Probability Calculator

Probability Calculator

Modify the values and click the calculate button to use

Probability of Two Events

To find out the union, intersection, and other related probabilities of two independent events.

Probability of A: P(A)
Probability of B: P(B)
Please input values between 0 and 1.

Probability Solver for Two Events

Please provide any 2 values below to calculate the rest probabilities of two independent events.

Probability of A: P(A)
Probability of B: P(B)
Probability of A NOT occuring: P(A')
Probability of B NOT occuring: P(B')
Probability of A and B both occuring: P(A∩B)
Probability that A or B or both occur: P(A∪B)
Probability that A or B occurs but NOT both: P(AΔB)
Probability of neither A nor B occuring: P((A∪B)')
Please input values between 0 and 1.

Probability of a Series of Independent Events

  Probability Repeat Times
Event A
Event B


Probability of a Normal Distribution

normal distribution

Use the calculator below to find the area P shown in the normal distribution, as well as the confidence intervals for a range of confidence levels.

Mean: (µ)
Standard Deviation (σ):
Left Bound (Lb): For negative infinite, use -inf
Right Bound (Rb): For positive infinite, use inf

RelatedStandard Deviation Calculator | Sample Size Calculator | Statistics Calculator


Probability of Two Events

Probability is the measure of the likelihood of an event occurring. It is quantified as a number between 0 and 1, with 1 signifying certainty, and 0 signifying that the event cannot occur. It follows that the higher the probability of an event, the more certain it is that the event will occur. In its most general case, probability can be defined numerically as the number of desired outcomes divided by the total number of outcomes. This is further affected by whether the events being studied are independent, mutually exclusive, or conditional, among other things. The calculator provided computes the probability that an event A or B does not occur, the probability A and/or B occur when they are not mutually exclusive, the probability that both event A and B occur, and the probability that either event A or event B occurs, but not both.

Complement of A and B

Given a probability A, denoted by P(A), it is simple to calculate the complement, or the probability that the event described by P(A) does not occur, P(A'). If, for example, P(A) = 0.65 represents the probability that Bob does not do his homework, his teacher Sally can predict the probability that Bob does his homework as follows:

P(A') = 1 - P(A) = 1 - 0.65 = 0.35

Given this scenario, there is, therefore, a 35% chance that Bob does his homework. Any P(B') would be calculated in the same manner, and it is worth noting that in the calculator above, can be independent; i.e. if P(A) = 0.65, P(B) does not necessarily have to equal 0.35, and can equal 0.30 or some other number.

Intersection of A and B

The intersection of events A and B, written as P(A ∩ B) or P(A AND B) is the joint probability of at least two events, shown below in a Venn diagram. In the case where A and B are mutually exclusive events, P(A ∩ B) = 0. Consider the probability of rolling a 4 and 6 on a single roll of a die; it is not possible. These events would therefore be considered mutually exclusive. Computing P(A ∩ B) is simple if the events are independent. In this case, the probabilities of events A and B are multiplied. To find the probability that two separate rolls of a die result in 6 each time:

Intersection of A and B

The calculator provided considers the case where the probabilities are independent. Calculating the probability is slightly more involved when the events are dependent, and involves an understanding of conditional probability, or the probability of event A given that event B has occurred, P(A|B). Take the example of a bag of 10 marbles, 7 of which are black, and 3 of which are blue. Calculate the probability of drawing a black marble if a blue marble has been withdrawn without replacement (the blue marble is removed from the bag, reducing the total number of marbles in the bag):

Probability of drawing a blue marble:

P(A) = 3/10

Probability of drawing a black marble:

P(B) = 7/10

Probability of drawing a black marble given that a blue marble was drawn:

P(B|A) = 7/9

As can be seen, the probability that a black marble is drawn is affected by any previous event where a black or blue marble was drawn without replacement. Thus, if a person wanted to determine the probability of withdrawing a blue and then black marble from the bag:

Probability of drawing a blue and then black marble using the probabilities calculated above:

P(A ∩ B) = P(A) × P(B|A) = (3/10) × (7/9) = 0.2333

Union of A and B

In probability, the union of events, P(A U B), essentially involves the condition where any or all of the events being considered occur, shown in the Venn diagram below. Note that P(A U B) can also be written as P(A OR B). In this case, the "inclusive OR" is being used. This means that while at least one of the conditions within the union must hold true, all conditions can be simultaneously true. There are two cases for the union of events; the events are either mutually exclusive, or the events are not mutually exclusive. In the case where the events are mutually exclusive, the calculation of the probability is simpler:

Union of A and B

A basic example of mutually exclusive events would be the rolling of a dice, where event A is the probability that an even number is rolled, and event B is the probability that an odd number is rolled. It is clear in this case that the events are mutually exclusive since a number cannot be both even and odd, so P(A U B) would be 3/6 + 3/6 = 1, since a standard dice only has odd and even numbers.

