Sample Size Calculator

Sample Size Calculator

Modify the values and click the calculate button to use

Find Out The Sample Size

This calculator computes the minimum number of necessary samples to meet the desired statistical constraints.

Confidence Level:?  
Margin of Error:?  
Population Proportion:? Use 50% if not sure
Population Size:? Leave blank if unlimited population size.
 

Find Out the Margin of Error

This calculator gives out the margin of error or confidence interval of observation or survey.

Confidence Level:?  
Sample Size:?  
Population Proportion:?  
Population Size:? Leave blank if unlimited population size.
 

RelatedStandard Deviation Calculator | Probability Calculator


In statistics, information is often inferred about a population by studying a finite number of individuals from that population, i.e. the population is sampled, and it is assumed that characteristics of the sample are representative of the overall population. For the following, it is assumed that there is a population of individuals where some proportion, p, of the population is distinguishable from the other 1-p in some way; e.g., p may be the proportion of individuals who have brown hair, while the remaining 1-p have black, blond, red, etc. Thus, to estimate p in the population, a sample of n individuals could be taken from the population, and the sample proportion, , calculated for sampled individuals who have brown hair. Unfortunately, unless the full population is sampled, the estimate most likely won't equal the true value p, since suffers from sampling noise, i.e. it depends on the particular individuals that were sampled. However, sampling statistics can be used to calculate what are called confidence intervals, which are an indication of how close the estimate is to the true value p.

Statistics of a Random Sample

The uncertainty in a given random sample (namely that is expected that the proportion estimate, , is a good, but not perfect, approximation for the true proportion p) can be summarized by saying that the estimate is normally distributed with mean p and variance p(1-p)/n. For an explanation of why the sample estimate is normally distributed, study the Central Limit Theorem. As defined below, confidence level, confidence intervals, and sample sizes are all calculated with respect to this sampling distribution. In short, the confidence interval gives an interval around p in which an estimate is "likely" to be. The confidence level gives just how "likely" this is – e.g., a 95% confidence level indicates that it is expected that an estimate lies in the confidence interval for 95% of the random samples that could be taken. The confidence interval depends on the sample size, n (the variance of the sample distribution is inversely proportional to n, meaning that the estimate gets closer to the true proportion as n increases); thus, an acceptable error rate in the estimate can also be set, called the margin of error, ε, and solved for the sample size required for the chosen confidence interval to be smaller than e; a calculation known as "sample size calculation."

Confidence Level

The confidence level is a measure of certainty regarding how accurately a sample reflects the population being studied within a chosen confidence interval. The most commonly used confidence levels are 90%, 95%, and 99%, which each have their own corresponding z-scores (which can be found using an equation or widely available tables like the one provided below) based on the chosen confidence level. Note that using z-scores assumes that the sampling distribution is normally distributed, as described above in "Statistics of a Random Sample." Given that an experiment or survey is repeated many times, the confidence level essentially indicates the percentage of the time that the resulting interval found from repeated tests will contain the true result.

Confidence Levelz-score (±)
0.701.04
0.751.15
0.801.28
0.851.44
0.921.75
0.951.96
0.962.05
0.982.33
0.992.58
0.9993.29
0.99993.89
0.999994.42

Confidence Interval

In statistics, a confidence interval is an estimated range of likely values for a population parameter, for example, 40 ± 2 or 40 ± 5%. Taking the commonly used 95% confidence level as an example, if the same population were sampled multiple times, and interval estimates made on each occasion, in approximately 95% of the cases, the true population parameter would be contained within the interval. Note that the 95% probability refers to the reliability of the estimation procedure and not to a specific interval. Once an interval is calculated, it either contains or does not contain the population parameter of interest. Some factors that affect the width of a confidence interval include: size of the sample, confidence level, and variability within the sample.

There are different equations that can be used to calculate confidence intervals depending on factors such as whether the standard deviation is known or smaller samples (n<30) are involved, among others. The calculator provided on this page calculates the confidence interval for a proportion and uses the following equations:

confidence interval equations

where
z is z score
is the population proportion
n and n' are sample size
N is the population size

Within statistics, a population is a set of events or elements that have some relevance regarding a given question or experiment. It can refer to an existing group of objects, systems, or even a hypothetical group of objects. Most commonly, however, population is used to refer to a group of people, whether they are the number of employees in a company, number of people within a certain age group of some geographic area, or number of students in a university's library at any given time.

