Probability Calculator

Probability Calculator

Modify the values and click the calculate button to use

Probability of Two Events

To find out the union, intersection, and other related probabilities of two independent events.

Probability of A: P(A)
Probability of B: P(B)
Please input values between 0 and 1.

Probability Solver for Two Events

Please provide any 2 values below to calculate the rest probabilities of two independent events.

Probability of A: P(A)
Probability of B: P(B)
Probability of A NOT occuring: P(A')
Probability of B NOT occuring: P(B')
Probability of A and B both occuring: P(A∩B)
Probability that A or B or both occur: P(A∪B)
Probability that A or B occurs but NOT both: P(AΔB)
Probability of neither A nor B occuring: P((A∪B)')
Please input values between 0 and 1.

Probability of a Series of Independent Events

  Probability Repeat Times
Event A
Event B


Probability of a Normal Distribution

normal distribution

Use the calculator below to find the area P shown in the normal distribution, as well as the confidence intervals for a range of confidence levels.

Mean: (µ)
Standard Deviation (σ):
Left Bound (Lb): For negative infinite, use -inf
Right Bound (Rb): For positive infinite, use inf

RelatedStandard Deviation Calculator | Sample Size Calculator | Statistics Calculator


Probability of Two Events

Probability is the measure of the likelihood of an event occurring. It is quantified as a number between 0 and 1, with 1 signifying certainty, and 0 signifying that the event cannot occur. It follows that the higher the probability of an event, the more certain it is that the event will occur. In its most general case, probability can be defined numerically as the number of desired outcomes divided by the total number of outcomes. This is further affected by whether the events being studied are independent, mutually exclusive, or conditional, among other things. The calculator provided computes the probability that an event A or B does not occur, the probability A and/or B occur when they are not mutually exclusive, the probability that both event A and B occur, and the probability that either event A or event B occurs, but not both.

Complement of A and B

Given a probability A, denoted by P(A), it is simple to calculate the complement, or the probability that the event described by P(A) does not occur, P(A'). If, for example, P(A) = 0.65 represents the probability that Bob does not do his homework, his teacher Sally can predict the probability that Bob does his homework as follows:

P(A') = 1 - P(A) = 1 - 0.65 = 0.35

Given this scenario, there is, therefore, a 35% chance that Bob does his homework. Any P(B') would be calculated in the same manner, and it is worth noting that in the calculator above, can be independent; i.e. if P(A) = 0.65, P(B) does not necessarily have to equal 0.35, and can equal 0.30 or some other number.

Intersection of A and B

The intersection of events A and B, written as P(A ∩ B) or P(A AND B) is the joint probability of at least two events, shown below in a Venn diagram. In the case where A and B are mutually exclusive events, P(A ∩ B) = 0. Consider the probability of rolling a 4 and 6 on a single roll of a die; it is not possible. These events would therefore be considered mutually exclusive. Computing P(A ∩ B) is simple if the events are independent. In this case, the probabilities of events A and B are multiplied. To find the probability that two separate rolls of a die result in 6 each time:

Intersection of A and B

The calculator provided considers the case where the probabilities are independent. Calculating the probability is slightly more involved when the events are dependent, and involves an understanding of conditional probability, or the probability of event A given that event B has occurred, P(A|B). Take the example of a bag of 10 marbles, 7 of which are black, and 3 of which are blue. Calculate the probability of drawing a black marble if a blue marble has been withdrawn without replacement (the blue marble is removed from the bag, reducing the total number of marbles in the bag):

Probability of drawing a blue marble:

P(A) = 3/10

Probability of drawing a black marble:

P(B) = 7/10

Probability of drawing a black marble given that a blue marble was drawn:

P(B|A) = 7/9

As can be seen, the probability that a black marble is drawn is affected by any previous event where a black or blue marble was drawn without replacement. Thus, if a person wanted to determine the probability of withdrawing a blue and then black marble from the bag:

Probability of drawing a blue and then black marble using the probabilities calculated above:

P(A ∩ B) = P(A) × P(B|A) = (3/10) × (7/9) = 0.2333

Union of A and B

In probability, the union of events, P(A U B), essentially involves the condition where any or all of the events being considered occur, shown in the Venn diagram below. Note that P(A U B) can also be written as P(A OR B). In this case, the "inclusive OR" is being used. This means that while at least one of the conditions within the union must hold true, all conditions can be simultaneously true. There are two cases for the union of events; the events are either mutually exclusive, or the events are not mutually exclusive. In the case where the events are mutually exclusive, the calculation of the probability is simpler:

Union of A and B

A basic example of mutually exclusive events would be the rolling of a dice, where event A is the probability that an even number is rolled, and event B is the probability that an odd number is rolled. It is clear in this case that the events are mutually exclusive since a number cannot be both even and odd, so P(A U B) would be 3/6 + 3/6 = 1, since a standard dice only has odd and even numbers.

The calculator above computes the other case, where the events A and B are not mutually exclusive. In this case:

P(A U B) = P(A) + P(B) - P(A ∩ B)

Using the example of rolling dice again, find the probability that an even number or a number that is a multiple of 3 is rolled. Here the set is represented by the 6 values of the dice, written as:

 S = {1,2,3,4,5,6}
Probability of an even number:P(A) = {2,4,6} = 3/6
Probability of a multiple of 3:P(B) = {3,6} = 2/6
Intersection of A and B: P(A ∩ B) = {6} = 1/6
 P(A U B) = 3/6 + 2/6 -1/6 = 2/3

Exclusive OR of A and B

Another possible scenario that the calculator above computes is P(A XOR B), shown in the Venn diagram below. The "Exclusive OR" operation is defined as the event that A or B occurs, but not simultaneously. The equation is as follows:

Exclusive OR of A and B

As an example, imagine it is Halloween, and two buckets of candy are set outside the house, one containing Snickers, and the other containing Reese's. Multiple flashing neon signs are placed around the buckets of candy insisting that each trick-or-treater only takes one Snickers OR Reese's but not both! It is unlikely, however, that every child adheres to the flashing neon signs. Given a probability of Reese's being chosen as P(A) = 0.65, or Snickers being chosen with P(B) = 0.349, and a P(unlikely) = 0.001 that a child exercises restraint while considering the detriments of a potential future cavity, calculate the probability that Snickers or Reese's is chosen, but not both:

0.65 + 0.349 - 2 × 0.65 × 0.349 = 0.999 - 0.4537 = 0.5453

Therefore, there is a 54.53% chance that Snickers or Reese's is chosen, but not both.