The calculator above computes the other case, where the events A and B are not mutually exclusive. In this case:

P(A U B) = P(A) + P(B) - P(A ∩ B)

Using the example of rolling dice again, find the probability that an even number or a number that is a multiple of 3 is rolled. Here the set is represented by the 6 values of the dice, written as:

 S = {1,2,3,4,5,6}
Probability of an even number:P(A) = {2,4,6} = 3/6
Probability of a multiple of 3:P(B) = {3,6} = 2/6
Intersection of A and B: P(A ∩ B) = {6} = 1/6
 P(A U B) = 3/6 + 2/6 -1/6 = 2/3

Exclusive OR of A and B

Another possible scenario that the calculator above computes is P(A XOR B), shown in the Venn diagram below. The "Exclusive OR" operation is defined as the event that A or B occurs, but not simultaneously. The equation is as follows:

Exclusive OR of A and B

As an example, imagine it is Halloween, and two buckets of candy are set outside the house, one containing Snickers, and the other containing Reese's. Multiple flashing neon signs are placed around the buckets of candy insisting that each trick-or-treater only takes one Snickers OR Reese's but not both! It is unlikely, however, that every child adheres to the flashing neon signs. Given a probability of Reese's being chosen as P(A) = 0.65, or Snickers being chosen with P(B) = 0.349, and a P(unlikely) = 0.001 that a child exercises restraint while considering the detriments of a potential future cavity, calculate the probability that Snickers or Reese's is chosen, but not both:

0.65 + 0.349 - 2 × 0.65 × 0.349 = 0.999 - 0.4537 = 0.5453

Therefore, there is a 54.53% chance that Snickers or Reese's is chosen, but not both.

Normal Distribution

The normal distribution or Gaussian distribution is a continuous probability distribution that follows the function of:

normal distribution function

where μ is the mean and σ2 is the variance. Note that standard deviation is typically denoted as σ. Also, in the special case where μ = 0 and σ = 1, the distribution is referred to as a standard normal distribution. Above, along with the calculator, is a diagram of a typical normal distribution curve.

The normal distribution is often used to describe and approximate any variable that tends to cluster around the mean, for example, the heights of male students in a college, the leaf sizes on a tree, the scores of a test, etc. Use the "Normal Distribution" calculator above to determine the probability of an event with a normal distribution lying between two given values (i.e. P in the diagram above); for example, the probability of the height of a male student is between 5 and 6 feet in a college. Finding P as shown in the above diagram involves standardizing the two desired values to a z-score by subtracting the given mean and dividing by the standard deviation, as well as using a Z-table to find probabilities for Z. If, for example, it is desired to find the probability that a student at a university has a height between 60 inches and 72 inches tall given a mean of 68 inches tall with a standard deviation of 4 inches, 60 and 72 inches would be standardized as such:

Given μ = 68; σ = 4
(60 - 68)/4 = -8/4 = -2
(72 - 68)/4 = 4/4 = 1

normal distribution example

The graph above illustrates the area of interest in the normal distribution. In order to determine the probability represented by the shaded area of the graph, use the standard normal Z-table provided at the bottom of the page. Note that there are different types of standard normal Z-tables. The table below provides the probability that a statistic is between 0 and Z, where 0 is the mean in the standard normal distribution. There are also Z-tables that provide the probabilities left or right of Z, both of which can be used to calculate the desired probability by subtracting the relevant values.

For this example, to determine the probability of a value between 0 and 2, find 2 in the first column of the table, since this table by definition provides probabilities between the mean (which is 0 in the standard normal distribution) and the number of choices, in this case, 2. Note that since the value in question is 2.0, the table is read by lining up the 2 row with the 0 column, and reading the value therein. If, instead, the value in question were 2.11, the 2.1 row would be matched with the 0.01 column and the value would be 0.48257. Also, note that even though the actual value of interest is -2 on the graph, the table only provides positive values. Since the normal distribution is symmetrical, only the displacement is important, and a displacement of 0 to -2 or 0 to 2 is the same, and will have the same area under the curve. Thus, the probability of a value falling between 0 and 2 is 0.47725 , while a value between 0 and 1 has a probability of 0.34134. Since the desired area is between -2 and 1, the probabilities are added to yield 0.81859, or approximately 81.859%. Returning to the example, this means that there is an 81.859% chance in this case that a male student at the given university has a height between 60 and 72 inches.

The calculator also provides a table of confidence intervals for various confidence levels. Refer to the Sample Size Calculator for Proportions for a more detailed explanation of confidence intervals and levels. Briefly, a confidence interval is a way of estimating a population parameter that provides an interval of the parameter rather than a single value. A confidence interval is always qualified by a confidence level, usually expressed as a percentage such as 95%. It is an indicator of the reliability of the estimate.


