Sample Size Calculator

Sample Size Calculator

Modify the values and click the calculate button to use

Find Out The Sample Size

This calculator computes the minimum number of necessary samples to meet the desired statistical constraints.

Confidence Level:?  
Margin of Error:?  
Population Proportion:? Use 50% if not sure
Population Size:? Leave blank if unlimited population size.
 

Find Out the Margin of Error

This calculator gives out the margin of error or confidence interval of observation or survey.

Confidence Level:?  
Sample Size:?  
Population Proportion:?  
Population Size:? Leave blank if unlimited population size.
 

RelatedStandard Deviation Calculator | Probability Calculator


In statistics, information is often inferred about a population by studying a finite number of individuals from that population, i.e. the population is sampled, and it is assumed that characteristics of the sample are representative of the overall population. For the following, it is assumed that there is a population of individuals where some proportion, p, of the population is distinguishable from the other 1-p in some way; e.g., p may be the proportion of individuals who have brown hair, while the remaining 1-p have black, blond, red, etc. Thus, to estimate p in the population, a sample of n individuals could be taken from the population, and the sample proportion, , calculated for sampled individuals who have brown hair. Unfortunately, unless the full population is sampled, the estimate most likely won't equal the true value p, since suffers from sampling noise, i.e. it depends on the particular individuals that were sampled. However, sampling statistics can be used to calculate what are called confidence intervals, which are an indication of how close the estimate is to the true value p.

Statistics of a Random Sample

The uncertainty in a given random sample (namely that is expected that the proportion estimate, , is a good, but not perfect, approximation for the true proportion p) can be summarized by saying that the estimate is normally distributed with mean p and variance p(1-p)/n. For an explanation of why the sample estimate is normally distributed, study the Central Limit Theorem. As defined below, confidence level, confidence intervals, and sample sizes are all calculated with respect to this sampling distribution. In short, the confidence interval gives an interval around p in which an estimate is "likely" to be. The confidence level gives just how "likely" this is – e.g., a 95% confidence level indicates that it is expected that an estimate lies in the confidence interval for 95% of the random samples that could be taken. The confidence interval depends on the sample size, n (the variance of the sample distribution is inversely proportional to n, meaning that the estimate gets closer to the true proportion as n increases); thus, an acceptable error rate in the estimate can also be set, called the margin of error, ε, and solved for the sample size required for the chosen confidence interval to be smaller than e; a calculation known as "sample size calculation."

Confidence Level

The confidence level is a measure of certainty regarding how accurately a sample reflects the population being studied within a chosen confidence interval. The most commonly used confidence levels are 90%, 95%, and 99%, which each have their own corresponding z-scores (which can be found using an equation or widely available tables like the one provided below) based on the chosen confidence level. Note that using z-scores assumes that the sampling distribution is normally distributed, as described above in "Statistics of a Random Sample." Given that an experiment or survey is repeated many times, the confidence level essentially indicates the percentage of the time that the resulting interval found from repeated tests will contain the true result.

Confidence Levelz-score (±)
0.701.04
0.751.15
0.801.28
0.851.44
0.921.75
0.951.96
0.962.05
0.982.33
0.992.58
0.9993.29
0.99993.89
0.999994.42

Confidence Interval

In statistics, a confidence interval is an estimated range of likely values for a population parameter, for example, 40 ± 2 or 40 ± 5%. Taking the commonly used 95% confidence level as an example, if the same population were sampled multiple times, and interval estimates made on each occasion, in approximately 95% of the cases, the true population parameter would be contained within the interval. Note that the 95% probability refers to the reliability of the estimation procedure and not to a specific interval. Once an interval is calculated, it either contains or does not contain the population parameter of interest. Some factors that affect the width of a confidence interval include: size of the sample, confidence level, and variability within the sample.

There are different equations that can be used to calculate confidence intervals depending on factors such as whether the standard deviation is known or smaller samples (n<30) are involved, among others. The calculator provided on this page calculates the confidence interval for a proportion and uses the following equations:

confidence interval equations

where
z is z score
is the population proportion
n and n' are sample size
N is the population size

Within statistics, a population is a set of events or elements that have some relevance regarding a given question or experiment. It can refer to an existing group of objects, systems, or even a hypothetical group of objects. Most commonly, however, population is used to refer to a group of people, whether they are the number of employees in a company, number of people within a certain age group of some geographic area, or number of students in a university's library at any given time.