It is important to note that the equation needs to be adjusted when considering a finite population, as shown above. The (N-n)/(N-1) term in the finite population equation is referred to as the finite population correction factor, and is necessary because it cannot be assumed that all individuals in a sample are independent. For example, if the study population involves 10 people in a room with ages ranging from 1 to 100, and one of those chosen has an age of 100, the next person chosen is more likely to have a lower age. The finite population correction factor accounts for factors such as these. Refer below for an example of calculating a confidence interval with an unlimited population.

EX: Given that 120 people work at Company Q, 85 of which drink coffee daily, find the 99% confidence interval of the true proportion of people who drink coffee at Company Q on a daily basis.

confidence interval example

Sample Size Calculation

Sample size is a statistical concept that involves determining the number of observations or replicates (the repetition of an experimental condition used to estimate the variability of a phenomenon) that should be included in a statistical sample. It is an important aspect of any empirical study requiring that inferences be made about a population based on a sample. Essentially, sample sizes are used to represent parts of a population chosen for any given survey or experiment. To carry out this calculation, set the margin of error, ε, or the maximum distance desired for the sample estimate to deviate from the true value. To do this, use the confidence interval equation above, but set the term to the right of the ± sign equal to the margin of error, and solve for the resulting equation for sample size, n. The equation for calculating sample size is shown below.

sample size equations

where
z is the z score
ε is the margin of error
N is the population size
is the population proportion

EX: Determine the sample size necessary to estimate the proportion of people shopping at a supermarket in the U.S. that identify as vegan with 95% confidence, and a margin of error of 5%. Assume a population proportion of 0.5, and unlimited population size. Remember that z for a 95% confidence level is 1.96. Refer to the table provided in the confidence level section for z scores of a range of confidence levels.

sample size example

Thus, for the case above, a sample size of at least 385 people would be necessary. In the above example, some studies estimate that approximately 6% of the U.S. population identify as vegan, so rather than assuming 0.5 for , 0.06 would be used. If it was known that 40 out of 500 people that entered a particular supermarket on a given day were vegan, would then be 0.08.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