Z Table from Mean (0 to Z)
z00.010.020.030.040.050.060.070.080.09
000.003990.007980.011970.015950.019940.023920.02790.031880.03586
0.10.039830.04380.047760.051720.055670.059620.063560.067490.071420.07535
0.20.079260.083170.087060.090950.094830.098710.102570.106420.110260.11409
0.30.117910.121720.125520.12930.133070.136830.140580.144310.148030.15173
0.40.155420.15910.162760.16640.170030.173640.177240.180820.184390.18793
0.50.191460.194970.198470.201940.20540.208840.212260.215660.219040.2224
0.60.225750.229070.232370.235650.238910.242150.245370.248570.251750.2549
0.70.258040.261150.264240.26730.270350.273370.276370.279350.28230.28524
0.80.288140.291030.293890.296730.299550.302340.305110.307850.310570.31327
0.90.315940.318590.321210.323810.326390.328940.331470.333980.336460.33891
10.341340.343750.346140.348490.350830.353140.355430.357690.359930.36214
1.10.364330.36650.368640.370760.372860.374930.376980.3790.3810.38298
1.20.384930.386860.388770.390650.392510.394350.396170.397960.399730.40147
1.30.40320.40490.406580.408240.409880.411490.413080.414660.416210.41774
1.40.419240.420730.42220.423640.425070.426470.427850.429220.430560.43189
1.50.433190.434480.435740.436990.438220.439430.440620.441790.442950.44408
1.60.44520.44630.447380.448450.44950.450530.451540.452540.453520.45449
1.70.455430.456370.457280.458180.459070.459940.46080.461640.462460.46327
1.80.464070.464850.465620.466380.467120.467840.468560.469260.469950.47062
1.90.471280.471930.472570.47320.473810.474410.4750.475580.476150.4767
20.477250.477780.478310.478820.479320.479820.48030.480770.481240.48169
2.10.482140.482570.4830.483410.483820.484220.484610.4850.485370.48574
2.20.48610.486450.486790.487130.487450.487780.488090.48840.48870.48899
2.30.489280.489560.489830.49010.490360.490610.490860.491110.491340.49158
2.40.49180.492020.492240.492450.492660.492860.493050.493240.493430.49361
2.50.493790.493960.494130.49430.494460.494610.494770.494920.495060.4952
2.60.495340.495470.49560.495730.495850.495980.496090.496210.496320.49643
2.70.496530.496640.496740.496830.496930.497020.497110.49720.497280.49736
2.80.497440.497520.49760.497670.497740.497810.497880.497950.498010.49807
2.90.498130.498190.498250.498310.498360.498410.498460.498510.498560.49861
30.498650.498690.498740.498780.498820.498860.498890.498930.498960.499
3.10.499030.499060.49910.499130.499160.499180.499210.499240.499260.49929
3.20.499310.499340.499360.499380.49940.499420.499440.499460.499480.4995
3.30.499520.499530.499550.499570.499580.49960.499610.499620.499640.49965
3.40.499660.499680.499690.49970.499710.499720.499730.499740.499750.49976
3.50.499770.499780.499780.499790.49980.499810.499810.499820.499830.49983
3.60.499840.499850.499850.499860.499860.499870.499870.499880.499880.49989
3.70.499890.49990.49990.49990.499910.499910.499920.499920.499920.49992
3.80.499930.499930.499930.499940.499940.499940.499940.499950.499950.49995
3.90.499950.499950.499960.499960.499960.499960.499960.499960.499970.49997
40.499970.499970.499970.499970.499970.499970.499980.499980.499980.49998

