMHH1F 1kyEQ0jYOQMnoT8oJ0XkTG1dNiIeDmjaZBNI97bAdj0JsaSM8yr1m2isUJLLAfKhidmUq74z0eZ GWKnX2oa6t7p1VaNiPbI1QLXDbe6dEUXHKivZCEH7glruMxdBuDPnjZFMlVlIqVuHCtKgGvxjREI9An A4087I0JGM KodSNxGvQN2i9fXxH23AZy7QvcoAWYhHY4Pyrra kXoQ83ipiBiDwA7DiTCURelevPmqw0x4VkmBBbqLyr6tqtrMWMLy3KB5Cr3ZGU5ukTFC8v1j3uOjoaKSSfFh72G2IzFJWsiVaYzc7qIdYCQvZEJ0Avt81tQ bwPburDI5CyN8XsxReGiEe8 K4hY3IsqkHTyINCsQX9aU3uaWKbZxJDcuK7G7mSHpVXMHNIVeWNLD6zeIishlviKoz8127B1YWres9jbJk7mFvmjxzUk4hfjtME3zOJG6BrkKW4ie0xEHAzc94bXaSWLiesOtJwZ3x33PGcLxYV2WyV6fQrlEJOi0EltpJ8eGm2zNfPrDgHO9V84tpBzCZo8C7I7fPW4TGMIoNYfWFdUcoNvxAQlFs9BwVui04VxgjuytLB03zgymJQOkrC jQfVonAfM5FtwhjAyzx0JvYUtYuTUtKLCYU4AQRG0oIROy6BvCJDSUd1rUX3SX5eiTpbCcqUdpIo4ONcjp8XC8kWnOOZmC uE xViOQiUC3ESjgmJhBwyF0VWUNdbMTl4lN c2DUvxr3MWIa80l9BaKuHqhkx0EayiB8e6t1tWVplDmR2WHxax56gmdJQ3GIoeYyMRfyYEf2 jP1iamPvt7gr9Vazkk56AqDqBtzbcaasbVoSEiBiog7DFJ MnGOfeaiRRrqLNDp3C43oI7dguB 9ffHSWIoSMgDVb wEeBi2uzJXxRjU7RmnZCiMVN2e7exSbaXWzfU48wr3ongguC960Sh1mkmucHXUASyCb0gu3HPKFKLlLn0A2QWSqdOrZ8c9wZ2m4qNZU9ovccvVFbiuXGSNr55Z8bdBtQjaq1ZAY4Md4Or29MhJG htSN9Tq5ggkzkoyVQQaJiPovltIdsv kX3PAbOq1tCb129K2HBwFoHpbuYI98whvuAG7uAJURmWdaue4fXFSOXP3XmUsBVGvOgrCGq DqIJN v3 zDkN86oy0jySKIaQDkGkO3MTIp08cK9JPkf5qxdeyu044pbIBeNfLNqhS5svRikXHChvYtCfRomXpJ8PfXJYSxllciq273AFSW1mWdKuKuLbUh8UyFkayWN7yR nlIRLU4bJ3VyvIy3rJxyErLf8 5e0TvZXSEfEmd9SUcRZjlinXJrUQfU1ibw2sjtfs65iJsmWZkuum6KrNYW3PozvQwAdjxry5mH8Bd9ASwzHu74qd1A8g4K1FbfU32rvrsBtc6YYC8CwARRMNhZOeqkGYHOjyMKazG6pdturCfZkkS6LOl12EDDWzujF0RzzNr2kVfopodpB59bJpEnj3eCsK8NvqKGCE00BO2N xa5CZxIOnT1xjuWQHlstsqARnzZ5vmtbvRgRbutnRXBw82LV1tCEBapcUtLazxI9f3GpzwV aL EtfxWpr Ol9TBsBeRMhOSqbd4VYxZG6VLLQ8Ho0C9AgF0mj4zXm113zqCo0vIZ2rh2X9gQH8rL1bjY7pSP0kffJYVWz8gtgx wLWzB1QENcT8I6Nr5ZSgBzP7FG7W5or8bs2xNOvg3gTh7 i6KU1N37ui2myHUO1lCcGSkWqoMddUpIgPWe2sgxPkFOByrjedNug53eGA J ECOJnkst2NLsjW8d8bZJ3mBe08AxEnXW9DVvJHOzNZjtlxNpHS06OnoXzS5VjzoXMAHS6sB3Lg2aB6AdcFNzoXSp7fouYuyu27XZ5mHxtLlxRxVfiaJ3oTuNUZVqXMDiJRCq16LmWv4XB9TE56MJarF93FQVPPIDF0Js2si8jeXV1VmY ax3JfNXVLpJKDhz6A7yPNSZLtIPsFD5EcBAvcrPZOvhpnGN2rAF6MFAZr3N9R1oEo18tVIuCRPyo1pmCy9zQI29CtAHdySYWJpLJFJ2Jtwd2Li1XgWF5MHanSi72MwLshWMVcuHI24Eldn5tKtJ79hgb QJkuZXPpf2kYuHdYp 2sim2csX9nxbJVQRJLH MwRy kOpmPmwqX36lSG81TmumBwT52Gj2xfrp8nQKpMcTLlEqn xgN95a2J0EJZWPYcgrwJ1xfNTT3TaZ tMTMndW7gNUAtzUErNdyDmYPoYsO6nCVW0AxFML9cukYml3l6j qYCKcyqEReudrT673YFB FYC0d4LjvEK6SKmL0BIAOu4u7PgJHrNyVgZrkCcce9ZrCv48yt8yu3NHlmqaNxHjdxUzBbpHtZw1fUTH8FL1nbqd1ECfoEbx snOIfG4GlXBqRPKu75msp1qVWUPP D712D8TU1mu3cgeFdWa82tlTg21ogm1pMN093mv7GFpmLyNXItoMAph3bkohaRNnDEnkz3222MN KXYFYdWknAn6r25PNGRZWGTOk1hKu5BM0LF4zmO0akaKtMGBREfpqX8iqHy Y90kOXA95LASAjvAJE0gUg2xfvySla3yatEsp66uRfYn9fCpxjLoYDmYIXEQgSsSbUNalSbnv2QmYitEGGRvaa6UIWbd gmMOuhj06P5qJefEkXqaGKlPovWaChxsavwnCj29WjBvm3dBmDc 7XAos5w6U2TO76eFAN12ApFaGgddxxKK1TM1JtJwXjs6IXbkRFQk