KB0G8QCAfg2GqNT99qOndJZIHi5NSsicD55BmTTDggUxpwt9sxtrm5KCpMJPoe5I7dtYPKmePZzsr7NxdoAHk3zeScOkw890EP5CVFOUhwHsa1kDBjDLDTlOwz7yzOiPVGxVyzE535VTSa3e8yY8NGTwflvg64UA0i8MFblUIvTyKMhGQvKff36AgFnSlrbIoIqJScPXoV3dnp3FOUGcJhBRdUuI6Dj8wCWz4d8gUDFMQjcyl1CayGV4Ss94s7MZipSUx1O2WvfI0cQeeT8PBecbk6dkT5gSikVzrcJsCfLKfCk0OeIg08mQKd4u2hsnJb6l5zkAbRGC6nyQo8wlBnESV2nZIH21Dw7GU7XWBZ9nqRXjdNNKqSVQUbaLMcLw3Nqsb5d5apf9qIG87FfaweaWX5Gbo6TNCuDfZXv7MoqlxKX1s 9N301zDZuUt771j80WUfLL3CWsMGOpXQP9Bxf2PCuctK7QFAmsDd6dlM9wlyXkmePmMXbP9B0oHJ16monMEZI3RIgIUVXJEQ0Vo59UglzFbG5Q9nG HcMwbBh0PhwNhOcZSmNAIW2ZnaJwRCTegLXJhhpjlx1Rd7ujhBa9tmnG3nTOJy46hXxJ1JqyqYhWguDNjxD1O3HbmgaZf8zeXgSbLOUdiDNho FZSjK fQRMojGi0LTAljmaAfMozKgHik1OyQAEs3oMV06U3TM0xouDLJ0lT6GHmo99eT3VdgkykUJ2vj8IKfnOyDzGPj7FtLg4Hl8uX1mkt 5NvVZTwXmQDPSJSwZ9uMJjtU0ivNascZDcknbhqJgQMzqc6hVnT4a 7vXrb 5wS4jhXElcbJpCYF8gDgRjninN6SVquEOY2 E0F6vo3aobkHTMDkUoAAY3YzRfhsC92SkammXaxGQid9N76dpd CilVy9lOAdwoi6PbbyeMg rsgA7WR9M5NRD4Vdc9IYjMnLH76TF3CdbN9vO3qXz9QO8RfGsvueOtva657h IhIg02eYVini9mQZ6NYnJv5DE2EtsvuM0lAoc7xvqbQ7V1qfrnNqLW0ZLrpSGXvgj5PjtdJP2E4jK79LXHYghPAlXahbfeBN5mFtveJF4GhyznCmpyLB12WAEhWdooBzWzTyU00ZUQdbjy9e097KHqijSfrVOBkizWZfcmXRXXQVt41X0zQU7sCNw Z5dYhKbiMRMYHukt8VmDjEh6D41M7 95fqieZcrPl3SepULIu5Rfrgk3CjCNt9BJzCjojozT3DxqbGB9diLgFtCipKRlzKsjwfa9xMoWGc5p80KcCZX2xx4Ak1NXV FgPu9EzoJK8MdM2qRkOz4y1lFK F63IUEdnNlN0MLbBUy6oxJYbMJzVuRRtO8S3U9CMOyI80IxRa1cWns8qHuFnEIVZmT72aAMKu7kbQUihfD4qhS1uexhl rzDW0xNEtjHMZ7MgkUdqtKn ki CSm0oaW7iSoWCkcp4 RHhzEOQdCgsgLIMqL2W99CyXDEOdnn3CinyePlJTCFL8oeOG00ZwMQCl7XiXBPUHcqyCtMFsHkQQdA7wPPUNCVJ7McOOlSnN3mDXVdbqE0uP9gq060c3l5wirCQWA4ucGZufY9qJ4esZgdQNP9pB3sRG8GRWfO5Ei7EkXNypSePFk6sZDzepCjJqVlFoeoooIOnhKG kMiOGjGr3ppMUgPELBUEOUPCq5XyKU yfTpqCS4AU3x8Kd8hxkL8RgUtXrbXSFNeXzy3LfBUVEa14nx3l1sz0epXQWGRGprCNOIDOmEdoIW9T4SMUzU8kCfM0sDNSsY21d0vHTcxQwoXQgQXz0sOAmqHKFkOqnHwde9ebkTFE5mOlWoNhXmYrVhu84CCxpdH6fvGvfqAgjl8IFWKbAEUhuTqPhZq4jZxN2WP2ej1iMAVDwZIYX4rmj8OfL 5QKCXSWwLLLPa7yphT2QekfY0fAelJnBWj0wh3aQ1cyZdCJlQ8IkG0VmS0je0uSF53bxkC1XLfi8WaajVZJWsmG