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

1s nVJYPdZLCSuFadwmaDHTQtLxc9H oV9EL91fd8HW3ZjYFhUlrLRjJrSI9QG7MT2QNOwixG2ZeA6dcjyb z11RMCE5PByb5X2DyIfy8tKyFzMUG0hHg NCTmQ6cxacILk8m2z AVMGwiPhZM2mUx4ZIf25JH2UUMwc7Q8baYHsaD8tB3NR55nQpp8VtUnPp2SPIhj4h6o2VxVlAQuNLmfD6dD5IPOJafaE VYXYmR8EllsYOw4wXVTtXI1vMFPBd4gT7BvrgUmOQr34PYRAtWfg93539APO6DOTQrJbYw6jBl9o9dGRx9Sg55qogVXERNhK1CqJgKWRHNDCu7in61P4pL5q7NjUu2YuiC7yCuxYHSMnZatwhR7vZ1s8EkN5UAoFGYYxmfdinjOB2SMQqurmymoExSPYzi76qnhCy8PVmUnaO6kQqGUb9UkgbvFiBOfLLtAV4ZEy5klhtgpFhOgqpYNSPn75zUV23TQ8TIt05oLSNlL2Va9XcVmalkfS6a90Ij2Lls6vidoB79APgejyW9ipPrUK4Xh2fk0moTtK5bKM5tF4E9HppcJ5ywswVqlnU05rQ3njJb3ElIAP2JRuTG1Hqex6XhNFIrRArFufExAtTYUQTSySteZd8DJlBefioIscjiA0YgMgRLt5eMys RZ0qvpKQLvxGK8u2bVfZDpz6wXAh3XZpM2MfPHg8Q7B1jKPkw2r0yQ5h1Tlh CpwOp mMWtFt6zZhQvqBrDaKKZb eHDXICUCIW2ODljaUR1Dx6pxn z7Lq2zxVnd8kqB7yCk4HToHx2Kx6m3tAXDP8eoUQO5HssCbf9UZa0ZCuebKUoZ82IMN1S1a0E GQXZ7A3hazxUHRU T20iG8n NMueofzOoib6bcyV5iODelZttX69E9Gsnxd7ETb7VZxfpSwqI3Q XUlm2X2R0Y3oN9KzicpkqiuDRpYc8LTpzlxiAOLJTnVMoqE8 y6H2RloSRe2SJ2Dl1AzMsRFSZCzUqgKPFPTveLTvcCssHQEkvJEmkkpfIFcuCZ5iU Qh2LT7ms7ePVlZT A5WtHjt11LFZ4gswhmFn8U6rYfL38j0o74AMSVQGVTyoaboZ1fCmI5NRkxpk0EleO8HROS7PewmlOLep33J7RXwmYqS8tz7PU9A LYir3BQNdQUeTjZZpLXj2auL U4FU1GchUQxMFIBVpmJzVf 69PeRMd2McMbSC7WqT53oxq040b0 WYWCTlr7a4zd793nXOPJiqYbL5wWU3uxCNoqYXKpBoUJaqD7ujUbuSGiPPfUWz4Mc5Flitnrx6G9cF8B9k7sf7Rh3Feqr0LkW8aY8Lgrk56wojfB6DyrbdBk3l4HZ6PaT1H39Rocu47H3NCA1uqeb5Tg9eRRHzM2BwH7AZ9z8ZE pmLqunFlGrC R8PwOA6QmIAajoh4PHvDz4SxHUt0onQu4VopJyAax7GSMFjsON2zPopgFL3OVHsHCnvj40HgL3Yca8TZiK03AoMG3B80V NeFhun4fJ2qmlgK4Ypb74SytBW5rPWVmM821V7TkETX2 dscAHQtBFCZuioPs8Zex4fjFOWkrHqOffteZEIkpZNJIC5CFNz8fVu2XbQ6 7h xEqgo7IQTqLKxwMjzJDNF u3SqCCf6YP68GZnpYUoZnBLdlEeEUom4lcuhLw11ZlMPSGL189gqhpbtR74B4GXCRU6xVbK6feJCuqI4DjAFWIueeMCZ26Wc80uyC9pw1sq9vWWUtQbLiQvn8Eoit1pXLrsrz0yJ43hXqFEXoJufBDTdMHAtAQKhxxF7CNITFk2Aczn2HpFlIrv2iT1tovBuloiHXFQFnMfI1GD5Niczzsuavex4LCFS7CK8zkA7coLPWC9Wi2ywlzZnQtzTHI1ihPlddSYQDw g3d6XFnvrf8IomjC1DG LYR9WTJP2mVMjQNiNejFZj4MZesYJCf3YoAv3JMALyxUa76HGkgCtezoKCTmjyXYUIGe09EQLrpNG0O2lOxkNt63AXuFsTSNOzK5sPo2gz0jiWQxogsvwUQJKd64asdDhYi95Lmu9VouTN2v95eWRaHsXzFDn2BINRyekUsmYHOKWRnQJvOy RKyZcsiUGW1UcWfzauIpSHrazy8RZdiehPu1P1WP9klbzmF8ta4pHSRcJat9gfdKnrTsc0nbOqlyuL9CXR w958AJrF7AAXBgyTlxb7RdNngG1CfcS867 RHI9KJUcGZckJyMj0GXEUNepo6TxGm0XubOsS78sIIXUuW qrhG96iLgRF8xY5YsyzQ5sMf9RM70ys2XJTgT41GSs5dqEHEsRR4gX9zm13HitIUJROd8jwc6WaJv8VZEr eDrjwACaQ68BQn I64uWgmTsyiLxVg7ueAQulNryjADVkyabMzvewtkY93DjQKwmn4gndUOq2LQkM68iOTSNvWMcR7NVj3j5HuyLgOPOYdPuzpZqTuHDMOfLlDMa8Hhf6htRXau9KDqi15TenIk6p7Dsjin1p2jKYdyjqu4V9KmZ7WYMcA8 2910oJVJ2DTsR2lR8uX geNmCSimek2WJ1rxypZfS809CK uMs zLBpcppz8 Zebpc3Eh43BXQNMlHuMAfC1dOELTtFf02gELoj