Normal Distribution

The normal distribution or Gaussian distribution is a continuous probability distribution that follows the function of:

normal distribution function

where μ is the mean and σ2 is the variance. Note that standard deviation is typically denoted as σ. Also, in the special case where μ = 0 and σ = 1, the distribution is referred to as a standard normal distribution. Above, along with the calculator, is a diagram of a typical normal distribution curve.

The normal distribution is often used to describe and approximate any variable that tends to cluster around the mean, for example, the heights of male students in a college, the leaf sizes on a tree, the scores of a test, etc. Use the "Normal Distribution" calculator above to determine the probability of an event with a normal distribution lying between two given values (i.e. P in the diagram above); for example, the probability of the height of a male student is between 5 and 6 feet in a college. Finding P as shown in the above diagram involves standardizing the two desired values to a z-score by subtracting the given mean and dividing by the standard deviation, as well as using a Z-table to find probabilities for Z. If, for example, it is desired to find the probability that a student at a university has a height between 60 inches and 72 inches tall given a mean of 68 inches tall with a standard deviation of 4 inches, 60 and 72 inches would be standardized as such:

Given μ = 68; σ = 4
(60 - 68)/4 = -8/4 = -2
(72 - 68)/4 = 4/4 = 1

normal distribution example

The graph above illustrates the area of interest in the normal distribution. In order to determine the probability represented by the shaded area of the graph, use the standard normal Z-table provided at the bottom of the page. Note that there are different types of standard normal Z-tables. The table below provides the probability that a statistic is between 0 and Z, where 0 is the mean in the standard normal distribution. There are also Z-tables that provide the probabilities left or right of Z, both of which can be used to calculate the desired probability by subtracting the relevant values.

For this example, to determine the probability of a value between 0 and 2, find 2 in the first column of the table, since this table by definition provides probabilities between the mean (which is 0 in the standard normal distribution) and the number of choices, in this case, 2. Note that since the value in question is 2.0, the table is read by lining up the 2 row with the 0 column, and reading the value therein. If, instead, the value in question were 2.11, the 2.1 row would be matched with the 0.01 column and the value would be 0.48257. Also, note that even though the actual value of interest is -2 on the graph, the table only provides positive values. Since the normal distribution is symmetrical, only the displacement is important, and a displacement of 0 to -2 or 0 to 2 is the same, and will have the same area under the curve. Thus, the probability of a value falling between 0 and 2 is 0.47725 , while a value between 0 and 1 has a probability of 0.34134. Since the desired area is between -2 and 1, the probabilities are added to yield 0.81859, or approximately 81.859%. Returning to the example, this means that there is an 81.859% chance in this case that a male student at the given university has a height between 60 and 72 inches.

The calculator also provides a table of confidence intervals for various confidence levels. Refer to the Sample Size Calculator for Proportions for a more detailed explanation of confidence intervals and levels. Briefly, a confidence interval is a way of estimating a population parameter that provides an interval of the parameter rather than a single value. A confidence interval is always qualified by a confidence level, usually expressed as a percentage such as 95%. It is an indicator of the reliability of the estimate.


Z Table from Mean (0 to Z)
z00.010.020.030.040.050.060.070.080.09
000.003990.007980.011970.015950.019940.023920.02790.031880.03586
0.10.039830.04380.047760.051720.055670.059620.063560.067490.071420.07535
0.20.079260.083170.087060.090950.094830.098710.102570.106420.110260.11409
0.30.117910.121720.125520.12930.133070.136830.140580.144310.148030.15173
0.40.155420.15910.162760.16640.170030.173640.177240.180820.184390.18793
0.50.191460.194970.198470.201940.20540.208840.212260.215660.219040.2224
0.60.225750.229070.232370.235650.238910.242150.245370.248570.251750.2549
0.70.258040.261150.264240.26730.270350.273370.276370.279350.28230.28524
0.80.288140.291030.293890.296730.299550.302340.305110.307850.310570.31327
0.90.315940.318590.321210.323810.326390.328940.331470.333980.336460.33891
10.341340.343750.346140.348490.350830.353140.355430.357690.359930.36214
1.10.364330.36650.368640.370760.372860.374930.376980.3790.3810.38298
1.20.384930.386860.388770.390650.392510.394350.396170.397960.399730.40147
1.30.40320.40490.406580.408240.409880.411490.413080.414660.416210.41774
1.40.419240.420730.42220.423640.425070.426470.427850.429220.430560.43189
1.50.433190.434480.435740.436990.438220.439430.440620.441790.442950.44408
1.60.44520.44630.447380.448450.44950.450530.451540.452540.453520.45449
1.70.455430.456370.457280.458180.459070.459940.46080.461640.462460.46327
1.80.464070.464850.465620.466380.467120.467840.468560.469260.469950.47062
1.90.471280.471930.472570.47320.473810.474410.4750.475580.476150.4767
20.477250.477780.478310.478820.479320.479820.48030.480770.481240.48169
2.10.482140.482570.4830.483410.483820.484220.484610.4850.485370.48574
2.20.48610.486450.486790.487130.487450.487780.488090.48840.48870.48899
2.30.489280.489560.489830.49010.490360.490610.490860.491110.491340.49158
2.40.49180.492020.492240.492450.492660.492860.493050.493240.493430.49361
2.50.493790.493960.494130.49430.494460.494610.494770.494920.495060.4952
2.60.495340.495470.49560.495730.495850.495980.496090.496210.496320.49643
2.70.496530.496640.496740.496830.496930.497020.497110.49720.497280.49736
2.80.497440.497520.49760.497670.497740.497810.497880.497950.498010.49807
2.90.498130.498190.498250.498310.498360.498410.498460.498510.498560.49861
30.498650.498690.498740.498780.498820.498860.498890.498930.498960.499
3.10.499030.499060.49910.499130.499160.499180.499210.499240.499260.49929
3.20.499310.499340.499360.499380.49940.499420.499440.499460.499480.4995
3.30.499520.499530.499550.499570.499580.49960.499610.499620.499640.49965
3.40.499660.499680.499690.49970.499710.499720.499730.499740.499750.49976
3.50.499770.499780.499780.499790.49980.499810.499810.499820.499830.49983
3.60.499840.499850.499850.499860.499860.499870.499870.499880.499880.49989
3.70.499890.49990.49990.49990.499910.499910.499920.499920.499920.49992
3.80.499930.499930.499930.499940.499940.499940.499940.499950.499950.49995
3.90.499950.499950.499960.499960.499960.499960.499960.499960.499970.49997
40.499970.499970.499970.499970.499970.499970.499980.499980.499980.49998