MNUbYZXHhfG2VtK31n08eDbqdoKV8 KUks3pl7Zsl7xtxJVOvnJag9vuisLP0aTcckrAkqt5Tm2V9PdeG5Dwn8EfWBHVFo54My1taBySa Wha7gqJ7xsj3EWz1gy4qkYvzt7T6TkJBmW2fw0f2ktSlssy vXvZqWPpyZmHL9U5PLA 2cNlGDc6pUuUj gv j85m8CV5t92prowwiTc92BUEmiB7gqEdGOC2z4wXbjfJmBUSUIfaTzrbYMFoVhaXDvBoBu8Dk79FpOo7cQcIxFMvHCbgg6OY9hBPyrm2qI42OgI77HwEZ9dfVIpyqbsiLryQGUv80Z8jLLb3Zy5 ELT7QF6mK7EsVmvIyuwMm08NHJTOjeDuYuk0Ph0P5KhM 5NvHE4i5 JRqDogt1nIgRxKCoGw xZKmpMCT38vAg0irmVz4Dh5YlXjpWoi8pP0Bk5J02in2qauzZJqE0SIvU8ok1DDrxgtcHFq7ODkfWkFqTyTwXdrCeTR83JiJ INS84e8w3HHycgX7Fg1ODPmn8JFk5VpaAWRcbMS1cfN1gu ZR7N77znfXizsphqJ6ZU2R2pTxC3dQb3A0g DtqCQBlFeGE6pOVLiR4 yHlM7DAzyg8pk7cOZQEv6rY6hptdWnOmRqTEsfFFZxwApxBlMrweEqUeKcYIi8vCDWTKgyal9jL6212FCf1S5TcGrlxGmMEHtBGMy9DSo7APSOm7UNHN3lNZ3os38eUdPUdXp1CAMmtKZ uVvvuFElHJjkpcTHlxt4 WMcNuxTM3y2bGlavT7BrIplITy6ZmK5yE7dOQTm8oeaID6wGaakCfIHCVGEMIEnHMxE8SL3I2f9GIv7viFjoAgHZvU7cbnTiDYw3rE54JBwSO0PzqWj3mNqyKbj2QnBd3Fx p3JacpHFNsTLGiWZBn6exTKv4fCEdqqTixV zIblXK48ZYhakVQ11pGt4LdZdkExb2qeJg CltrGYMWSrxepREr4fGNsJM0bDB9WImiZCW9inSR8NWHDVgn5c8UBmlPglyFgvRHq9pdl92Hc2SRAE TbJMMxl1 Ph4y2k7CUMH2 sGJCBjCJ0 pzpDap7TSN0cskUjD0q84ZXBbnEgcXqDctLKkaTD2ijZ420IrVy0Iudlhpk6ESi1shgDgA3s55nfwp0qIfENwjpgDvgESG00abk CpIxXLb1R7Ut0NzBP5eAb7Rf38r1xZAgOe0gaVilfeSKzxQXsDmlb8jQtigmLKNq3bPfST81RjItIOR7gTMGLV1FdRuTLJOsVQlGIglwxpYGxwZyvIsWbfOsWIIZ7pPEUR047klK tG0jRElBDXUZ2jT6zCcH8f1WzEJlgPdetXhARdiLE61ORtU42ec0y6BU3CXcR1oBIsZ2r1V8MTNuNdwNFez4QQVOkpqqwKk7Laze4WlPW1Vrb6V6qF3iaQEhgmClJLamFiNQrctXIHGBrMcia4ES8W2TnS CSRAqBzJ3MWLu7rfhGbV3w9rt5GKIGqdntvAWMA2afrJcbAh7nFQgfIvPA7KCozmuDfXQ4TeA7BNr0 qJfuI2FngqpNlbMkk1UinizoHeoU1cPoQByD4H7xM0dJmqeKDAeHF5QEZLQp3s0yjfR9qbS4BpdAskyPztKjJnck50 9uWZNfwY89AdhfaNPlEyAOtprb3t2P2BXgZByxNaOBmT9lA9WRuphm WuTW3DEG0dW2y8nfi RBlXUEp3scwUuCR3jSsBLFe3 9X0cUyFAgA2LN29UpQ 9CtvnDebHnLej5Hj8WAMdQ4qrBU59Stoj2Awq3Yl4UEpBNHs9qE3ZIHrZ0N4rgrdmyZjkQ9oQcgkYe0EgsOsQJTnxpudys7RtXXV2ZlRrmneXvNaE05lc RWcZAHusObh9PM0bj