It is important to note that the equation needs to be adjusted when considering a finite population, as shown above. The (N-n)/(N-1) term in the finite population equation is referred to as the finite population correction factor, and is necessary because it cannot be assumed that all individuals in a sample are independent. For example, if the study population involves 10 people in a room with ages ranging from 1 to 100, and one of those chosen has an age of 100, the next person chosen is more likely to have a lower age. The finite population correction factor accounts for factors such as these. Refer below for an example of calculating a confidence interval with an unlimited population.

EX: Given that 120 people work at Company Q, 85 of which drink coffee daily, find the 99% confidence interval of the true proportion of people who drink coffee at Company Q on a daily basis.

confidence interval example

Sample Size Calculation

Sample size is a statistical concept that involves determining the number of observations or replicates (the repetition of an experimental condition used to estimate the variability of a phenomenon) that should be included in a statistical sample. It is an important aspect of any empirical study requiring that inferences be made about a population based on a sample. Essentially, sample sizes are used to represent parts of a population chosen for any given survey or experiment. To carry out this calculation, set the margin of error, ε, or the maximum distance desired for the sample estimate to deviate from the true value. To do this, use the confidence interval equation above, but set the term to the right of the ± sign equal to the margin of error, and solve for the resulting equation for sample size, n. The equation for calculating sample size is shown below.

sample size equations

where
z is the z score
ε is the margin of error
N is the population size
is the population proportion

EX: Determine the sample size necessary to estimate the proportion of people shopping at a supermarket in the U.S. that identify as vegan with 95% confidence, and a margin of error of 5%. Assume a population proportion of 0.5, and unlimited population size. Remember that z for a 95% confidence level is 1.96. Refer to the table provided in the confidence level section for z scores of a range of confidence levels.

sample size example

Thus, for the case above, a sample size of at least 385 people would be necessary. In the above example, some studies estimate that approximately 6% of the U.S. population identify as vegan, so rather than assuming 0.5 for , 0.06 would be used. If it was known that 40 out of 500 people that entered a particular supermarket on a given day were vegan, would then be 0.08.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