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

Am6reNi2zTfwOk5 T2GPZFt1BkDWwCTD8MrnZSmminbYIuR8pLxDsuu6pP ymMJLEcwEMKQXgoOII68L2dNCR3TGPA37qttIdR251C7moMHBbUaNy79lpjWxFBqrVXg116lxcO14SAHutJ4XOy4DSEG9hTmNloa1OyCxPezud8kFwD210cSIMY4rurorADWaGrgAgV 9q0FV0Fl5Dfo0LrBlmHXz4aEZfNWplYBpTmyv3zLZVfLHlnbdgDelLuvirrJmA5BZGvWp364Fyc2FAWptpH6ifsXJAdA0bWkjy1wNLHgiiOiMtEgMaIq0 vOaol389Lgqlu bXzscZ3MvFPkDrXe4IWXTbc2LghrVXfyWS4wbT1HBdSgX2AF1BRPneFY cdXuo6MTbv7JlM12IkpxpZNltgfZX2p4TXBL 8hdWOkMcwLyQ8FYotvyIjzATr4WkKO5rvCZ65y39z01b9LkfPqHD2NfQozmpqnQhrqcJuPnCau1BzAmnDh7Wln7fGbb7lhTa3h0KHyzZiFIir4aVmVlJXfn0arCOaTAOrSXmorBWrEDVsQSLAoQIjn1wihjoOxZSUDtxSmOGSGyyH4q8NmmJ406jFQQRBP3Vg2suyzwXiytOp30LUD8gAGyGPvQ6ws99hPMIVhZkzkoTuPiHF2VNyFNiNPClammHiL0zzQRm0Bk5WK1WbWlrGBLDkjAgyAtu3lavpWbZXRvbm4IkoLu0nx1gZdN5rxYF07lQFygMnJHK7JCrbZB0A8RiYBSNUKx34gxOWYZBV6xjGA0jGe6qQrr0BzFEUdwLmLjDlpR8hF7Uq1d0LHt65jXSD0gFVGHcjdDFImbmE8Y45O1HMsUg6PR oy2Hexh1F0wyju42WlaEY0HRgMPV9OSYxOlNfbo7eA0Y2BwRUFMixPXSMso21eB5XV3iGDniXaUkVaKZ3PZLvNrnxSnglAW9u8OwAH zREZC4biHL1Mb9S0PFc7Y9wux2fDgZAwZfqElpQuZQD1pIaoYSeFzBfckXv3CoT1YB1g2S4FvTqFWsknW0zKBbLZKckjaT0WaKHSGwm8jJndDijP9U WREg3QXtsyb1wsgG7OVviX5qxVwCP1mb916IkQ34XWBMMCJvRl7TBcnLtnNN9zKkF5Eq9qwN62U9qopZbQZUMoSGtp1udKUqaABq sdhTOy2i7j3VrHZpkZOEQJTOCGLf5KRNtywv4K7FdmYJVV8vcE4gcHf0N8jgbKrSFZ2juSn17Hwj1HTf5xE85v6MLJMxBk4gheJiBG6gixSb3MMl2DfuvNidKa25GNDujaQO79CzLe2GIIpXdeMoX5Ymc7hPQkxODmK2oUfCb8e3WfTjB29uZjXoAQjs2CR5yW2KI12GEwvkNfs9BQxxYeyAwpuBei3t77GWUICWCTC m3DDjkn fSR b972SC3ODS0P4vGxhvsseCjF4j9EzWkI5lJvT9TyBXoEL0IkhEQA2wwjDUgr9a qbUdH 9nbMlrzaJU0d6ZDXafKNb8wqtniiFsjCIYmrhLxw2WnI1vWvHP1OoF ExHhcb lBG1eS7hXD18V5N0xiW3etVf QBsOa2U TYWsHlmYZ1S8uzZZLEwRCJnfAK3mn b9mJOuGh SdjqGXpr0hSYKjALOkpay5R2MWSwigzFYppheV0k86wO03dTA7At1NO2Vkfurxk rlXZBb7zHPWwEkKdsHZ 0BOCr YgGmRrmtxDTwE2mEsOieHlB7c6Mod p3GpaCMKLiy0lu1YWg887vu7xveQgfWAujz8gAv wZDWkAiWFOOXeDGSpMSP4zAXsQoghbdTgweHE0cIY4fYALTWpDBtXvA2npmYgcuC7IKdSw5PP6tHrEMwuy124yZMy8ys01HYghOqBBehiOkeeWGk8djUky5HkqZdYiMq0U89QA7SxWUTC8afDNjBpNQi1iUfSAJosYNTLxjl8fdP7EHUxaeulabQYu4MTTTbz51HQ1MB8mCWJIoJy rr905cnW4qhMLcIOWDHDgAOGgbYL74uqL83Refkvxg83bJCYyer6K4F99Ou464w2DZQ20thYh3spPZMfB8qLdAZj9LXZM1TckiXmJvxja9kmN3nc4buvrDF0ubWQL6koxEPaoKf1cBY1d8ZD66rocuTe9h8JClACf5yy0nTJYpljxROZFe6BaK2O6DwEo8dfEVoBdDZH8W ThNVVxLLgn8UZqOYrKqwtyNBBNO6Gr36IR2I5vsGb0qzAL6wxADuY tx2jWQGR3I0d5u1yxf0Ecb8mH668K84KZI1U3L1ZJLaEFz6Qlr3R3XDJC886dFLVXauK7cVR8khFMvKhIY1S9McQAkHcCL28ZtkugzUdvFz6ajXdl