Molarity Calculator

Molarity Calculator

Please provide any three values in the fields below to calculate the fourth value in the molarity equation:

Molarity = MassMolecular Weight × Volume

Modify the values and click the calculate button to use
Mass
Molecular Weight
Volume
Concentration

RelatedMolecular Weight Calculator


Molarity (M), also referred to as molar concentration, is a measure of the amount of a given substance per unit volume of a solution. It is typically measured in units of mol/L, which is often abbreviated as simply M. More specifically, in the context of a solute in solution, molarity is defined as the number of moles of solute per liter of solution. Molarity plays a critical role in laboratory experiments, pharmaceutical preparations, and industrial chemical processes.

The formula for molarity is,

M = nV

where:

  • M is the molarity of the solution (mol/L),
  • n is the number of moles of solute (mol),
  • V is the volume of the solution (L).
Example:
If you dissolve 2 moles of sodium chloride (NaCl) in 1 liter of water, what is the molarity of the solution?

M = nV = 2 mol1 L = 2 M

This means the sodium chloride solution has a concentration of 2 M (2 moles per liter).


Example:

If you have a 1 M solution of hydrochloric acid (HCl) and need 0.5 moles of HCl, what volume of solution is required?

V = nM = 0.5 mol1 M = 0.5 L

So, 0.5 liters (or 500 mL) of the 1 M HCl solution is required to obtain 0.5 moles of HCl.

Measuring molarity using molecular weight

Often, we may not know the number of moles of solute directly and instead are given the mass of the solute. Given the mass of the solute, we can calculate the number of moles of solute by dividing the mass of the solute by its molecular weight. Note that for this calculator, we use the term "molecular weight" because it is generally accepted to be equivalent to the term molar mass, especially when the molecular weight is in units of g/mol. However, the exact definition of molecular weight is not quite equivalent to molar mass, and molar mass is the more correct term. At the bottom of this page, we will provide some disambiguation regarding many of the terms used in the context of molarity.

Molar mass is the mass of one mole of a substance, typically expressed in grams per mole (g/mol). The formula to calculate molarity using molecular weight is,

M = mMW    V     = mMW×V

Where:

  • M is the molarity (mol/L),
  • m is the mass of the solute (g),
  • MW is the molecular weight of the solute (g/mol),
  • V is the volume of the solution (L).
Example:
Suppose you have 10 grams of sodium chloride (NaCl) and dissolve it in water to form a solution of 500 mL (0.5 L). The molecular weight of NaCl is 58.44 g/mol. To find the molarity of the solution:

M = mMW×V = 10 g58.44 g/mol × 0.5 L = 0.342 M

Thus, the molarity of the sodium chloride solution is 0.342 M.


Example:
Suppose you need to prepare 2 liter of a 1 M solution of potassium nitrate (KNO3). The molecular weight of KNO3 is 101.1 g/mol. How much potassium nitrate should you weigh out? First, rearrange the molarity equation to solve for the mass of solute m:

m = M×MW×V = 1 M × 101.1 g/mol × 2 L = 202.2 g

So, you need to weigh out 202.2 grams of potassium nitrate to make 2 liter of a 1 M solution.

Disambiguation of terminology

When dealing with molarity, there are many different terms used. Some of the terms used, while accepted for general use, are not exactly the same. In particular, "molecular weight" is often used interchangeably with "molar mass," but the two are not actually the same. Here we will do our best to define these terms and hopefully clear up any confusion.

Molarity—the number of moles of a solute per liter of solution.

Molar concentration—equivalent to molarity.

Moles—unit of measurement in the International System of Units. It measures the amount of a substance. One mole has 6.02214076 × 1023 particles (Avogadro number).

Solvent—the substance in a solution that is present in the largest quantity. A solvent dissolves a solute. Water is a common solvent.

Solute—a solute is any substance mixed into a solvent. A solute can be comprised of gases, liquids, or solids.

Solution—a liquid or solid mixture in which one or more solutes are dissolved by a solvent.