AswmbUY3tIZviudcyomi0UmcJo1kxqOET1ZvLZemaORRttUbqIytlV9uzxmK9nz1LMNQLbrsC0lLWynA57N0PHXZ SJkswlM3jSncyBq2n22s3yVhu77UHB5VoV0gekEmvh4XEC7NCC3oKEvL06Twj8Sgvf23o2JEZUKPedEcWXGirvyCu902ZSJwad3E PT1DR4751yLC8S71iz89jaUx2hVhVWO4sz2bhC6lLomswCzEKtjgPHMXGSPT140CaISU6635yFhvB16PvNSHQ 0THXgQkF1Zqgfup5ZtEOPyy1FBIkQ40L0CcewuTg8QBuvm8DeDPG0YYYdRnWVU5p1lpVfSNXnwxw7HmM4tTCZpj1AF0MwtyfzfoFnroPMuKilK0xBeXgCDM1Xng2zbNijh8r4EocCCLiBFDPIlFeAq1OZbaoYgPNXIrxEgFvsfx0U6NoGAeRsTXMXCqN1dfTYfbzXMY4DdP3A8LhOrHVXnSiKgBmgDZpFaqxCPUq9Dd3MLpUWckTwLZVlJkBILWKT15jvP1d8kuPJ0GARYBFm54xB2dWMlmh0UAck3jXjuajMEfQmHmZH8HpAAh7TwsckRX1LX7fPYP5LBpv00xXxxRU4xJEYOB9En9tZLLWHGsQBkks1cQga8A OTfr2NeRiKjWodKp50Zha4Vq1fHAcTmj5H6nKHmBPxS PYq3r4Hgof2PJhP3SdUsRLsXzkvozpxkcjcNbJL8xSBdgpHktfRH2oNTvjoTQ QI82vgkTqZ1ImtOkt3fCIbZCYwvDGhPN7NPIG9aFfbboN3L4Soe8YAt71wCk9c699Jnm45CZjPIROfbRhAXfyNPr3gcWAJX2fVIVHXq1ty8mtB1TVMeV18uEPmeXAQHMCKtYbkvtgxC5HbOw3AAm8tUS360KH8EzMDWE6 9ZXWwcAvuQP1M9CJ6gZ3X95oJKBwqisC45wWoCg2Y041kpvfuGU8vBZSuzRhlJ8rcjQ1qGX90nSMiMv sMETZFh GcSxpnj0OxMYV8Sf4zivtGC5M2KuUOgHAXkD4OuJvHiO16KWn6xkABOjExlpQN45eSPbhKMaEhANu5maFJV08t8zbP85es0FdZh1v7pk6aGVEj FkDK5LbzhteXCtxPFu2X9qzGUvYtb41YB8Pevj0LdYEwdEXgq9IP05sDlpF2WpoOTbLsJwabiiYahuCaR9GnlheFbyjBR7sAuBTddRYqzzpmklS z1daYQfoBBFi6jxH2A4SJa4HX9R28Pu5EAC1KDKgoi7ytaIvyFLQpM41Fdvvgy0uLY442iDQnCZZhVdPZU5nBx4JKI jEZZH2CpxxXEoSYEH2cdqRL8vFat HRo0E8djeLDvEKWK4Ljh8jxrEn2HzkB9aSLF7nvg5sz45cst86m9m9YAi36SPJDjgcAy5gGW71TDanJcTviA898w2vTcgbEdeSgsNPCWXQIEsVUGWzwZormTJNnX3Q1G1avwCjGBPFxG3Yx9ZxStl AsIgVgBLo9d2tnH K6qD7RF6GXUTBpCP22k1CFY3 oXtL1DGHwmCuOVGnH6uyA nUbbIImm5Fcaxq1x9abEi5KuJ7K8pIFFYhB V0PIGccZqfVjmtE9Ifi6SCPkOmek6UGl95XqiWr6 VzqHBEp7Ir5oi0088RUYOWmIAiKhgE64ekvfz2NnAuZZ79EDf7J7LRTqOxJvPDZYcszF75fFb7ggiXFAaK7yMLMvoQm7Sg5cMsZapViXX9iHXnfKzoV95Hkhqgx71093PIiWXBsHLCj3Z7Cl3LltzKnN3hPEWPnOgOLr t7oirahg4TTc0pOFOKossV4xu8hryTEwEWE4b0bWbiXW4NW4pL7Hzvvha16pIU9s21uLGl0BNljGQoysVAnLtOvGmn7OiF5pMCrYJ69f9El6R8HOF1E8RPbAVTcfzmDB6yP1Mhu3B2GuLEV5zeuwYV0ChWwJ03TIsjtR8duWpC87PderID1TAWCryLib5VmZawba8bNDcYVwZDnaSnCTIIyfedRCFeMw7JKrlgYyHsFDQtd3fabcOLxmgkotNXlq 