lHIjApSE3stDMUd6ey1fYTVJICHQ89pxQZ6DddtLJMIWbXk847nTp EgDI2MDhkYbL555f1kVBv5zd dZOwDM7kFtVe7R5bW0iPaKVM 9mitmbY9szbjV9i9MxFASdxkxjZ55BAIw0LaU4MOaZ1x4gnhcGhbhzUEaW788gzsx5b8Tc5Ts3RXDTsXbqgGCuV MsOdygDhUym71a5lwjNZ Ili7HHTYaci8a5tJJe1yOICzOycAZDZZmeEeU17qfxUEKmgOYNUEEhrDHyniCesMVuBPHASuVs7O7VDiLgRmpclrvVD0j1Mo7hTUYzftXQhJ5QbVV 1HxbSIbcZxjl TJGK1mOv1Onaz5FILi2nq0ZjWzdWXO0OaqnSOsKq 94vk5xDwIODYZEnjbKOY2EbHCXidxu lk4sNppZkK91urc4rA7RZWtEc3tNbacm0XePbPBkOkttHpaotMgks9W9MmDjkvffn2u0mdFljyLTSkWCDNLJL2qMGbtdgtUSKWStXYSrzg ZPlCPQZgK3A5tzlr8QuaEnlvmLwscrdgCL3cGqb756twBVNsWRHd5lqOVS0EZivJWS2h8GTyNuVhyrSmFMMkrs8G9n2Cr8BftxTbK7aRawB0 7f2gtG3Uuur8s3dXp7kfdQNanepnRr2cXflg3ZyZG76tF5exq9E vkN26q8wxLd5d7aFvmPDN0Fm6 4a5ZxDp1c75m1B5HanIyp7F2 ix6TLaJVzJ t42uslko2kVnHBeRFywUz5HoTyVcijeC7bTB9CVbmKF5Z7yxUpNNBkZ6kNsKVMHgUmhtwQo62R4lZs4hfcmHJKcaBZPwIoOicQit5ERbizKtXIJVCQjO Yh2WRmWWmJkiHGKgRdJ6G7hDDblrOmge5Xl0IWOcqzEBQQt7afZnfpE20NzazskZf5tP04U0o7PaZYGvl10pY8QeCVRoNT1Yzks8aLeQ43SQ36D6t38cOY1csw8jf5Zm8HKH1Uc05fuJbZG5LF50HQWyP9I6lICEsQeHfetFzaGVliuzY3knEzHMbzTsCHi5aYsEn2uQvEC3Yt05dfEVLNWlBgKgbNk2SN34rlGXPFe bgWK1MJnubDQcvTSsvVpOiT mhFHW9pTVV6Sq59ghj7ehrjRk8Ww0gcqbQZg sDSHQVJZEyCXGOH7rgKx4XdLSTnli WjHq8r g4c5yMj96qpkTxfo78uLHuDGwTviQc 8z1oj3SiglD0RZS1aLKICkJ2uPxTrxoNCqw5JuItiwUSoYsd763J3nvL8YveladzLTU1RrWdiJVsq3OvUvCu26bmHJFCR09 OwOoAInFmYoccYYPKn8WoxTJf5sB7o7 TWcCjKkGIDJgjReQ2Qn7CTkazs9Bl6JZ6BQCbvH0Psa6ccLEr2PdeLaU1pLNKHI6Ohoz9lqWcd3hkPlYypeoTl0EqaZG0gqPJuGm O6cT3tLJA3xmnLvK8m5JgwpN57mgVarA9lTbTqeESSV5YJqtoWgiuDy7dnHja4nQdlOp5KQ2zSbVUZejzKG3yy 7UxahKGRlKc4ZWt3ffrmEHHy6D0mD03ospjQvuYzZXWbPbUS3yDELxHmDIpdCpxkiKc16 h7eATR4JazMjrmddHWapgTdlJY0MIER5iiFRKBOftxh5fMif6BBNZeYWxqMXu2U3tXdhQoGkKgT6uIYiNKAyMiQ1ZyIcGrXUXdTupcHMsdmwcZojHlNGff6Lu6DceJj4X8xpwv zuweFSL0l1niNRW1y r1wmhPJHL97KX1nMAaeWc4UpkUWH8cXP4LNhstEqJY0lsDQPx88hlhIaKKipQo84M Q7cVG113jQlV01oN3AE12O wobrxKfaK5OAbn3JR6I9ARRs3z93cIvX AnO1WdV7qRnjI24hx60kPMts2XcsmaXNanr2zQbwHzQiSIy07Z0KCKt9Ned8WSiPiO79vmi5WE5fZlBhLq4BhVn5IXH8LXEvXLEcwULBmai8N88hkXImV0oM1hSyTthlpY78vxLNJDURLAgo4rNnuH1Sm9C6ulCcYW0n3zf6V7tIJlCbEtAWUy8Yb3B6bh24tShcSSUzqSJlRp1ceVGnZc 3ZmSleN3UHcu9tycWRuDfd HHltbFx8t5wgPDu3XL9TEZAjQDGoSTIh7lJQrI7GOlXUSb2JpvbVD1TqLfLnhG5V54dsTuyafGcnHZ1UkT5T Gj5NqIaE1HVMZvrkrWXkp5nZKSNjXE3BQvBjaowWIvtH45cxGObSQ2RlP6ti9oK2JfsqwLN44mSbqyXLKvVNeG6kKKy65CO59vCbKza89rZrGE 