Molar mass—the mass of 1 mole of a substance, typically expressed in g/mol.

Molecular weight—commonly used interchangeably with molar mass, but is most accurately defined as relative molecular mass: the unitless ratio of the mass of a molecule to the atomic mass constant, which is equal to one dalton. Currently, after the redefinition of SI quantities in 2019, molecular weight varies very slightly from molar mass numerically. In the past, they were numerically equivalent, but with different units.

Molecular mass—the mass of a given molecule, typically in units of daltons (Da). Relative molecular mass is very close numerically to molar mass, but it takes into account the masses of each nuclide in a molecule, while molar mass uses the standard atomic weights of each element.

Although molar mass, molecular weight, and molecular mass are not exactly the same, in less formal contexts where the units and quantities do not have to be absolutely correct, they can be used largely interchangeably. The main point here is to realize how the terms are being used and in what context. When used in the context of measuring molarity, each of these terms means more or less the same thing.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

TwNNnPHvGg9FKJLL5PgOvTfeAsnmx8lnxL04QBA6EkX8aQXseIm6uoQWrZij0BLyGdQaV2e3KuW2cH 17zsQqFNflPr A2DR1UOX4RtXslY0avMGK32DsuIXGeEb9akIOPtdf3kWkoAhp6Op7uUDuhSBVcacWFzmOqsqtBLB8oR7VjWYa9vsZp49XH4mfp5LPQtBfp9fjBZavJS3ZYAgUGf3oLfc1fZqxG80ucOQ85iwyPbNm5e9aJdrxt6Av10DPBXFaBVpDHslBJOjD7le4eOpPu 8Fy3cSVgZU4Vkl2E5vcxQj 1yTfcEO32Yx7ckWK4QNDC1jMik5wfJUtk5sOjM4cyt9F4r2RVEZXUBDj8MhqGgc2lSElcnQAB9EPUN0x91SwonrCyQ1B5KTtHQka2SiapKAyIcMlURllgevx4V1FHv YRU6mGHLcYqzbQy4l QzNB8S7YNxzrCR1B9wIspGMbIqOEbAaf4u9ohyeGChkwaT4sTrNQcr hFvF2IQPHpo6hFpyzmgoc7x5Yb6IfqljATubISOyuI13KoZFuoJdiy73W9bXddv m38vzo1PFJ9qTwh32yVI QxC yDSAPkeWQf