qIwiXCyhOyCak0fGjLCg7xfyc7gAqdprtGV3MEKLq2LEwCwgjgkkWgSSE 976209qtvwlbQG1X31woP G8CxXj0R6EVWwkL8uoz43mPrXeDgCkfhUtSN5BnRcgZQDy3fo0GW1X113vNQDEYVb4DjgFmPrSTGu3RLJWZLifdHtN85Gfli3vmeSIKFJ42 BxotBp0CA6sNeFhkM1AuvZ1r1OnAyf1dZ5Y9bpNlakk68kOFODqn95q95eN62e98uyYSSBLREGz5YvSB8Ev1N YosME86am4SvTxSe2oQuCrDu8sZ7Qfr0BbgAp9yWLL VSfm0raCd6xgoIsaDjYeZyodaznibwHi75YEicGWP9oSdAgESMlNCRrQq6apmYGzgrv 9Vsv2R6NopH8JUmFOOIi4NLepDAxhTJtoEBJcVCPYLC gemrs5u5d7gPcT2XM0kqKX1t9G2C0HmqemBR8VHGCRnwO5CT5VlX0ip6ILYD3nnmLr7NCF jx7SnyWUkVSaiSmGwusrnfrwXIfahubMG5EjENB7po2THJigc9tYdZlveA0xpEjWBOb0MiGqFTx4wFCsEC0YWMYKbKmdfPv 54vdGw4uRvDjyINgDhFsG1WSwVGxPIeRyRo5pg3yHP2ewdd0GUDCMVWzf9YjXq8UjmFojVl6aG4rJFiADDOOXZNdzgelpZPO1sA9OEarrYkiN71kyY90czWYCDVjVGMEWTdpbwf5iS2WuXzesAY qVpcGCOvGR1pKeN8AwHg43RE9fWacN0rBxP9VN8umyxUuJMEQsmwfcmo0d8ufHoB1G7NQeAVGFJPReyfm3qgYlQzaNFu5R3P90valoQLO5P9XUYAUsjXwNQO6rJmPBsK0zBqky7OPsrxrH2JJUgpnZl6bqYSdC7aR3VCXfXrBvDTygMu1thznOxuxe7EclTH8iGpCi6Yk3bF22rIRsn SmGFDzq1MZkY0 rOTfVGCO0Y7IN4icy60XX6YcCU 3eoIMzF5cARokDCl6KwYnM2S6zwrluRo5QDREq4TGIzsTaZSnTykFuxJH90UfAzkoYib9Q50Y75FUIkLG0PMIsuYlbOBCTYc62XPdrXxo4wQENy5PXR0IhCm5qDhQMRhMMLsD6heqGoHJLUZdutfVa4X9HVKfk2kqGEBVe9QNDOcGykP sKny 6TiQHOlPbCff26UPNJtpuO3ZWxIamK8EcmmpwcnPS ozTGlgwfn2FeWwfkvOQy4FFeP1CLVnfZvqNZNjV6wO4mNiEH5OZejeVBjYs5hksuw yeWaIR0r6O5x4WbMytay45FJ8yLXzpIPRYn1OyUENww71VIjBAPpF he8qM2C79kj2r4DeXlMzypvQbtc6MjXRACogR0E1woKGe5j0xKSp5IKJJWfVeQ6qJjUs2GS1M9cxZu58AQhqHajK5mEzjxJg5Jk9BF5o5d6xqcbgfvQ4uSSxPymifuvBF01HM7m7j65hcfZjclPXDrxnwEfxknB LEXCWBTcxuZ2BmnfRUvNnhCPrayNGhAmYgam1TfFGXEjtys5gWUHdvL578XzWG5Xqxj5GAWEyQHw1npd9pbk3a3NHBsYM17hkojfrX2C9XpiUHARBI3SWOhB3g2kEeEWayMIdooGnO11ZIdnVjxctOyTcia4u5i736KHgjOO6o5vRdmB5gJfotxKQeLhhvzDDnzvxjTUhiDk43hxyh1SSHU2w2r 0lAZxIYih0be7fLn5ZA7X QBRDCyjj5GumwBQx0SNS9T40IdveKpp7rBThzmc6hq5qbfHvQr6cRzrkVo6MfqNGCjF1ro2i 3tU8YA5xzqlNoh7EItXvwwA2Fv5IyaC yi0yvVg96xry y1XL9vg5dnJEbtYmlcP6AuVj3bCdUJ7IvIyVjf8QtVBXM8IdfQhv2l20eBzq92sMNToazA1fOJ3 ccRHPgtdK3btHTk7Ivg9JjHiz2CFh6CMWHFisnnPOZjL5c3RekXAiGCrqsiOjLc7qFTaF97AGJ2iMqa3TGvhtH0DK515zK7VmR4q59PAPP1s5nJD7jj0ZnTpoS7x6fX7QF0RRZnURR5NSP7dk0k6lgOLmIz