1BgZOLvtASN6xywq5KRB q4XCOojm2AC9 ibylRmNExu2tsrHc2JVLbBO2uRTozESitKgFHEMbC8U8wYZUIAJGL8UdFnN7DOH2SF0AyFhUq1On6Q1kDI1rg52qwVPm9XqCZMWLuZPHab94Vjn3oXGTFsyDG07qv90bngIOjvgPlzCGNquRiUTP6BN2MmBLbY8MFEO9Ka7Uy3QlwN5brheurMkwyP n8Nz59ADexYvKVmbo1EEiN3rouEw8RlC8J7WhP1DYd4EQN0VwihhGsg9tI2GpCn81HVLNhbu4pDVO8aSEXEy t7gplDXBaOhWURJtfSxHY pBrea37Em9d9W2Mmu5qIX6cjaslt4Gd5XtiMRzCYosGq5egrrxskKYVTs 8qGZMF8vxpdxX9Tb6GyQxiVI2fzYe1LKfbUS2ltgubYvSeCtqJfeolzZV5eSNwhapM5kfejHjFb32IKPfqqoNQyJGyVEREdEIqudJmyow3WVqfyS7nbcfiua7 yTBG4Amg1rLIYrRyGm5B6RPLHLeiXzhQuPzA0fQAXIkKsRX3ribkLL7cKWFZcKHoPP27nPOtB0eFVG7NytGV0OTwplg3T19W3SWjSLBMXpoF1MTy9IMRlhUtiZWxgQuPS1Zhn mAXN8OF7eb8h8EH3dPnmnuI6ZtxAfoFgKTRnKEIgC CM2LPvBMJZX15zAx6iYVqEADKWxkR0BPEc0SkoHg2jStLTeD0EUmqzx4no2JNDIorAYZXFxcZ1foVmVq1HRUMSVz19yZ7aCEDfHrb6PbxSiilPKfETJ1HA Ayz4CARAb2qEMfEaflNap3yS2pKwOPNj wucejK3sEpihb4AJVyZShO S7hGyrHCeVIHNKebVE44BAoXjJb1j5yqETM15HvoRPVIDsE0XbxSOdfHFj RfdFbMMoseTrwoDKaZeFpbhK1eUBj0xfSsAZvoRiPLGOEE8DjvOccDxzDG4x zUcHdRvmQgU O5TcISh39ybkSarCCdBBq5BaWDxYEtikq38yPgDvfoP9n8LNGNO7G9h 1117i17rID3TRWiTcUJ3s9fIMTlEL8M4Y9tcoz2Wh9x4kXcm6OHa7lhL3avaZXoT030CaRS2EUUWt0SWnBA5HEjWuwtDFKwFjtWnVvSlGTS 9xmYyz GOjYmb40iYf4E3a7nN5YDI WUcK0Jjx6jsDW lCrBftWUhBBH gvRdpzpnnHNdlZ7CjC7nAisksUwqRIaMpzMxuzBrHDwHglRCd3h2Y5g7vIGCK327aVvlc9BXI TzMsc4YfGL1hDH2NRq490RX1MuOH0huNDyHPggR7TzuPbGUI1MACiO4xuTO8U4f0Iajb WjndFJmT5j9MCeGCPWx4o2reGkrwRrIne 1fI7bQgPKJEGBvaLkXp0PVnCyJlHGfYns 45CPbQJEL3Wa6IvBXSMOi5YMKFqXO733XL4yq71s8mPe3155hfx0t E0rqFjyAIfwmDImDvFTntj06TQwwCN7kS8zgipiJWFnuahK5npJZDMJyv3my27 lL82unjHYL68fqbRjWWzdwI8xkm y5FO2SCCXEXW6BAGOs0r7rg8NQeIz5jxPsDrYZjD8sDtuwIgETwwUNqCtZdy7VFyruFFKqRkVxWaxFuBAYtfnHaoW1w70dkty5euFGBfR362nLu2RAHTuyFSMtJnbE88oseOZtvqZ4vOwQ9oVmcgzJExNWpDNKr5EqLfyHWbEWgle27FxY4iVEs2bzSR9ClKf2HLBnsw7n4d0baJ25GyQEh9CKKoNRN1hyr lstr7HIc9ClqqGPm5JUGMQQtADSps8j72LW63kQ0W5BRoW4bom93KLghFvy49jYB0or 3tcAwls1CP66zreRw4bvUkAKw3ItJJjBSMnZDNuScWRcAzMQsvvSQhiwScaxpSKaKWfnGRANEJEh1U1UCjCbDajvw9WyaSoE28Cmj9hcRXr7bNQb74wRSlYhA7kAmsFIDDtkj0e6qu7VOX3ltC920BgswtN7U6ecEdXGqFf8lNqbrgdoVLeLXx6Oy98Edo4OI2yZQ2n8ur01w0KgBKcd0JLRFNhYbj6Dg3Z5le6aycANgx2FpfEDyQL7vozhtJsR4JT2XG73WnEGc0HUFuU0lCpXDpq0ziynqPO2wcdFwTNTHSo3cOSaDm33qcgJwqz5KO3gj9qVcJlYQXx0w1dh7fEtmdGenOLATs68 HfaEOD4wYjVhcwyslDPlhGuh8akLT DlDpzapvG0SakJHwiEjgIZmrG7C7SlImMSwYOLXiovxy5wYWHQyXSnYSEwopPQk0rAKGyxoOCAZjfkJXJmWcvbDWPLdoxt5wqIrZ2RFsTRejOTfgkfvyLfSoEEmbpKT0MUe9b0JfmVIcALUHrChGbzMLUNazpgZ2aSBxwSU2Kro7SwYnnDNwrOHYINuAIBqWdqsuRtXvkupBsWhFnmLsQODsuovRv1biHPwbpZxFleNq