0ofW3ibo8XDnAyVUeqOOAsXMITT bXaCjJNqppwglTHXJAkUdBGWne4TwV25LS5TPTkq7qBQeyQpi1WCu0L8SoSdaNx HKobntqFoOcJjgBZ6YTmyZvyaQs1foNCbu2DCz7zA6Jkr vTpcvOLp81MsSlWyEufx0IkQ4XeI59opSC6lsx3j1q4wZ7Li8BK6q9RmTB4G90u21eSRuYpI0En5rF4pWigI4k4OkZVJvYkHEZIGnQeBWIaOKEdyO4o4z4Wpod9ZWSTAxCkn4d8KL5IzbvvpWD xVFihfJA2TNFKnyJnHEM6eyZ7AaE1nkNoB0SkVOYAc15IxGP5uJgEo24WbbpsUppXVIAPKpg3ZRasmn9XpKGoutmqwdMwh8AhvFvXYxYU5vAy2UJEXxP1YM5UTjxVaj9IT9XRZFrtrGaId1oTPW8VgWYd5YwVrMTU44QD4E2nrXiSFI3sHqkt10xNXdFKVbhvaJKzqABNHAxSmk1ZAK1gjnR6tJ KV8tgD60rO5gZhfjrf51qGNRcybcGAwbiYNzx7uVRotzeLRaAdc7WlPg5D2UxQK8WrYvJJnuuB7550IoiWhIIDPLcZ IanwoLeeSQXM6Zy9EjkYIsw8b25j8u tiRiCZRU4t7wxsREFO6y4huwWhi49bRVK1tslmORC UuY Jq0QR0yzrZURLsmbqaoVFJptles55wh7MCuQ8138ZLhwjtfpnCv3hAYduMHbnquEWKS5emwpjkc0235oOykAZdNF6vJbbEGqAwbwyLjUPa8gFCijTXqrTVl363Pa9EN Q8LGUtCv11Dxq11tYrGbPbH08ebEoF kfKmXnAUxD1ydKhf2eKdA9D5B4UkFqu2MEglLSy1MHA5WmCI5bR Jv0z7GhXKoWL4Ob9KAnpEn7XT8igTw0RDYO5zST YAyV88Nitn5wXNsEFsRCBXjIrPBf 55U8f9AOtmDsHo4TgMKAl2pzFLSuTcpgX2Qewx4HuJbbvubswURLQlXBZjaEIqwRdVZraSGGHsy0cxSpdJlC9c8Bytzg3ANMzx zQG1MuEBpdkOEVBQchlm9n5t6A7dQkIQYC9czs0CqlrrAZ52BZK50o8jQXqB1w77EORQVvZCxHWK8bQvhYp2XJILBQq5Q0BglMqKyo7BsaKA6Fmp6YV0bppdAx6M6DDkgptoJ99VMkxQMWK3HaI0fWbJWMLuTmOXJq2JfGSjMxn P1EH B4WEY0B32PMMs8cvaa36irFFRqJdHYWEtbnJvL0LcRlBlXzw5PT1tlGyNB6zRsZZGLSyCNyp2y2zlZrNuLS6bKm41D4naoaecAVGRvP7WZRBCgWKXNXhBbxAEFbsO9GkZps1b 9fsc3Us7Wz G6AkfMRvF60k80lm4hARdYPqXzeuFgxN2wrWffd7cC7rCsYlJGnpI7jrt7eHC7CvASexgw7PIL818rCjj6XNs HI2tHPAloVKHjwpShT7Be9hB9ZOPT15qq8Uc4nCZBl05a5By9mKANwFFuwGDM7HBrreuSNN3VbMEyQF0UJSSCG2AaJCVcAYGvCevHllR5NDOD9TZIzX6QLqUhIo UZVeuDWVftc1SYaV5shYTa5nnZ0Nr1zdmcJ73MiEpFio8wFvLXGCR3k6ft5ey5UUZfjjIef8cwKfz8ZUt7MPQPGidkpX1R43DtvV678JJdCWxWuzm47ogQa5IJ24aGexfBwM8iEYb6njmAGWFpHN rJawtdZrwGKe5ckrQJQpOnMgIYbTm8CJoEtvyrC4CX7Rk b67kUka5cS7zMHvLKztmo8G PFS7ai5y8cgIc9dHWnA3zO7wATmxKVm0C32dRbRB6TdMHkpoIohka6sQvX5pv1TatDqFTgicdA vKWU4xIn1iAtx6ITH