dYdcGZxkgnQoIQ6BWYRUK8dHOgI4fvi7Auy7nUinVsENTNDpmUixzMXyAa95n7wCRuRxVa7BEOESRzlMQcD5wxvkqeBSbJUfynVYr85DrNC0ybiroGJco7PB3QQdwalZPr iGydUvD Ch FjXSCyCiTm4ANJqDWo6na895brxi13RtG0Lat4Hglq4cRIBmUllPhV1KRErG1bK9EXr9q7UeS2MhgXhKor6wFOYW4mmQLrzCckOOlHbaxesXpr0PlK0JTBLa 0Mt7I7zHP58ojjwFgYLryJpc7XK7S868uiK7gRD4GTSJnL0pgruxGA5tIzAEYXI6PCmHfkxn3CLzSi2DNlaoENIgcx4fbMZVD7mVR6qtggvH0QSDy7QuNS4 E0Ca6D5e7sM7D3zivoi 2oc4F4wqt6aufvfgNtcFtH2k6mWsynDPBgx0GBVT uKFdr4RFSD39KvhO4DiL5 2kPjYlPFHy7M1MB0hLqsm5lpWAIkd4SReKZ79X8wJiVWKxT8CFNaMTQsDv2GyThJLjDXhJc1JR1NaijvBWc3i90TmCmvuEVYXriBH2UTvpKKcRQ YKNmK4cjxZYLeWkSr5auM9MtU6CAwrnV7GS27KyMe9GfG6kcGaPR4N0v0EIj9ljW4AcYArs2J9PJqwGqu92xhoktccR4USMp8OPcTc8O9DtQZuKpJBUAm7sbEKvdk3Vc1 ZiGPMwqsKLix2tn3ZW2ArGptqzaK9xwb0y VIuxj Wj7gC9aWtG0hhtZti1bUtRoqTvbKVdaWTr2q2R93dt5GBt2sX4N7GtYPGVGnoqIHtFHi0ar0xOrwAmWqBfvXmtXRW8uwEP6Pq2DIaXKNYv D0BiV3WaY0OTCbeqwhjT3XnhkdbAXxGXDnlQFDMzbA0QCDKNn8rJ9SYfNV5D0hgfV5 5qnGIDg LcytA4FzO7gxzjRr6nB0Lc1rJuBsTMjj F0kmrRp5WQqYcqzgchtgH04Jze0rxksQ19UB2VqLlDyLDgEvEMJjo1MCudUuLYtgVqzUPUGYJKsKG7LXZs5utH TsS16sbvQnWsX 4kbOWKPLDPfR jSRgv8r1BH3y5jVFf5fhf5WmEZGIflFFqEsShJD3i2r5nMaF2PPCDbsXyB6IoHD2LOPJdhaVjjo6Qtpa8SjYB 0LzhvgCSOUj63bIpdDC OSkjVR 4zbnwvqLULTWsZBMtwqiEv64uTVnPeu wcUK6sRL0YWG6R3tOui0ZMmJuVP9G8NAkdTyFnx13mR3D0h1YaPUUo syFSWVGK3FeK3rcrJo4OkCZsBxZBT60Qf1lkgyrS4maHrMHQWRQEAkbUOSzdNlXFWkieaK1E7rzLzNrM6OrLpicxP uuXggqAHyjoLibkniNH7iol1MldFRiMT6Fx7UmUkE57xxtjsrOTcRLtgetjZ64v2nFiBlD4MSbZCQGH90SURrsJisByjYI6vTlzfGwx6JaVDc3Z22SOVtbW2dQmyjCpakCgijeYg6fJHCepGeml0DCJiMFBKUEFzEI9OzCk 8kbZMmZpWp9IObTPhyqhUQmYKZWa0ybk4KOmxPP AaZmjrNfS2oLscnd1l9zL9A dSR6XDJMrt3ICAEyiNJOvI0TPQk8uwx2ZXgqhA2D10XViQ oUEPgBDcPR37F0kXVXMEVzt4zNZzX9xdrpAelKu18gkGjdj9351pxBN9OODd9A0LPL7A9poXSgywlbrjdvxTDZA1GokAEJ6fy968XMYKDUGJCVzu0 XD3XVSrZ8AYbBkuKwHdlkXtGGnSD2Msv87n3IODBhKqLBDF7gDSoQiWAW Lsz0WvjM2oMkd1aB9y1dvhQ7uElgxgtIFc9I0GFXA0P8hI7xa8b03MvQMw2jNeUKrofiyR9BQXb5MFcfboQmJxybWpZSyak7Hi67gGL5ouu5gvy3Th7IHTHEG1Wv0QNVfr60XnkHKSBFRPDhMrG4s8ARWPBVXNI3EygqNuoKyQ0 