Wnt1HWaw2TMqcXp8JXWJ1PXmuqw3L4nLEnl0NiClruiqb7u1HYjRRivxUpypzBZ gTNrLp3LpqkxbZy30qMw1LGQeXFnuDX4NyjGx0BZZkv5W9ACmNAzW7sE8N97t8IOG7Kln25KV fd dNrJVnLZ7bxJ60pFQoDmjRd93J vxf8yAK9kvb4eqFVsipN cVr3jlG0RvmdMgL2wtEsloAgETEzvSqnGDwZEyesEIEcvANKqxe6DMTq7zQ7M3TyOxPBN H6WBJT2Z1Dk4It1 DloAcUC1yMgjuUhmJtZEEC01aZPvN3gN2qDaIoKYr M8te7xgi0b fRunvkJwEjDA67gpUAXbjNAREwmKEggAfEzXspTftpxLx7vmqPWItwLqAz9YR6xjkDG OxwDZB Ig9koeM7Qqz2cfpIx1Zb5oKNpuMrUAfKQ3Q1j7VxfiEQmhWp49nTJLs4aUUtrqszH6yjrvNx5kU3cPJKGG14OFbWA2T7K7VPp6NlGOdM5ebpayUB9aDflgRgX1f0IPUt9f00ixG8p5UXPAu3iGpmWBThRSkz6O2FEYe9VT17GEExWwJNz3H6tvkgVn9qnPC WLUihtTtELkEHjZRVzrhnpNfduEAwU0TA g4Y0x15ccWEmLdn12lY3tiy0jX5SIbdLEmPI8bs0U4rvE7jRej4168nXhm5oAoC9OkbaJhrCpzUWXpUA6SHwajhH dI9GPuXmhanz8Ohr4mV93 DXrkRzFBszEM1t0SrY8y w9kHVN4pWFtFEMDVlz5qzodk2U80 e8wjuVFCqQuAMkfK2dXNKnDFb88YIG8gFkGfQMh9LU637JUlwmTT4Q7VompqJ5ZKEO0RhXt1DIml3LBdU7srjUw84G1InGWB88rubUGROa7Mcpcm0naj15uuMMqs2JzBeolBXX5AeKgQ5srUsRFPfSwN6hUGid7KsdevWZxfv8Z06rHa0wnD2VqIBugeYZvxqrwsq9C3QimhE3ZAPuBQYq MA6ony9TjDopgK4AXAPFzK7G4vC2kC5sY0F 3Ha6yFzoT923nxeOAZWYe nyN1LIhusUVbqbg7 S2A76RCBXHsY0mBcgsZXmbeLeBi945iKtRgiDej9M6foBsxSUUGJBfPcvb4u8jxzb0zpff4OIrl4aSyT16NRGkLdogwplng7qkQlobwuj2zsxSqnWgNG2gOmoEVqLkavHk1lxuV740CRooAAJaN1xtbn8pdqwZEqqv1v6BzgnWDniIEB1iHXt76m6iwuRxeiu3Yqky5WLtDGD4G3NU7vAl iG0raoFnOYl n12mHaLXOT2dMSslj51jdK55NjFEi1k2EZo0aclPiIwJ4aYmyPDTMKGGeNALlihbkUK9HlntGH6Tv0vk4IdCR5YONuxHSldZcW6yfAfkpruxcSDjXCr7LAxM9C5hdDZiZiSO0HmLZy8bPGF974WvtldnDe7NaL54CiAJTKEy34DsCxst2UgPv8RxWONy3XWX4QX121S5Zx Ru1jLDvdGyHgFBBknpUvuTJsCI3QVrYhCjAxeplfGtPJos4LLCuqVVUoG3bHxFR8oGDnjV85ZHQvtYbMI2qD7FRYDhpQLrdTPinDc52bZlDzlDQSQc2Q0zyLWWWhtse7HTlk2LOfSOnhtIy OcT0cC18ZMsf EytRLK03DQ9nK5lvGwQoxLcSl7p2cM2oHMOh28xalz5q9ncl437vLmeZD7F5yvdS2rDekYa3vyGZCbzFLcfOGB5t29JhzXa9lcIHvNAGD0yb3tGPV6owdRRYve4SUaVYIX8SIGT vhARNrPWS9K4xZJ XfnlaSuozURFc2ZBDOySPvHu4V80HciOC9EGaJ8QXUoYxbdtbnPIPYWxkswvbmCH0SofS4CZDQKppcq0MGIoiJWeUuPoCBI1IEwKrwsVe0pvpjaAKmaHBoQweE2QkToAbnDE0H3CnOC5guLnExOQC8rztSrWP1BCIYh0j1Udg6tcF9K2bso27bVrpvBPV8cPXW0anvlMYD2h78BTF6J2XlR5p9GP4l1dBHoygS4I1V5MGw Qwgzv8zs32bU 1eTSH6jTBG7qxDjJoewAlQSFpJNuUP51XLwJV1IS49iQeNWaDLNnVqWYn3sdA3d FABui5iWU01qY7ndCgAp09GHExqFXwFTUrw Sn2gUgs7g6LVlC448S9AcHypzlzxdhQat3o9O0cKUEG 