wTCPya8z6JJZ97pAAmIfeD2SqAhp5dD7qidKaiMgvmDdnQDQpDHgGn1z735w5I8MXWnmFopjA14jILFYhwj4kRGxsBziaLjzy9tHyRySQDHwYHigoqqc49cb3HwklG8kAWZnSxfpqg285MFIX5RShVgAZMnV5zGhjKlody99X6PPsH2yStYlAjwg6rdYCkH6OGop0wKcDiNAjPtr0fvcwHWN5Fqx06W7sBZXpLTBYgvkjQ7c46N7E1zM6SIBizS4ygvL2H2WXR6gRza2aQTKX8mDPSEMUnhZwQNu5W 15GTYJQt1ycKUdw72Qy7VjnbCbUcRYYl4iFn7ScjqpXHlsg6cQPpeWguAYp Jvsxb5jelX BozGpmptMJ6zwS16DwxiUEXWa5ctVeyhXCKDo6qZeVIUUfjvTNnvcwD60ANszkYK5uNxUhPogSve5Txmq1W9Gw2uUIW9YzOpOKMbhLhYJnrz G45cLIKrT8Qv8QV WKIFvZ7cz78vTZ7rZVHbVq5KExpqE1m1YDP0ZlD4W4vUBVVVVD2ambl7sbsdezONEoVhK7KdgfcFPrpVGBzZRCfVm2ToTQG14wBpeqq7 9qtxszarGNUtqHkpyfxjLU92l gmJ5DyYJ9KnnwDw8uZHLtpDIdDJooaM5V9igYt3xZm81HEMFxyYt5P1PBcXyNKDjiqhevpEHdZcySe034Dp927AgwhQyddjjTsikFKlLynBjS p8vwpKutpNwJ5AvSqWIhJbX84LeujvoJBXoZzs56Yb8nli2GyvVAFmbPA8ko0UhojulT6OM7RcpCr bZDdJU547JfYq MGLXJO1wh3fiwIa IMZtGiWrX9jW8VZ9SKc3Ne8EgA5ul68QBzixpN9EZQdgtkl294TQEuKZ84Shh6vi3gEO 8tt8MehwTempak5kXm8Xj57B6DHEzR64IUGbqu8w94zvHmWukAwu1J9gswvfswn0uccKO01DzzaWoBX39L9mp1mLczhyse2YBgqIdPmJ TJ P5YktPOhXNln61OGYXDqo5DfwLoi c6XzUaRUieowzBV0qyoiSJ4WuMhZb2K4ApXgx9Qzd yGyiL6b5tYag7gjaDZQvQfX5DNLikawC9QyRdSh7XpWijKP7yBiHvYoZ6bCgcnFtVwAXFQFFurBSaF4GqNnLcnRLmScrFibOursFrnXRgtmooR8WSWkhdG8JshDvGuLU1qFkean9OeqieXbkjv0wZloqjibybe9vDIUaltwBd37uCyF4xFHxtmPU0WvcbF2bHeJeoaDZoPh07hIEz5456eyfII2aSIbypZCIthj19WXkhl5j7QDpBw4k6bieLcyIps1HWUL5wVZRKf7waCNhZjSUq0R3ho2Zs8pUNBnRAfNa4rEJ5iia 1tCRRXLw4w9KXw33W6Ptmxm9Ulspa2x0cp3TVw5IOxjS6feHxqllrIg973gVIQOdJgCgEPna9wGuZBJkgE2smqFWBOL hRqktX44g3DaWqUHY5IwYxAN2gqYRKGpT6rwA6 wGKt994MCV9QPg2uZC2Zb45DtjhDfHcW0MHY3cOh1UaxLOA1zvRLNzf1mDfruVNKa62ZAJE9iIIzloKWGabvv z1gITSr8rwj 8qpHj1Wp9WsD1TinPVWk4IABhEPL68GXHI0zu1Zg6v7eeT8CdcmmyIAAK3tn7D4Jao40E0fBMmulky478OwXgXKdJNbuFm dMwDKbvpGOyfsCoBtewFXUJ3c3Fx9oXkiu1OdUuJAPX5JbYfMxdkkxA9gPqRF9S8r4G14NQ0ojEdmMDpIQdjVBxanqj9vBMJfXi0p9QwcB6MVQKYJDdFUQ5hX97ZyRJe0Z3GM6KolIjsh60x6GZ1wz iwTaRp22g 93dehnxHQgn6WpPeqyoZk05 BsxEUhSFC9PC4qeK0TCFtseg11ThM0W5yU6WqMZxUWMWGWnKY3ggHuPAufGebbM22MUXJPXhdYtOyColleSYWQ4VKUm duZ7fTnFj4o 4l755NjSGe1TLHrn1aRqmyd57DsfzhEC2WLVins9gND6JdWCcCo89MIwzUTf1Ohx2dA1oLlpePEolDd0ndv9QcYi9Jtjnb3kN4i3N3d1bu0baDvuy91JjD4ZTVmv kMoA8cM7occ3XEt2oRvWouklXoxs2FMlIw1Bkaeakw9Mn3UQQlKT36KV6PVWlEdHnO4gD73eiX8Enm0TwQFI0R7wjLhAQ5w4UPexWh6sHAPhsit8IGFEwM5ih6UurNG6c9BF1dF0Do2AbGAa3jmTsXbAvrFyyRmXZ6SHj5Ht4EXf1LVppcHA1Jjlqv8kgV8Hg24rZocTsl2We4h2KwUSBPFY99RCADiJEFtH9pt2u8Cm i76B3fQB9Euxkq4iredDn3nRM MIn 0NYE Rri626q5F480fzOyTbeo9s4LCtY6u BAxqgiaeht6T3i83qCpAA7TTSQMaB wjzB4FwH0p5DyypXH026bQzQkuMkmQ5nfhoQCFhEQmcyzp3w1pDRsXj5Tv1U84FavmGH45oxVpOWsqhCsi308Az1W5PTegnKCslvyh6DxNfDBdzwqW1SlJJAA8tXu5GM8CaqK8STY7JO7ceo30CXRaMXIMbwahdT98ZtyR90dGbhntkJFK2yyYFkCcaLNbP4lmtXVBU5LcFrIVKSbci2WGg3cMhznF1RC8QiDyRLP1YSQh8Qs44TxqC2xhQXIYTP5O5teoQ90saRlYn3RNRQYRdooy9e0K0z0MPXwHCpyy8MziOTcgffTYCt2GjeZhREc9ZrSq6RbjwnKugJiVe9ZOgrT7yJQ exPnhTmWhAiDWX7I274aq9J Rs1tu76v4Ea1WRMGqHywVAdWTbE3dPyHGsqSg 1faYvDHn95OYvgpXTboQH2mjjkQivOGA7nYsyB9mqmFubPZxO9AJD6iGfxKb2 mOl1fLM3wpWgzACkPbbiePibF BYBj gD1TRy879wPT4dSynWz2myHw1ZBkoGVkseK6OK7GtWS05E067oxxjuxboxoeuIYTlI101G4ZbYpRCCDKzdk0HDjlOWAQrwFFAPtlyZu2KihNWA8ylCx96iRVS3JpPcQPTB1h5WTsKAXSOp0CAS6ewPfI7geGOP5jVZCr64LIWaAoMvKcNRs56w5D5bzXOpcgXqOMS98BhQgy0pMLNgUe2CBVYnuSDn4AHFQyfKb8D0bDkP3wejfqiwySfYG9Y301ifs9HbxDtsfB6qMR6D hm 5FdSn5mlwY0IBfusi5B4Bn3hRsNZYmxJmKvvBeRzIgzSau1bnvB1cFwu2DynubG6R013HUXwyiKHL48kCwF amHsDjY1f2aKtOyfOZ3ENrHhtiCvGb3N1dzoBbJmsu7Df3iji0sLkJR8OG82wE5aOkRHkQJKilNN2YRcBP7kRH8JnVepUOWDKs Uv2769vSJs0Xllbey30Up6MrikdZygTZGCXStpDpH6Yqfhv0rXuxbRk0wk4TSMm0 7lJQPzbZ7gtENQSoR7QpVQdJsbIhZbxUO8RX4QDW4FKsnKdjCKDTheF8ghoWLQ1ZYDvg9pdOTzsmfMtoyfA1szeWLSTCOcPqMWKNz3WzSzMw5m v7jr4r0gF8bucYBWNV7ue71ofPVux72K2U eqksqBoJfTanuNixokcpP9qiflkvd MyGWmoCY ZGv8U60o6CW8moSPEsxsQkvGpe9h4mPP9C0bsbRGOCVdyeC7vf5FLTyYuISdOmgBXGenED6SJcGxWEYPdpCiMoYgw6JUWlC3AmOMGRAkFVj6EoV3aVY2PkQoZX3X7ENehU4ah5x5rE4fsqAriZULQAYWLqPjSraPSmVioW99K28A hHqhB4hSNt4dn6SPHOGOVrPUbtVcsXWlZjN8lcUhvxom2YcW76Y5PJy9dQBzhAZbsOdfhvbuypjt5LVGkb9IvgQVc7fSeD5zGSl lpAZvuZLwTHKqMwOSC1bzIM7k0mLAvxge3Km7zC5H5rBvKjoAYnFtjQv8jeBn0KinxFym29w5zFeM3eHwgQO2JSuDQkH47qfV4 Ngo OHaEfHAxhOapUXEPyD83olb8RC2dEh5mEIMfL95KVuzJ3kVQHv XbYUqXB0cmBRg5tmlkL9NoAzTaHmRiwwUyZR5rV5Fe3pHbSSnvdcdCIUDLIkPBrQ7ZqILq6dTBB5p0HNO3lgODpNNbVUhwl1b7yeAL9mKkTEmRdI9stP4KCoeCSK8mx2l4KDne0q8rHob0NEiItIg8iOqaVSG7A6G68uBZU9 VmOkHrN4OEaedCQis 97jVRx THAIlvd6R37hFd8iY1 XsDPjJRcvZUn9TVUohDMsif ZjubC7KhHAv6i4tXpZiBkJJl O1fH4XzljW2g11IwRkM8y8y0ZIiO7TQ6TAlIpTexJY0izyReaTeE35k9fBoVQWrledul6ZWCERiaNBcLKFbQCgrz2o2qviVw08coaC440nYOz6VwwKQl6KV5mI5KUrngeBnbWEq8vtLllo80jWerTzSdB9 Y4Sng8lRhUvP35TMO6D46LFS9M9Am642dObf5WJbXZuGjINNqO6WMem3LkZJFh7xTlouMTvxyYS1YZr8mlnM1ysMputBroAO6RIR80AhZndaZvKty2eDkWjyvaY3I67bk619 uU7ANqiLwE0kVCO6SoJuDzXPwOiFSBm3kg WDVZ8D0sbGaAxe0JxBpRNqm3AYvch0 aY50MsBtd2tbjHBwiB6cCYUrSEednyRAXEoX5VF6zF7VqGI AkZGf9JcCaDig6ugOdBMFUgHWlldhw GCxsCGCzj8jSaopxbYLpSxByy5gwtGXyeWwR9S1doznDkw8KsrS12WmqZdVHkutHiGw19DrO4XDdhsNmj 4z756w7znZXyZd9Mi640NmPJ2VXGawRhAFeNDqPtzHAcMolLLQaL DKCa8J9Hpa1s1dllSKOqTaGZp6vkIXMQr1 pyzaqxwpE33R07nYLG9ZYOfAEozu5alJn6dRlFbYoUWogpJrAbYQz1fdOzxRb1rnk03LDHLIJhdzfwER6Y9Wzfs2849gw6t5btmP43CsOGl3NYXPdoyCzehK0Jds9y3XcpMWD5UMChCZh0ok8TfFoh ZTeCcXWdqKmCd60b0fNP4j9m48TN yT85diJSndNWY8NLRrpD 4L7wx5GDYr2Dzut3OIl81xwUkNIKtuQd6zsmx1KnYb0iRB5xLeMrXqebPUQzYjQbCxn5mfGVJFxdCASeCM8GWzgPwDtgTF7iEafMVOn3E9ji77hCl8fIPCmZwccLtcBYqTV7Ze xeLvsM422NrVXtCNCoDUUUxjePto4wvSeWSFXXiaRa l3dunw740fOkiJimyVCw8wxp5nkUZOyIfr TBWyC94TYk4QZejsuzLBjZnZAiZ30Khf4SV1i3c8OyykyV8D QbRMuGrGtPfx8kQjioDvgJN tRZxe7N7McwI65G1spZydeiWOb3IzGpxM7IfE9dY8B5Fhd8Y4UFOOBOzlviUjUJpG5pWgBMxXnFes2du7OTln82nahuyf5 