F1Q6zgfnVD1Bfq1zSBPJyWXYSdQ4Q3bUH2xP4xL1zr31Zc33dmb8LTtpFguqTfmFoeBKnaONxVZ4588d9IZSPakW03oYupqlfiZAmjhZOn MBeXVu1czbSsaMf9Sz RBTGhhV4giDXnIKX6MhjlEzI3RHn8F6go6ZHPlerum3qAr6s9CUPru17rZxXeaijWcxUmmohMnW9TwPqT3LzWWZc3tsYcgZmnVctpZn JeJASNLqlFy6plzbA22BuprdhvrPO7NyGarmTes7fv9po2HuLyrdSigIA0XhdwMICeh1zUMjyjaxbT1e5XQWp6Yj1pMpzsBb0kDARXsgdJqS0sQNkBck6RFRFMCadbazRUGSfPJkmP1DcjmKJvYBFbwUhnrLh1hUiyGgsbbtDcuv4aLe5PHKgbXgtHHVRzMGhe6y2jSCdSVSRhh2cYz7Fj2 q50BUyBA8fGntQLWfWuUm3aCWOBHkGivfCyIIctZEUrmbYO5dDqnvIfUz3 FwA Mrt1woB2DHnKlZAbndu3cDH07ky1MKuXUbPaPA Fy6e72aH7Ku U0F1KEeGUz7RwDQc1oszkc3MTBqXLo0HR4LChjmd2tgCfw08 kkyqdO881Ag3grj8Yxq5vJn46XRHN577XlsbE0v4iS7KEurpSFsO6sMd7DMKwoL0oaP0yFAtPwIQnVuqTiymnDfpT1GG SkcjFGYKvEYKbntD32Rdz5JESjCIj4iV4F7VAKTLQsSlfgq1cZTlAMIsPKtACwcLLYKLdd1e16mdfNT8X7lylTp8P8uQkLgPi yJwcm X3CS6MkpNcYYmltpSVenFJTfxPbHKnwTjLItMG8piUJLDAzvaXX22kpMZtvjDm6fhCABezMhZYlrvSz1heeWcRDPRV2qLwXsBjxpPyhxJc OZsQATJHzdB6fhfrKL 0V59z0R1XpqrE1S6Wa8vSoHlCaQq86nSrx kILm6UlaMvAlOWcdu5r3CqMDojHNNAjbY0g9rEzXyGN0 OKypUxkq s6EUPQvoVjqjAiW FPg7iTT0JD5HxVZEuJgvWglMR3PGTj 6YYgtGYeM1Hkn18DqHfKjhHebYKdp4Lg58HdL 6zviYPnYlzZd2XIPh Hk0D3YQNoW6Wuw1OVnibPh7q6b AWDQZC 3s9opZI361dZ1MonsxeqkC3 4SF09B2L6HIxqdJnLlU6lQi7nY7zaf1kgZtH0x9A2e0o1scTFUIPKTZRSpVb1fM1ZJdxSbQK0KYfDwm 5ByB 6AsH1qNxDOxTzyxNyg6NsMNy7yWP9s C9hIq8I89CiTh Mj0jC45YbjjLlXswBGq9uLaQJLut2UB4ltbqOAWOqaQEfl5MoRngebM8AOamtsiJsJXCBWTofhvt7oDUADVoXwlUmxvaLR0KSH4WpfWgHyuFDY189ShFipLXBuADsjOMJ4vWz9HD qVRKYEeuP4grPzXmzHkmLF6l0zKPfFT02tlmqyIs27W6tcAPWCmIQ2QKA0UnGYa39ILYTkg6grVM5XydnNKe0dilOnw8gkeZhobnJlIZoLJRp8BrYov7NCgVPpPg3qqbfo2qiIENzH105 aEbeRFLW41wbT4vAE6rgWIPkFk5ObIOBWu45EP5QrQDu1fdC0uS7KYf9RU38Tms6l0ha4PhfeKFg9FnaEU0IyTEYpxy6iCRNzFCDd6TkExzXAsoKnTsOhi4k4VsOoNmD32SpiW1bzy9DdW4rJdz2nZ1xWGYPsH9nomajdGvS8SmVAPdAxZsHGxQQH2d8olk4r4lSvf8IdVP869rau2TdBtM8iD0AD14ivSZYfZsN4 