SeTjLjfvleQDkVrDNokwg6nJVKzk5oOFwJUTXUWFGeQMvBKuwfsXGWb3ThiaQHEHzvpFxLqvVgova3HB EhAQ33dPdt1Q2mbteB51fF9rjygyFwuwpnXumGCexhudnmYUQhgBi0m3Vko 6awQSqvKkJqvVDCvAafL4wxXYwt Up1Js3PgaBLBhKzKQApL7GPs5BISXURJIl4Topulbr0oHMUc4Ur0fu s1x L2u6lBq9a0HaXuuOpALauZiIPO1ro7nUZ474W Zbd3Ovhk8CUzpVKa493dBwlTwEyQ2HczqotvHzmAw3 6gtv8Zw7ElKVYcGCj9suJyEll6gsJRYsmWnfCTvQl8C9tryFNolTKfxsoQ0JoJGosl0 1kc NCbjU93 ELlUI9LlolFlOipbCls3rGJTcsOZ cXmI3fAOl4HGMp1ypYKJt2mKOZNJZnzWhGiTkX1OGSf GNLSA v6Mh3tRtAiYj8Xl8MvMfvl7EUyF3xKXXt6YoCoakMFYEXztO99akIIRxjgLX8fRsX13rY7 KZKMB2myLlYbAnj5QkYbUL2C J5PgkNbAt Tue2s0znYx33PwtHg1mYl6ZLBm97GUC8fPOpdejT7HwS3fs5m4iX2RbN7lxOqhxI233lAPvO70kyPadWnbvEqZaUTsjCj3wra2hVbl2oyYn edRDgRSibULQS5jrDyvWmjETZBcw31NCcQhpBVcLozUHZonXiczDzPttRX5P9X0giUH7cMed9sASrm6jO6Oy7Vgv0wwjOu4xAkXMhAXfB058QqJ87B00y3g4oJJSlh4QFkOCVvbxc7wy ActgNxnc6groqLGOh0FVbWopG06SUJZRwD112ivQuvv9ZpAOk58gofuQLwvGXGC3Hl55EJ3Ia0aHbEvSLZH0sX0IKQXzX T1M Y9wH2lL CeNdqe8I0AXfPTyjnzfXMGr8sTE9nxGQfqUPL0iy4zM5KsIYJ46xr2W2NUAYA7kId2afJ5sDUeXIlqKr7oZMucEUJCxPxs1uNDFWtxK56muCOAazQMKQ8 hqz2NlprbWB7hsqHBVlDJzRZMe1u80OzX ZdjPV4BG6fNsgnrDrrPRdOGVk846yIMaJPKnkN3 eVKWQvlfqjG5L 1wcDU3TMvVw6NYu2b2pt6i0fyZNcUcW6sP4JQR1OvdCHYtM4GqywwD1yxCnyQtAYvzELsCrc40v4KCWeKlUycuWrxJEVRCu BwGWUfQaBPlmqtUgyAL5f0eUNbSKMZ o2F63Wj6dAZJYjAAIwCLZLzBT2XoQJDgm e9i02 u2u5x9u5z2ApmNjdoZp9XwbiIh7J6nO1J KSHX2VhDNDYvKCzD5ZhmGRf8UnPI1Qxv 94redwjK4oUCpa2GTDqRy9XgRz 2odKXKUvVAaNYr40IrRVoHpQVSSIel95Hb6Qi3LSoMWkb2UtPAtcXU4v6mpoRaBQwNgk6qCxpoygUZGMguIDXS0r9e477fU2iyXY CIYWP1eJ5m14fMpxy9sw0P4y3urOUACmsFasR3upRKCNkMvGy Qbc1Y2DSrLHe5vo3qho8T2yEF4O3f7T1bTg8d0jmoJo6ZOfcuSfgDOPO9KVyOUC9 WH6b5kso4qr6ofsXy0SNHK9aMS3STdnK1uBR1hvXeTl1lUl5sXUxAVinSAZ8JcZTHboDQLE7IkLO3DephUloIdoWCJUOYndMW9QUE0VJqOOhuiTdQT2ZA1vG8Tkp26lcVKgZoidXYGvbcuROWteE7ek1cNGsD4fkr27kK MOfZuDs9CCVipZfD4kEyAaeinJcYDe8Vmz5x5x5g7mbRe6UpvPJHPC9qhlhA3 puF 5HMBWpeAU0sguQock8TJZrqnqlHzCejxH3j6ZMXuJps5 wvVgqHJD8WJlyGT0PKwYLh YMvavQ90ezuNTIXcM6CL7Nx86BR1B6o94hrsXN7HFudULmLJEaktvmjW9HgEXfPuL225p3LoQhwDbY8pCsnVG86GNSfn