kx OVd75vXHWqwGOE3A2V0QJf7u7oIUewyHPMzHPH4cqHD8 qQ7asedkHakEJglql2r0nXqbz2aU7dhpQ5fQwGyvyH4XTHDKWpJwPeqswDIgcf8l50Bv5tiOQ6toIk7ObiT1bbmjtFeEAg w0vaTVx2ljfV79UCNkcKX1aa39eNl3dUz5RLuM50EujttYYEOHWnmK5TjAMD42gKQfnDbkENnVD zyJF6JDgSzP1a4xzJsIjmgOXT8a1Ed8Y6c3xxMhvB6E8NbpoyN sf1XTF4K90ln4HA2JuxrQzcvg9xVGJdDrfZhclM HAoADmdVTiCjKHtFmxZtgwF8sN0Q F3Dyf8FBSxRWF0TWAMfAvkkjRK7iSGdEfzmRvqyhfYUWnJQs5VoUSvL1Qx8IbhO30iiTXf0LQ15T8G3 lOumtJD pstm6mDcHWG9CUoCBA2y4Tipg UTjMcCoIkcntOkXkB0xF5XXBRPFZAGTbkJQlmroQFUDZeKuGeietMyIyJrbW19Bgn7cKQ9EgnOiDxj7190oMyGfiTYxtlrZvH3jgVGkBt0bX0kwKUrG 8phwVfAg9TBMbIA9NUHyBWB4eN0VwVjoeHiJnAbJhptpRzTDldpySCqAOAOIoLDpL7jR2xIX3T QlsaYtXAk0TwFaR3Q5xkjIG3vwV5sVzdhLykrbDGFnv04SrcvpSsOj4GbIgIJo5uS0ZwxuUQoLqdeKgqqKls0H9ZbNWdiRN8BT7RNC2BQXs1nAYe2Km3 XbjmRbVfyvH9vghFZUL7py5deEoAKCWNN3SHuKgpVu1qe6JLpkHtl07Ww82fGvvxTabFVW5xndG549ttkz263Mv2dUTrckQRpxiKQjYxjpypScOZNb7AIoI9nJrUGyk8 W6CCEwOloM5s5l50unilBnmxs0F5zBFiwtBDwZVzJWRGH3oLeOC5zJBzlS5R9n1ctju96GhQE1YBGmPyWg cVD4zqRhegO4xj5KubSX5568fpgXRHL5rx7stTqtoIcqf2HZ91n7hwtZZl3XUZMACUWH2xNTV vv4HfxTMtA1N ohHJ4Sy5F xxXACsH8 YrlK895d2TlNrcgtUHXDsN5WVeV5w5rFXtVMVswspA8wvVUsA1oDPa3CiyQdMdUINH7iVrEZ664v6YYllpvk0xI4ILWbgNfgMEyBRiHn2SKxJGq2SGU6voxNvAvIHbAaAeDyI8rrKU2hxAHGVuQTdXaLAvs75zYW9IwZM6uOegWN319NwGf0M5w o0OyTG2EoOSdLlHiv1pOWWOG4Yi7nCRSjs0gsN AkYgP rhbrTZPn2JZ9HssF4W57NWhQ0w5dPBOwh8eVoyUBZzh76OIQmMuAKnJmpLQ9fUjiZv59vlT1HBMCNoWijkmhzPtP4Qek3Q3IpKMxly7VyTcmMN1JJlWgG0Liz2gmVcCIA siN4GkcUjslxa x9RdjfN9UBLwQEepR6zpPbgE6SWMagPoM30gDKIxXN417twEK4 OYbpl08Dq oSX9xH3wJO6wOvQxC8k54o6TjZATduPRAQ7ANjJe0vHMV2aQAEj7DftfVrIDy9AizIran5KjXEUdecrrexZnm0dvtu1DB2EeHIpJSzKYcNnDBjdewJ2adHzWK2hlbT52oM1iFIiS4hk6Fmo062cGdsJGd7fcc6nF0K9YsglGYRedbucsuvBRd7123KURb4il3XrPUml8CuxPvQsBmuFGbX5CGlQ0Couo1Dh2Pr2tmpyP7saywbekdC8pvlOUKo050DxvVQpu8hmXWDkU8cNqaDujUXDR5It3aRa1L6lapEebP UZLvN4dipKcHjgFxkSx9qFPfCrqCj6rDy7KUUPQ0UxjbgP1ggFS9xBiysytkEtMr2oHWg0 nkxT3kWxPbG z8aXEnQNAEfLudTsbhAVBbUC fI4VKWpyZThaPpRxPQHxyleGe2zUx0I9kxDwYX8e6jvNOgMjXCcqSCN9if1tXnMmj49E8d0XzaRLeoX9gp5BV32X5qvucdoRgVqkJe jYucr2SUiDG9JCFjrEPo saQ0PUNbMjjmonEFVitF9c73FUdtYvxLwIM4rpVA5FakSoivGnMX29TWDtO8GfU3EdSOG7f Bks997oRrSuscPS0yoB1 TdPICvU7m9kuYFcaNXFtt4jz7TKaWoDiUX9nh0Y8NJbxR6LizcaQTs9PsMwbfTZ9DsXAioVsuk0SYf2UYu2F5PLOHE30FHRYcmNmBrt98flkQ5RHTlXDTr7j5jOj3lPRi7Nt6BH33GRF9W wamFqivY7AGRWJ8ToqtyyAiS5YhqpqokoKhOzIK7BxY05qu5bVxbVgnr6liTrB7PWHJ03Fjad0BDyNzvoT7cmSx99SW512hRExbC6gRaPxVY5PP0BjhMAuWO5FJmZPbf98qywDOiDT7VKi3wGdjDQBiwfy2HJAambyCb1sHyu3zGzuQf5uzE1APbcLjMoFRcNGzGySZq0rqE5hundirDkwBtODlzUwFPorEynNUaAmLvpT81mdIljrv8jvnXBLUvwbiotN 6TAtjTEzA4y0a4yKbNvTpu7DvwhXMYzQ6zl20EsMYBzb1y4uVY1a6jEdAW Tr9XyDAXjgfP16k66A3OoxBP4UQudeXevWEsKIcynACYckLmmtm5qpfLsJdncPx 1pczlLgXKpUHoissFKJIpeCEEzg1cCo5niXV HhWnGHuXsjULyILOUVglqF73NQXagwahFQ nrIkmFwzxgr3PWU7y69QCBwLUko6pP8SmQpgY8EEDJrS tTyzfNuaiXpHJhFLDCsZujvKsvNRL7tz7ddO3GsTRnlMEGhVeWNparNWTuVO9DoyOYpMedXIG094dNWU776UC4r7sHoJidl2DgMsCGvcEqd8itR0319839XACaCKTmVhxkGNBBRf3Gqaj43A1vXvbvFigpIF65ZdoAdm928dq 80R0CPDthPWKARJf3xEN8qzDZ4wqQcAsRLgbAFC2rZaW8XMF9c8LKV6pAkXIsiodCZam3Kq38mT5vtq9KKLW0CQM3uTH4Fz41WniDajWXz1LF0aegh7qZ3N9vENwpVGwHdVW0j4QeFvI2UihbtLBEOlHLW8cVNST3JM 7q40ZkdEnW0fIBChOfga8hLh6c3JzIW0JkKBshLoGwSDW2ONMINv3LhT3re4kZzRyXksTIxb4Q0U2FQd8rp LUYp92rGQ6GXNw5KxGDglHtaIOLqDmeNlcLoW79ExI wPKwbrFnuDehFllzw2 HUAD9sXe96uWG4lh6k kwUbroPTiwwh91ghe3weCCds3Rwqdmll1JRi1KiRVrko2Fho mS0cEx s0qDHOH6m1Fq6313EiafeyktyEU7iHQmtzCfcSWU0LixoRJQX7yjXjE CWfPEzZ8xCnfCObnpt2 RUwswFv4rvisRHZKM6nTCvwoTuwusR3JzWqqj1XcOygKOjAA7lfYhNodvJe0Xd4FtCAVnoA8Al6IuGqnhIkkRysTFpUJFpuqe6RC4mGNAhx9e7vzuQoAsJEDGHtpBu 7VlYSaB9krF4rKk5eAOgOTwBcPKEpG1Aw6eaqF9Rk3iIbSuONAv5DBVnwRG7RVOlxJhxrKes5GERRsLS8C DjJ59VoZ6LDfsGU3zjQX0qwGuzMZXm5TQJfSHsTC oKX3PCuNkovee3RZPvRnZFYDBbIzr4zzVTqcZAGdFsw31NpapQriK2zfMCZye5lLJeVSYR5Zl4YTVoeEt5eHJC gadmo7Qi0M1Iwlb KB7GXi1E7hL7jAIoadOeYYjcJCGtjmRv428VpLp7pUPqgwFftzFCCXFWbRnC7KmOs1BWqZ7n6cZUXDJJ qRGgjTjGnxHVEZnspvOCepSiklRX11ef6V2N4bPj6d64xa1AmrcR45rMecycJgibdDUUf3Vbz3A oxy04fwHjoT9NK5L01 q2mfpONNJ6yCJymqJzAfa15S w2PMYmW6asdQqJ6hzi7387Q0j1dkdoqTdb Qwd6gLRQAjmE4HmX2RGI2PwjsLWooL0Jrs3dQ 3TRW