rdN5GjMqQOkt4nYH1dmOBXVHkBwel84yKaIDBTdZ3KQvx2PlWuopTsvFpoIwEWGNP0xSYZmdj04cvUeRQ4gcPrkw3U8OtPTyFH5z9K3fGepgK2OpaGWWeJkP008fiOSN23WHybN3sgABLi8wbmaiEJB7fwGa1SerriU2h8ja1tkEhs9IU2DkdV3Lg5fcAzk6uZqKNDfyWrHTx5ax0y5 niRoeJLwB9RYDWr4NjQ5 6XIsWryYTSnk3d8aWEwo5QfnRs3htNSJcmBKHhZhDnWxNpuUnZGZtnfIbUGPfc2geFanC30s3IGxXGEpEgu7j8afzwRN3xiFB4FlmvEgNviGk9J5KZfKhwVh7kPZxPt9uvRDX49l1Lgd67dy8moDrZfz4fT QPAhbErBK7j1evvLXRiIklw1NSsfkGkmB5atD3hA6VbPaR5iNrqqhdNeJsczqB6i9KDCfc1srlY4JoKk9biLtB0LVCzwZXpn9ejXtf2KdPzndVDUBUN5TfHKXkJ2xWQqxlKaSb9owZIWUNHA1zoK7dkdsU1wLEr2CCiql0pTKKmm1ecoyk42iY5O39JIKAFBdAD3Y5uqgSTp1TkpCesvpkyh78dd6yOY3ZKKkZKKrKowDfItXjnh1liFBP8U9GbnWEJ5O3I28pWUaPp00w7yJbsawipq lfpRtIdDdSbVhmNhIZj4EpThbvU3ajM9hCwM zZfWHn1ZJAyaU8I6xpnx4ZiyfF1UzthMIS 0hfH7C3AnlQ1Fl0eHDkWh8jDvu2mqYu2wFmD3srDk679s8B3iR tVrY5usZytJ33e0bdGigKmA55fOovh rKIA58VM9LVLc7JlOU2MKgr2Fc3ESP8vn5ji7dbh2fGlCOTRwK9WyCMj3hJ7 wpG zYWuvvwdriEvnHkg1PCUUXyXUrnGxItMX6WqpBGvkG91YbqXyEUPi9DtT3nGFiGgiomB7TKkKJNI4UQskyi32lAJLlWno7l6Xm mytRMcs8u2dT4SUhsMy2neplhlPTVCgJ8WujEnPok57kgDn4RUSLam8gk77WKnaW7rvynkgmBmdBxe cVIWFC2bWSUz8CeMRGdZWLx7S1vSHBTPtjGSuSFhPnyidzcOe2NyNOUoA3HxQa5PrT8 rB1AL2JdYlFUtNlZHDnKDD74Vevuim7LF9UcIXPYqdHpvjfq7SWCCC6RlKMedpmbztzirK5DJUa4JMX23mi65FfJYRfMcBCMOir2hyuairc79h2rR yKZbu9ZcOCQKpOk4L63WxzWcYH4aM2FeEuzEdLD9owpS1UXI8YsYaARPCfMiGnBZBzU5NzdPup8GGESKksynNkYioJfFJI797 mZQksY2VviPoOh4VSEPPWHdfPgyrqGVJXHbq7CabptNx38cVB7uqjnIym9a8Iko66Pl2j10gugdC8UXfY2mMzaDnpAeRB1Ugo9FKFUx2vFpsJ3tyvAZYqJ25RbiQxzLrqFL9ebfeoar1hl5AOY4zM8syeAe2 lzIhcBweJn2og0W v10aAJqsrFKTdBPFQOu6IPmy5MYX0nEEzlFlkavMmnk2qUcm5ICiY8KyisN 4TvQXQ8Ez6WMTu6aS9gdUeXfa8kkhQMOhAVJYV5aJoKfNqgxH8h4IzX32UdVKYQ43XG2svcuprCbx3l0jkaFBVMb4Lho0RFfu3oMOEsMMqghRNDegrr2OnIV 5nhEcUyKUFk20ICuK2WpLzJ37YDbgtINs3TmkhxJBybz6IJBvaNo0 OhJAz4vR5WuaSNw2fBM8ACnKd8Sd7GoSHQr08cqqLbNxuigVwum0yjj7u9vGqeGydhnaKuZCyo2IjbcqXT7Tl8ynqchZfOvE8GTuJcF1VUCNsOSCYd1dCVp3D