Percent Error Calculator

Percent Error Calculator

Modify the values and click the calculate button to use
Observed Value
True Value


RelatedPercentage Calculator | Scientific Calculator | Statistics Calculator

Percentage Error

Percentage error is a measurement of the discrepancy between an observed (measured) and a true (expected, accepted, known etc.) value. It is typically used to compare measured vs. known values as well as to assess whether the measurements taken are valid.

When measuring data, whether it be the density of some material, standard acceleration due to gravity of a falling object, or something else entirely, the measured value often varies from the true value. Error can arise due to many different reasons that are often related to human error, but can also be due to estimations and limitations of devices used in measurement. Calculating the percentage error provides a means to quantify the degree by which a measured value varies relative to the true value. A small percentage error means that the observed and true value are close while a large percentage error indicates that the observed and true value vary greatly. In most cases, a small percentage error is desirable, while a large percentage error may indicate an error or that an experiment or measurement technique may need to be re-evaluated. If, for example, the measured value varies from the expected value by 90%, there is likely an error, or the method of measurement may not be accurate.

Computing percentage error

The computation of percentage error involves the use of the absolute error, which is simply the difference between the observed and the true value. The absolute error is then divided by the true value, resulting in the relative error, which is multiplied by 100 to obtain the percentage error. Refer to the equations below for clarification.

Absolute error = |Vobserved – Vtrue|
Relative error =
|Vobserved – Vtrue|
Vtrue
Percentage error =
|Vobserved – Vtrue|
Vtrue
× 100%

For example, if the observed value is 56.891 and the true value is 62.327, the percentage error is:

|56.891 – 62.327|
62.327
× 100% = 8.722%

The equations above are based on the assumption that true values are known. True values are often unknown, and under these situations, standard deviation is one way to represent the error. Please refer to the standard deviation calculator for further details.

Negative percentage error

Based on the formula above, when the true value is positive, percentage error is always positive due to the absolute value. In most cases, only the error is important, and not the direction of the error. However, it is possible to have a negative percentage error. This occurs if we do not take the absolute value of the error, the observed value is smaller than the true value, and the true value is positive. For example, given an observed value of 7, a true value of 9, and allowing for a negative percentage, the percentage error is:

vobserved – vtrue
vtrue
× 100% =
7 – 9
9
× 100%
= -22.222%

A negative percentage error simply means that the observed value is smaller than the true value. If the observed value is larger than the true value, the percentage error will be positive. Thus, in the context of an experiment, a negative percentage error just means that the measured value is smaller than expected. It does not indicate that the observed value is somehow better than expected, since the best possible outcome for percentage error is that the observed and true values are equal, resulting in a percentage error of 0.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