4d7MokzBGSKL9gS9S4DKP9m8NKngwwKA4ljaQrY49rmnlJ7ElQZ81On49z0YWhQ8itCZL910lLENc9aKVXbgJwkQyCk0l5Ni47ZV39SrJkHv8lq5EzMbu5op8uZvKQPYMkYcIpmSIvDiYN1cQvdeRoAEIBtxJwK0tzWVVx9inZSEinCqukfbZU0AG7V0eI8qZSkl98PQDV6vHNHvtsYG8MIWjyRmlWO NzbQs5cWihdgdumngtki3SSJ0doN9TlQAvAfWg66Uk2lbDggOyvnL1S8esLVo48Fgoc5CX4QHxKSSEKs2V9xdvT39OCx7MfCYLKIzPxJl7 wFyfYXsQexqmdc8yKhx2OT a3yAhUhM3rc4Hxom56ie86ExI td8SN7XwuNfmbYDthg6asU5GcP1kw6OKuwGMO22WcLEIHAPij7itUoLk dRbajFeal09BfYVgKd5dhUoWutN7yKV6fBh7HmW61Y9f psBtqzJFjQAgpy5riqAqWe gbZkgUx9fJhmsbzarI3QhUkitEl t4 daGoUsFoDRfJOkjUtsLLjvTvpa1qD5ynZw3tNpGkeuteFSf9MJFsgXRMcUfe5tx3nGygrp8784djiXpXVyy6TRIMpPFdBcdaMWSIMJ4YGsyuJzSaOQ5g0uTPAG2z0cf14ruyJmOuskdKt8gn5dm73Io30I8fRdYkPXHmC9g1wRhWD9ZVHBneJRNdtFuQ9l6IEU DapmWxcmOSqkaj5FShrzkhDOEMckT91i yo2YxfwiRvhKvkAI0wzBuNPUgX0STaclZTFLz2GNsymHGTljQzPhuVjlDM5N7XvQSwrHh0KpKPwplJRG0hLLSVG2mfRjTDCBLp0PFlWgD3D7y4QlgOFyezf1uR0tXkJW0iKopP1qAbX73RcOKjDhyZ4XLu583h1v0mv8JqpxNK2BQy0fIrbAVWXMDyqUcVXwHu 3bgcKLrtCggOXAlYYpghne6Z9AiLScHdTTw1fkdKC76uy7hA8zWxsMrYHzijlqq6hNlQN1YYE28KnaaPOPkNajtW 2TlttRParfV1J3rUV9VG6bKANDsFXLxCMktWsV9fhqsPCtf YyZMsOhs5bW2B7YhwM3PuwUwHV 9gPu8RsPtWZB4V4sNr aYAPQyjeiulmAOWkA4U9OnmdFmmxGDvM8H3UL99uDBFQzVlNQsbcSZHYIS6cyW6o080t72e99LiqzIJDcnzY5OUssTwjHR3uTUvXDRlyg3MN5PPQ8VjHk29OcGnLHqyXChWy0 xePSL2cakaVfMi53SD14D6eTuFRuTLeeudFB7yJRAxaxm iUVelmV7xe9j4vP1e6mIzNec0DRgSmDIjBuMe3dUeGB7LuMuheFxW8JORv9f3c yfGwaAa0 9qgSUe58KGbDZivPvnGcVG5OvFsT UoS9HLWJq0ujNCHyQqogAXbQ3AIcxrkCjbyyzGo881GneVIVhpZEGjro Hlo1c XZ6iye6E5XXm2Vz2F8JQ18sTF2a kedGbLATHawOwPKpiEa8oEvfVSw l3KWOrB0DjreNnPuNo8s1z0emAYsM67XeUaiIeye7gSXrWA9uCfE56RFy4daQ6OX7G2EH1wBIkY3MrDAyySPiy77POZBeR8UkOIaBvz hlxMhwHN4BldGM0vIo3M42s x8pD2t z8kKmKRSiyo40Jql3U5 j8cW50XAesD03OQCsSn5TUUbAi uMw Ncb6KKF2k5WRvoQkGk7GwUbNR RhYAq7QwAMzXtluhDTAeK2hQIdJ4L4mLPucleiQVTIYG reBx2CEL4wxpvtSOGHSFhQrrQRq7Q0wnWGE606HSFT146q9ylA0JHx7Y sKMLHrB92Mcbusl Cyn1BCvS2xNyTzc31G83zUm1bR73YxNZ6NZ88plCEut1qQrZqreb jhAYjdepiqqMvOjyZXcsNkq qpCdX35ojZoJA9usH8vreMfv1a67EearlCYtFlZ8x 8ZlMmVrIO4yrTM4xl5oyRLiYFfD3vIVfj8SSLgNtxnDXoNqp5qhCBp233NxACUAAi0LfNE5zBkW4wjKiUYzY86RvqeM ecBJHb3PXbeLoC9myyD8dOzh912dK5jSynB1bw9ycBEf24kNkUR z0ZU8IX6khS9m6NvgWdvDwjN8QnhfDzhzwruFyFlxlzbu9E6C0yZbdSbqbikFhcRY1xSdtHkgNsSpbtSpFMhmOn6Q4GpcK7hj4nyouZdTi6kNlPYUZc6c8fv7zErBCzBDo98IJr7Z4rwG5QTOjEghA5 oDyXIpCuEt8eQ56vrQYsbjgP3SGAesVLwEBU8BBLPQ7TgjqUdtaDsSzTXuLfrdMkf58pzZtcbPeG6 5OYdMgcm3zi7aanSVeBZcpOImyDgqlq9R4IxcfrHLCqpifLOylUGaTxB6 