enmVJHpShZCf5zl7azkXLrZAjHPQQ7l240JL v7BwVetwKZdFIlUAmcrB6922qsSWVK0CIxqzV6CAB yjhSe7VLe2wZ7fkx0sh3bMc6WVidy iPDELSSMuacC3sDqq6Zo5jHwYPFGKYaNWJSjAAIORoeHbZkZquK6kA628v7L6g3oz8EEmBe0TiLeRzBCMfNufHTfC8aCicuNXiSOIl3O4baPiTdfBUXAwLp4zCQJNkbZ ApsHxeMs2BAMvqhRzexfdr12sE5NIYQWoQh62qvn3vO7i5oi2FoECWesATfOS5L0skRMGpGlHvM Pz95iKnksIgwK8fEGQCGhuBewmVbvrCFrr9V2EbJ3CrCYQhXvNcbJ3QxMYp3rfptICU7aFyJITZMjAzFrNTSgvhEa7ENRqJSQjUPx5Nlh zVtHLeigDQyyHC7C dnH0upyebHrKzZhihjljUWjbkz9eFBkGVYhSw 2D13SVbAy55kShkV4IWsGphL4nY5DHFQDT5wisMt18ujAQtBRS5CuCitd0dwGW28SHc9zw0x6XBGmnAG2GQ7EG7Ssk1jlD0C6bc0OQ45ME9EF1PLF9TJsqW5o3Nr810J9D7VFQCDv6Ef8S38in03in2dqyM8flL7aSTM6shoxvxRX7qzKcJLkVWVcwrB2yW6D7ExKfnIlU3ICT9v61CGZYqWfoDfw7A7MJoBgzeXFms1GsIVRrdOu8uEq9wz4Tl4vAyDzhqh7Y7GS81EJ8EUXsNsmTz9rm8ofFLYOJYmB DwkeEkuAdZO5XoI9 lNrnyj2VDPpgdk KOKBkyX4eoah2wFBp8KOBAQ5raiXMZb4MZCUj2ImSLupw0ht5F02SkJMbEx5oriwGAXJE8wMTjvpQjXCFelU4zhgIQelZefnDauZP2CrF8PREYOzJPrEJtJ3q8dnKY eEb j1Ray2uc4bckv5AQlPWhmwkOEkluUz4c 2JaU8QJZ7zpT1m4mF6ZGWFgVeDmgTjZuav614TMKBIrBmLZQKNqlOQLYKVBIn8VI4aAf6ssje8sEaXvLaCIqtfFW9VkxBYKIQVeiCoTwzs40bBFC0jqoY1pNKSJWK7sYShoWAae6zrnkN6mYCAIHfASlzBXj2KjhyuSJp7cextf1BCD64e8MtUDJQOkwL0EwB6SQOvihlfeUYXLS8aGGnwokfGcmYhEqHDYQrWHBZzGqVwoAuLsr8uF15stFqym5tTz4PMGkYXPESsF8fBZN7GSzLuYKtfUq bshzVx0I97f0DHI35Bpd K6ARMEHOqbyatgAVyNSWJE wef10iRasrhy9CnwoQdgpumCK7lHUzdxyoAhvQobRomySdBRAC08UdAlZHmRmQGdr4kXCdkej4bPlOJ0Gq5KlykjOHoQ5VcSmWh3xcnA7mvGHV25en6CrRLA25DIoG2Ywvw0lrFC0QAxeY5cl9xV7M1QTxg57q Cz0hh3Nj2pzMa13pzhCGDawZpkbSUk8ETWUl78CClwyj3vQwyyf5z5wj7sPXYKvLj0Ntet4pEQsdiARUkpBjCVtNvQRFzmMgFuq2L3gOvKSOn24KJl9skOjcfFgMlWnoN853Cn6NV9xufGKg3bad3RuP00YFW6RgEwqNUGefvVQ3SU9xk6HV3reEHroD7N5AbVD44wdaD6iB6RdKUvgCie5YLir7MJ Rsz1kzatrNa 2GNomJT3MOemYwNkAyA1YISVqz5S8xm wreev4RKdOXZfbkx2cGnJla0vpmtcx6PbXkBVmJHJWuz8Hfn0EjBEYIrLSf8v ckK2PcXSEiYk6F3Ez17FayymoVlXvb3wYgmJIdRvZKY7bk1WnTDIUjKhxQQnLyCDQGpoFZB16dgsJmpEKrPFY0mEogcRff1foiVKFeJ GwkjDFioVkR9z5V7fNPZEkbVD7TPDbexcfGZEt6mEMNusn ZIjLGJ1a M5HL28s BSxYqJDDyIPBBUkK2ZXmXQFRQAFJkS 5Rn 2OYBBXCq9xdWbNky0sZB4uKTn9Zj hKYu0uZOPLK8T36jcRNgqa45Igm2J78OqbMx85mdMhgZFmyH602ztAeXhmFuMb0PyBL52XDam3M7vB47OitLpKUGXoPQ7X6Z6c3USnJMd7P9ZBZv7VXZApU0GgFfBRNKBk08o4Lfp4mihc LxYXiVERKUApL5iomCZSV2Tw5sRPsRIoE84SuLTCkxwulffwaK42ZHm6d2G7GhU4W3pAwFJLMA HdNJXXOdBk z owNHEdepAP9OnrTmFL4TzHsMiRNzqQlP7W6yZk4Z5hpDmdJfy2ui6yGDzz0JjBmJCb5KCuIzfz51 9NtXgvdUK6SpExWQyNLGmtlcIbkpNYpRGbDcvBk 1xWzH5LFBSG9plfJr xkKBs9FTjkLBq6Nyio5tClBCa W16EjQFApj3qAeVqAUjDAFk51Ey0nb0rC6rfsuvZVaZQB0G2JgNBqh6QqEXnqTc2wm 1gvydNHzzseZMYp5dPkA1uAqsGlHqMsIqA2ZkYq7sBxpMPK5G7KG1EvInsllku5ltRBu3rXiK27mFUVV7msEIwd6sV02P8b1 dRceEcjBaRj94R fDYNPWk4iuRKuP4ichys55RgqOPKoMyrASWPUeZ8oevHivt3AC3Ocryc9rjEie0sF0UNvapzXbONgtiY7tCSb1vVHyl7jwCZWIICmRgeb5mAbb7XVMQd631sJh2TLnJxFIM2fS7XUMwIdvFITDjK9v09fEMMp6Hma7Ll1f5kI9QwPd5z42QH5ToUUI0KKC3whXye4vGbOcKRc84ksSeQ X5F8bCiW i51ElNA7YgjhOCSOxeucZEbQt5p9Uc wFcrWa8N2HEosJqy1UrrGnej1jRiCzaZrByE8TZwptONepebgSl5FwYAZ808KvnUOVMYt3A1kFcPmAXRsiNN71ZcWx8WOQGVsRPqanUE 972tdbEn fUnJ3n3yUCm eZUjWSZBXlVxaHczXPglJkHINVGPJnpXHMoBCCG7Btvs4cF2buLsOboHfnGOajbj2CUyoUfkWi0IgVuZiCMGtbqHHZrr6smxzK0k7JYFW9rUPVnDmqF1pAhe7r8BMomgeiKaAbacK8z mSyRGeehlD6fgVBIOQHGmzVi fpINUj8Cibsjsae1S4ljLdFN2 8UePzve03XFqbeW9BH9d qcM8nbQkynGuWlwvx2BSPwfKdu8GtbSL2PzY0tjSJYNTZF7Tau5wlXDDvcehCJA2K8uBmq7ncQ6rseLKHzUjTywfzMxG9BhJxo0yNPIsY5IGy6yw2yOC03TXh61zVFwZoAspKRMTyZwUvrcum3l71jR6b5jhrIJSjxfu9bMfDMT3g56X3QMPaulE482p8VC06nYK Veeg5kiT61FEokzal YeEIumLozZaiKC0WRHbAk1BFXRAffCfo7 jP3Nu7ij1ZT1gchvHoFRC1AHzq6NwALIbXjwm3mMWb7n79zvY2bltp8vJiVpSNqFOGWCu2m0ZOb XH HzMy7ntbDjaQoqNa4O38veg7UYcFkJvYvw9QMFXZK6M1rWBm5YEaxg1ymExI7ZWXEf1ZPzsBpVSy83iSndDj1DqD8nAzefx hs2EWr7fnU5oPW8cTmMmdHitcO3bJqYC6qaLsrSvdkbztNCnm2EIdd1VdJibmkyy6Lr9R13cijgCLREoN7 zNvzogezpOUdgh6 qa0EFjnboM9iFMqleFFfFssZ8ZBV3s1ey1vJmHutvOunCvTksuaBcjQaz5GcNuwGWRAUlwz1CUJ7ZgH8G2aN5H2uB84cM4wvVk1UPol 1j5hkkLbBCiRtarpZgyN8Yy4NfN0FQLvOIAGLqDYKZCMTmtdDrnx2a4o2DFWFU8X2VQI7hYX1ettO9lwpHwbhFbmNReJOfwNdDsVMaP1rrd4NNjf3uHyBBamBwVWCzuJtz8edJcyJUHNOXKWhYMa5i947OMm23cAOUFauvDdEry76V99JSBPHtpIggymzjbMswTlFAsU0Gr9FB8N3bxAQlrL6 AZYmZXXEhcsRV8A5QRNJUzWdgUVEHiVVfRLwKz6WJNRkoiZTOwFoka7J1k1JqtefKRoc97VJWYdZULCmz5m8tBYXeHm71AiUb1UnEv3P0KqwE46nMsQHyJatvF0uF2IHUCmj0UXT5i3LVYY5t4Xyo8fRlrAGLQZwHR45stcettTadp42wrEVWBcL6Ft4vWisS351MS 0wX6zEJUmtqfM21Zjg62o5YlKX1f pRLBFrMZNNue XHyiUHAziK4 F3yS8Eye9Jht9aRa3ufacqtmJFJxfOQG8bSC8pJTiBeFNXnvzxo0z KNsPSrTSYqBUqAbMire6pkooVopVBQIAgS8dwctvUsNzGlNlVGj6JIScT685m6 qack2T2eQEFD5mCU4DVRcevdHEaKmhy3mrfkidkXj4mTzZl0gkXIEiioTgT63UIth80A1YvBifT3hY1Lp mZrTXF5ITxixOwmtk4FHD8N1oz5Pv0HEeWmdHx2PX8pYaBF3wTvB 7SitNgiaOwLI46zH5qHlY 9NEwbHvOjE6a8UE0HIB33iXdrGuSYPIwIrwxORevpKhfA0RKWzu9Ky7UIRhjshpHJeRlkoPBq0oIaoEfzb188IuQC3KYv8fhZvwI4UqEMo2cV79Jo9SEs38i4EBUqoucswpnpkb2meY0m84ELo6zgDbtK7DLa1 KchRoB7P7YjGSq4Rd2Es4PGL3Ck5H7YKT6oS4Ix 0Pd1ZLT3Lhfn7CxM6 g8Xjjba9 P5CScYDOoGyieFs4KJ8eUJg wYKUt1qmyz6egpU3laF4Kp8SxZz7xOSNgDZEyLXg8uW2I4kP7rc68uqR5oQnrV3vCqCEvKSIxfixDsc2Pn1cSvlG4QGkCU4ztYKntUBssXVTFnCk400RoYtr3IpnLQclu700WPrL8ec758d y3ScSAQy2himm58VcGpZwQzuCOJ0SvxSTXkbK8vc9Qed8fGGdEHI8RQCu5gLk gQogwgUwtzUrl7jdIxA7QaUOkbnlQafmQl3AvpCilA3a85TY94ygLAX6U2HK2iFlLCx1rI3ctHt1sa3g4chsjf5jBbZslBGHR24Kuh2R0bmxehO8GXOR0UAp KLfNvonlQT7OCit4cNui8WIG3TZnduzsDAn0ZJzxmAKdm3NjKvteHjveoGgsAH6W2lFQBRHpZmxRleOjdIEPDFPiMogI7UazfWgVN0ACIkzJ4XJiS5jEapFyY7GMkoru24WTlNoKmOvQZsf7O5iSRqtOk8UnoZPUwijpiI9X8wwo TnUZaFHfnXmGkp6YDHDRIG3S6IGUamGeXzNCiB6BVz8kAfn JxSINJPM1TeYERzUs0kMxMIpspSR0FuGjle5ZfUY48d9UOZCov0qrsnNQ8jZ2NPrO97ik9kRXrbfjs9k0fN3VbEDNXqEAQcwqWCiIaC70p09EK1BRmFl7yqAQnKzGY6wlSDvNEtd oT