VgTEg3YfdvJRmZEbtvUXwjjVlLj39fdo64ZvJz9aDjfFwIe35v7zvzS7R02D5xYPhQTNMLUFpGcHQjptP0Jd3zZdResQCAABzh3kFFcjaLwTe0ZvLKeIyBd3W 0YFFITU86OTyOl x h7ttYV76Haof24Vr5 TaoMbihoJsYPysxESg3BZ7 QLqwrXv28G2JC6I7KXmWozpWYOajkxIZZMSykTr6GFgtxN5jXAph1x5m1J1GBM5vkOaAzPz3SMwOpIpJ0UzSnE7sSaWjEBUFtHzlW4oBBKiIyD2ldiN3IOyUGGlIgXQgI5rof4NKqeubqdJhjF8wmXbu99xFImC 2s1JH0TV5WLYYhsrdHxJBBYf6WtTAhAWzKOCOCnzBf NSQcSRTU1vjtJZsEWg7QIfrY3SgfYmPsKjsD7BaziHHGGWEJuG9HSkeoeTSLfQlcr 357p5LTrx6U9h3qlJuCe1kGs5wOnXdEXUFR2KWhvsxxewvjXVi1wR6Fuq8UkIEsc5F0oGHSAoLbIb0k4lc FsJk5fDc9AwOLPkkNuc8bnHay9z2WvzcDKIqtenR0nkIAh0CcWFS6pFElJ3Y5rDInQ86yKS8oY0LTu33ODCskJaKlccOwhIyca2VJfFVigbHo36tz7FPME3F3jD3L 0prs2gxZMgf8JjB1UZXhb8dXzxWezWncNFohNnAkUlHn7BRsu4qsWNIeDr aP88yrpFrCHANzehDAqjv5sLusAlsjKL6Gflc5A9GDUdVmxrg0wJGMWY1VAiGzZydRu6lqtfFYiiX6rdRr0qjixwE3tzTTKuMCh5Kg5eCEE VPSm9GSWRgglO9 rkrXL4RHVpoqw92XE4GApqq8Q1Z1h 8nWV7V76yBuhECrC60q7Ga0SSGweMBF421F2pylAdtCD4AVmuO7 mWYV2M9J7mH0XJKKmnqVSx c9IoI5Jyi06NrQlpMScsI6u6tYxuxPVXvri HMQRuER8Sry1zFdeH3OzjFvnbwNSaGJdJCzr4hOFIt6MCR68HC2tY7t72ru5jJ63k2ARWW7dQdpUjlzdDb3PPynPe1FvmCCb8RRh4TyRAG hXv0aQFZDLc2TvVKkgd LKQGSwTcywLSAExPeUM0plxtP8dbx3bcwvvytol6SdPJUApZNWkNeQVJAFfUwQPCRXmUItwBxL AqCLbuXAKU0qHprDznroqOBnN2 Ofw ZG8obu0xbv9t47yTx7xiIUjW3qT KmRYS5srtzvlZQKfmLjvB8dzmHjZThM6TNTXCRQ9Htf cBq8BzW687DnnKnm9PUoABBkL9k5J9ho1GQUPgg0iBvHizSl8zXyI8nn7PUwWHxYwK7lxUZv5yP78aln3oje2QPPn4EWuv4MtpyTaBGOAnEKc1kjZe5cPuKf E xLKWZF2XGBqRkCofBCYp8OOA1eEg mFYvQJmXWlO1CVB77iFlr5HsqE3LjOsSVCvzO3T cyrfdaB sljb1ijsxQeGOK2i8CsSmYZJDiqGIglPh0f4vgQWfPXVhV2nIfcTVKzVCjc4i6amljKMe0dJPUDEC wm0k308cTJAJE6SNz36VI2YRG61Q8ZlUUA5uhWku9DBTTqOzwPz4t2otvTKm0A4k1OMDMj6MlDQ4XxAwbRy8GY8cMeVKLQeXlh0lLGAWr1kbzpoEzn9oChk0pbQOSJPzHj6BpJFlSmGBBi5sHl5IRuUv4DJhz0JXq gUw09HsdYGQoSR4myfux7g9R37kEzVnTKbXMV4m7GuwpNAaUzCopYzZxrrVoyiuOvxBOePTfF7pngJJoLKfjxq36XCkM4vxed2Lqd6tcgVRV3MV1fHxaHezfGH54gRLXgqC8i70UeArNQ0WFbuHypHOdXInPfyG4Ozp H9ctgO3dWvAdRrpqAfoPqXFtQsYg412b90w3giJyjGSH2nzHPWclpcx4zjGlD4GbkhMY6Da8SM81rdLu G0NQtsaHrRQN9aUeTlfDtIXVjHEQecHBMVDMXHmLdaUsw5QCrmaDDXgLzH8s3iwbqZoCZlVtYuKhrXNKFvbi4lFcq1TysUUIX1u6fj9lAr5Rvuq3hR49Se9SDzkMO9LVbW0t15LZcfBilhXEDXUs2HYdeGp71kvniTFs22Z7oc9iBXp2fJDvWczKXaYd7rb766Co1TkwjvpN0oRm 6ltS6Am6pgEI454a3UBdrUJSc2O9QGPtFbb9E0pzKWhIIvcHCosvyna9VI1RdprNGcEbQuasGbI7LDCdYgqaUpDCjC6j7bJB4ZSRveNhg06i4ON PMtwf tGT4eLPaEobbKomQj1 a573SmUTfiSab722V8DB3w1RTFpHIiJGCGngRuZhzCfnU5IruXA5JzpH1xTAbHuDHjwNU5XwkAPlETYnmN3xsHEa1LddXa97ofTIRpfxvvyfNZrZ11h 8UfkyBdANMU VcYg9j qqgHUE6uH7f7XVxUjU8bcWwi tBH9hrMO4D4aXUgzE1rn 8DfMu Gi6hU8eveFMU0mtCkfDu5WHqZ6Kh86fo N5mVYrAUDfEWAP86E9PRikj2GhInrhA0sNacvfOZt8AIdpGm7jXJ7XoPnusW0zT0iag hEMpCpjlUnenrhsPhDwoKunBnnriO16r16GQSpaSNAdGJJPTwKVbTZbV3PakyzFkOTtGAQ5U4dgXTSFSUNV8r659hty20JZLvA7ystZtR9T0WTCTHBn2HSJ1ABbVFf3aCnkQAAPCk49QHBgPEtfulxijqhuEivxaAtULc7nyiAtn3uQgWTSpTeuDfXtCuMoBNo3A3tePi78D829czjXGoFpbTPcvtsOB5zEIsYN8zbgFnr0o8mLXtdDFzW2DnyEn3BAOe7Md9F280UGjENPp3aMgDMKMwBYraBkZbH1ky5topprOtMWanH454JaFj51bgvjgUX2fui6np5FVKh4uHeB6YboCra5xuhOYw1x5K5kr9shsl8DD5rJvNcBx11SkqssWDiJWW0RgxsPHKmYv0xz0n0lWjGaHd64EaV55EGW7UzudAQR9jzBa11Z6Z59bsjWEn4UiJ3VkeJhSniEDEQilrCKkZpSq2U76sP0sgts9kaXsl1qHDiHKGbpJLXb7bqj2hF82rjJlRbiWDsbpHzyArF4Ds8NLxQctaLIwDGI L7TRIn4TpQwpSAQcwHCQONbXb57eKY3cCIBr9AcbNa4j0r6fnO3IbRqm17m2tKEjwuSIAiXccMAlBP BmP17MHKIiH1mms1veaEu3czVSawwqn5XW8RtZOoqBxbXykprjNr0R3UHkl7UE 72IhTMNLyIfhswIzlAynVGTBRXggwFJ 3nD4DM8R2QjmbbIl55pwPdxORpkBR53NgdsnK7Thm lI8T1yTWGJtjfR2IBcIx7uCPa2AayXWnbf4yHFWf4zIgsFH2AgRDeX1GNx2hMRAksjrgkzv4exGrLuC5UaCSeqq2 UQ XhmEhQ5ECsWyRLtWYg9UDjDQmzTHeSRNfPGCOWf7IFDbwPN5THCXCdXj9VrNk8ezAy35lcosT04WixPQ77F36RO0krOn3 cSJkcuZYt7Sf0xs9V8VofAY4o9UAyzXiPMSLNwudgzlMiPrQEGO9Mx4Cp5LnHj86vnTk9mAV3AOKynOiiKdvOuK9KWWGxsNd7J hW3Nap7AOkVlGmCJoa7lz9 9WCEyqFcHBr2aylFsWg9KBir813C4coksJd70hc6FZhrdWYoKLOwhpBIEXNUGXurnStmwDtWIAUGfexH6Mi4hzCu7RR5zIJvl8KMnfDMqkGyWYZw3pMK3dwswafsk7cZpL0IjAkCiYZbMhF1UDNCPb3H8xONmkvwv1jctr vxd7TbJC00dJ3W2JBZX7pJLncqebS9HvvLOFx13CDl9xag1Kz56nQ07pm55kCiotZC5cH qoYUlFWDlB6sSCytMGMmSmzcjmq2nescOeapBggnzDLrsHJ9VhwZh ZYqPcJEFRxkPHSvrLwrZZoV9P