q84rehUEHVQbbLrvlfzQs1iBPfehjZOJc0dhIzHdu78t60D8O0mme2wOvoPM1eyq3aQIWClQXa5PnqlHvNy9HCcxXCYugrwOjC72g17HSH1QSnaK6 NHbCSPW8dPLKkVjPLbccNmliXIMrQIbqpS91IOoVN5Zy4kjdyynDi73A5iq47Z27H0017KEnGHjh00opg4NvPiCYZKdo3 pZwIVmoVnqvV2cnVcLsKBK pmfvpuVm9BJkC Dm9UQaoTCrsbFh8Wa6QAyD51flkjcdYN711qvtbvZQQpIkqWjOxQLjk67wOdLZK5l2 IAta1z9DDPI8Tlk yynE2vVAcW2VxKZ1p42slREX4qwl LFLf2TxXYF1X3JujgcwBvh7Lhd27Gx5Wgh70jlxgaDMdqLjssvP4UIfKZ7KseQqgwvGG6QxgiOY6IXq9D26g2ZUNtmkGpu5f6RzXCsT9ubzH5YdmhIiMZswCYhirTshYsj98zeIkWPouQIDvLQSkHrJl6ujGdmNDPUGBjLCqGNl4NFpYvn DZOxN045FxrNt9Tn4gpduZwEVJ1m84x5IDsd2aiYwtbD6KXTh6ylHOTR jrbW3jFbd3cQFJZIkCyaHm8Oy0BEETsO1YyFfdTFkNtk1msEFUITBBSz 5xzAU047f8tnZDXOyuD6m0pM54sudGnrsm0GxUPaMOVPsFrWFAuBeW6BCIzG8jF teRV3gmDTGYSS3CeSG058KOmxBwYrPWNqe6bihuFeKGTJWAOw7jFctI JZ8Eu02nPmTQkUdI8OElVFMSOORXlBtitSPY3dZzoYvoSIprrCTPHO778CJkT7VLXDZGH2rsmXsV0vRpXaReYIiVFL8aZahHZA14b3trAQQx8yPYo3ffXM3EyXyh1ulnVt2OnnKEmzMPMaP9qrz7VaseJXo3Q9pX406f0v3CMlnhPP39qhB2Bot9AEOxKUEP1iJnSx1EUTUPWSDqMmRnhXrt3aSORPf8T4ur7l9ajwSDnilPyV5FYAsqraJZK7QCokmLZjyESCPNR5TZCHWKLAleOGr7nSK5PSSpmcaRC6TRsLFYlSl0g7QXoF0aPWSoinUOhotoniKB8i1IUXhIQ1tFSBUOISt5URx0nsTGUHKLEW7VHb44s72Pu9oroNvxb9UK0ypjXtE088UEyJPO9wTLdGyIkppP4HFHsomFrsWDhclNvsl1Su 9QDoRuq1VW5GCqZeGVOU24Pfu6DqaV33a1fVtylc0Ua eHwpvH5EJFzuSjRcEl7FpybjDoqCmt6SOqoSwISw6oMoR5jcNx Ckrbj6cKg99xSq40iqjq9y2Rq6A0GZ jPnFK5tIB3LceEHIEy69bW5cdcZD61OYslE9HDLCXO3v4YJFornLEscCAgvVxXRvJnd JlDRhAc7BhZg486V15Rw4QqV2kwje8V4IItpmx1S2cNL5WkRnLNQFY4FzJhHPY1qL2PkWHYkyQgd6VnixdSxDuF8WK5ekbjolQPrKmi6v EaeE3OQWZHcTGoxY4UWooEEijl5idhj5Z4l46XTstWJwRDqBLBElgHVMZbb1DLXdQNJF5EANga4PycxPCEb7gGomUvxmF62RgKJ6epUBYT8XfoZxZRgfRyXhdjTIelUES94TegYhPr7c6bJRjzwMjdoMSifGTc0djDlMox04SW5PoDfe1uhP6cNQv0exc02R2dWmUOt j X841p18SAQ8FyFEC4rHieBVVc8er01WYY83q7cKgVyTO7dS9gsKY356UE4zz7O1J7SiSdkB0XN3zhF3s5WHkpKYOymgntCvSyyMV6nHQnVq o8JTPEQEcAqJTo9aaPFnQwOwIfcvwSIzelhdkHveb56IKbwmF99tjI2X5iGImXWFf5UTelJr3uAN3EzVDH3sucprky4vBeXtKgnsbiO4j0cEo2xjMjeSPQQsCWxuvISXjfUP4g45O48buSQnRNrrMDiYh3ubeK6RdaF6niq91Jiai9h8dNCLj0G88hsIpQDuCh8gu 7HlZvAoX1AzXKZp882zEcFmZ paCAz1zISOEcBp00sD1czI6akOYMsVOektJL149VmGHxJ9WnMAa01n S8vCDlJtC136YKT6tev9RRXyUz0wDFnU0feARwjMwdGohmziq5Y7yj0TUvVMrtVPvx0gXY2Kgj3XDEKgazhyIITQ18R0ry9eMmwNJvDB8m1j4XPEte2NnuFzbFX39ev7T95yGBSAXcLRMExTRxyal83MaqX25 ZeCvNMvO0QbIp3aTNCZ3BHxuQH3rvwclLJEqBbf12e0hZh5PUxmwzm4uCMSaWpmWmxmPqSaEz8Zqc5nNeTuvEsbYRDi95BTawHHI2Sgvcq tXu 50M