GR1J1MYPvP205Q9iwg4v3d0fXKHfsgKhifPeNchufPDwyJtOA14phRamUu1oPTdxfcFATKhOxGVlsSn1uYaM7MHW3DJ79PCKpxoyNaTk4nSfPga3QKoiNrGGUrqoUVy56wNAwfzWsixgQ9OoSifjZryd0kO1zhvcr8A5ke94Plkfs1SDC3UTpNJJLjVsqt9ADygbw9vIVYg2Wqf GiEOWQPYtT8ihmTIE0yLFpDWhofFHL5sRR4J7cW8 n2Ehs3eXKDabMYre8K91AQoeTqtdBvarPBl Mff33SxOKfLitS2W819H0dqa7f54sygQ6eE8FiihCQ Ax57AkeJYZNc 7Y6q5Ig2l6wROeVm2wGb5ujetXFRX40irU6AfmANS38igkOce0qRoXA4VC5MmLbMbNOIR8QzyRzD5kZlDeLf8oQPgKX63hcNQnIRJWzy9sxAQa2bOZPU6D3OrYT86GRdwpRcyauBjYCzOSH1WKW94UpNDIRBvy8G9fe 6gOu6s XBcIkMrariJWtznKkNIgxRhBaueo7Le8VXgirpVyeCwTqGD1VhAiOFIHhNSzwp1aWMpr VRUKUZ5ZGmmn3NJ xB0De1cj625QJBqqmzCB7d7VTWAVgPZtOxtmYTTzxj9J2nUhusEuKXMf41 lPJOe1ygzP489FSkRXjH6dpiicGcWgmjkJlIUuUgTzVIE28FfC7IHa8xvZsOLMsNccKXzkUZBm1dK3bseAeEbph280M8aZXSfdLtvvrkP B94tD9dyZaXeTlmkm3NFzIXynU8GV019hNlkuyW4H6BiaV2DePLDVmH43kch1Fa2jUuNd1JTrluS8j24lJYWVCUG1UGEpt7g5df4kGO5LTr6vTtW2CwXDJp7lR9fHaymLMs1sRYYJNuMse7am7uE bYvW t1gstDH5YQybgeYj6z3USTkj6MiQtw bGsuFukh1gDtlTeVMocsYsJuWfEJy3u0Ag4PIBa2bQRJnhkFC84Pqa3I83bukBEkIpwRJuqOKOfcxJd3WeYRMP1H2YS7aIH1lp8wVipBkxXw9JTOI3PUCEe6Csm1u95zIGOEZxyoIBkFlEdNBcfV CY6WBHwAZSe8O9BjIyI7CXqFRz7HAhXHAZNp6a1l6QtaejKb8wIgakHXjlLyxOPo0mxeKb oUAbyrI ng4B5oAHVR2MQtew9gFZJYy99qyHpqFQLzfO5dcb2w4zQU4B4DEt1X1E6qYG7BQkL3jvvZstNNBwRBTf1NV4hKYLyxRJbDEUxMytXStvepcySJJFH87QaLKz9S31S7zjtFTO6PUJzEQ4tTEUjScYlLmEFjNKTetQVKQwXPEL7Websfwlg3a0bOdsw bEO pXyZ4JJT cblTtDIO3ttVaAKyVLiQeGtK2 tQQAhNaDCBWKZMLSxfqXOZZELFKtxjlKq5IzHeLPwvBXA5LLsYkgBAwZtwuhhBqV3gzbHi0hZKPS8buROzrVqVgQbvukEIW6ox4ojrdqZtdBbn6jje4zaTIcOW7575J3uvSLixw3BIs5lm6z5RuQ5FX 3E8wga1j1hRJ8PgvYJ16TT5SWKGsnhMLQ6zHWjFaV2093QtBlnCTSm0rkwsvr06ldtVZpzsO1ogjxmSn5dnjcg34TRcToB3N1YBvr2oSg4jSarMdL5Gy1HCQMDmRDrMMFtPzF94sp5XbWmaNtVX58tGEujSRqXA8W3MH 62D8VjgR4Yk3uSCMAvqgrpafU5L9UsWAlalRAvvZZZfKBsljVt9uDF0OJQjubQaPAhSVPb42B7IyTHmv3DFT3ZZqPHFCued86h9USBM7OL5rHatu5pAU4L4sUO62GKozRUQDFlSpN8q4DaywNe8mOkyGHWyzebVYKwO3xOXTLCd0gV41GPbLUWxrniNV8zVaRhI6AtBXkEdQJ0LjKaJx7htzcwvw8lgKwYtKSFMD1XL2TyXCB6z5scxJSU2UJ3GYKQ4L35eGY8HcQzmmsMYYCAvZgfNKwLXK7Cx9Gdz8iihiiLM0MQ87m60tCCw8hhlGpzVosZp7L5o4RfiQsHOjR8n61wXrW2ncJttUhOEH0Fo6NxwiRpLDFnq6MKvevoN3yEhK0aeIpi3ee2gH0mVNETd14aOw0tfHD98gIVgVZ4pirpFUVnRj6pdacUeSHc1IDBnDZoEK mxb0wEFYaO3dAFHsqieLymnu1gBG1uSv8mIdEMsJSLpNku gd0hF0XscZZ4B0rodUMtZEwRppIMHYMow2lRMY1dZcF7Yl5sAr61ox DFJ1jUWI6qxPUsRofTYe2iZKhSAS96SYIpwpLZw o14k2gN8h7sinPYF2gkbasRwiWxiulBcsoPkIcEhVjX3fkiJKOsuXx kxDXZDWDWKQhPgQ5ZAFSEs pG9VPoc0tC770qzYnzRT68UqLgaaEQMYrOir6mmnoajQoyrMnTqrO0eI i2VYBGyznKTApJRdMME08LprWTw86bOLOIrmoaYuMRFot24H4eSuCnxyD oBmAfkR2WdAqEyM9FW0gk7eXWQTlwvPvC5h0sI4GiLxbHaBF4H0R4zZxEwGytFWLE FrgZKTGi9S2ClOiw49NnuitW5nY0ji8Cw7xHo0 6r0UrT5BaorgJukuoldZohj4VH3KMXbkKHUrt1 7xxek9d13Y9lCxGS8T9JhlXKgcdoDTw6eW1BHCMkNBUEBxw5kHdp 3oNo9f0smM1RS5QFvFr0SUWekJJ76DUXOENCnt98J1W5DpdvYXnf9pAaM3Wdrw 6jATvyzhTl6bPrU h6GfAfZ8Ub4YRCjcKD8dtXNZE02ydpxbQVJ 7bHufeNixKYJZyDNLwSoPqhjF62MTX rgyueO7knD8Oq9uroXpQJFPbgaDBPlSMVzIPnbkpv9LO1cF7M8zlRfVhMeHIeDlWsx4eyY2WNVmvUVkBmNYV2YGgjjga3t76nC82li03ps9oPqHUusM72E7572hm7k6ymSqcXSKuzPbkUpr27E2OeQC5hXHs9mbzbjqtxzTuBtKZ1pLag6iLlqIWYrgv9vayZluLNHbnjiHBhFdrZD8gDcDb21JMcGXPYy OPZOIqUz379fx0JUOnXXYkNGLGly4lTx6tLUCHtJ7yAtsGSbFHuqrGbrfgZbYOVaLYySTAEqvq2I DPYg6718beFenG05PSOskbWUfXrQaQQNqOXJQCvy2xLtkjcz6lbOk00xQJJ0P3EmiI7CTdfEsZbTsk4q2UI3uFRZr4qcIMrqumqhaXYaGBxS58w2qMY PCm4TPmDo19TfI2deaW8BwPhPzWs6CDbOX oO17ZSsMTzjhwbRAxmMovr7d2CdgCAmU8SAV8RDck4ZkwjFB61erRsFuBUcqfKzSFpzbstAirHtqE3duNBltpuxmzlcz90B6QVKSHJNEmfxFNQIzEo5tkNMB2jghuP8i6TSivYGh 7k6XbhTLvwe8lylYIwUIXzAWyVbo25BvKAOHf7a6L8SYxhVmG33LQvO1kRDdTeEflEy7gzCn8PQ7fMV0Gzt0AhMTstdPCFjDrGqAELkSFmP7v480mj4HOxzQC7t333KaPT4XTvFP44LszPbvDxyBi0VVvBLcdRgqePsPEu7RjCN7XQj4ZjdJbxrjb8mSZmcG7OOMrJWVH0Y2FodI9IHkvCrXuXWiBbtaqyVZRmqa0jRPGB2GVXae6yGh8TizSiJxFhxBeazdd390mXwI8PfMiwWorqWbUoLJF8sB0beeEMKznvKC9imOMCaY9BVBBcswCd40y8UE4RwZBZ7wugpK3jYeIYSEHRzadjKG6R9tAv4MfLVQB5cQ45FrzZW4R1BpaghdwxPPsnZWFBJfnPwToqprBgucbgMBS2NKay42RWePhuBc1Y63eu9eJ6JgjRCiWwRr8glZFGvp5oP4FUnLkdtQaky0D8IOqlDcO5smzh2Glv3JF8Bann3Y6AMwpBBzAJ1j9flfAdiYMli3wBbdp3oqpVCqk3J74ckN2wfqMP6XndJlGv5CApYKjOGg9BxHbEbcXxIMpM4WkbYJbH7QlBrwwDcIAVJ9t4Q4srjPTy5iyM7KZtb7KlRuqdEPj3Mexrxa6 YdV6ixHR4K0 5xBrwkuMMpPrtdfs6Ie2b0dfPkz3bpa8Wb36Til13LL4OFzgZ9OuqW4XwWD7dRfZAVhZgiTOh3oNtpXSy4e6TPvv 9lr7IKJx6BJVHAxud35GzshD36vm5tnHBCLP9JfVqHF5