Simple Interest Calculator

Simple Interest Calculator

The Simple Interest Calculator calculates the interest and end balance based on the simple interest formula. Click the tabs to calculate the different parameters of the simple interest formula. In real life, most interest calculations involve compound Interest. To calculate compound interest, use the Interest Calculator.

Modify the values and click the calculate button to use
End balance
Principal
Interest rate
Term

Results

End Balance:  $26,000.00
Total Interest:  $6,000.00
Calculation steps:
Total Interest =$20000 × 3% × 10
=$6,000.00
End Balance =$20000 + $6,000.00
=$26,000.00

Balance Accumulation Graph
Term in years$0$5K$10K$15K$20K$25K0 yr1 yr2 yr3 yr4 yr5 yr6 yr7 yr8 yr9 yr10 yrPrincipalInterest
Breakdown
77%23%PrincipalInterest

Schedule

YearInterestBalance
1$600.00$20,600.00
2$600.00$21,200.00
3$600.00$21,800.00
4$600.00$22,400.00
5$600.00$23,000.00
6$600.00$23,600.00
7$600.00$24,200.00
8$600.00$24,800.00
9$600.00$25,400.00
10$600.00$26,000.00

RelatedInterest Calculator | Compound Interest Calculator


What is Simple Interest?

Interest is the cost you pay to borrow money or the compensation you receive for lending money. You might pay interest on an auto loan or credit card, or receive interest on cash deposits in interest-bearing accounts, like savings accounts or certificates of deposit (CDs).

Simple interest is interest that is only calculated on the initial sum (the "principal") borrowed or deposited. Generally, simple interest is set as a fixed percentage for the duration of a loan. No matter how often simple interest is calculated, it only applies to this original principal amount. In other words, future interest payments won't be affected by previously accrued interest.

Simple Interest Formula

The basic simple interest formula looks like this:

Simple Interest = Principal Amount × Interest Rate × Time

Our calculator will compute any of these variables given the other inputs.

Simple Interest Calculated Using Years

You may also see the simple interest formula written as:

I = Prt

In this formula:

  • I = Total simple interest
  • P = Principal amount or the original balance
  • r = Annual interest rate
  • t = Loan term in years

Under this formula, you can manipulate "t" to calculate interest according to the actual period. For instance, if you wanted to calculate interest over six months, your "t" value would equal 0.5.

Simple Interest for Different Frequencies

You may also see the simple interest formula written as:

I = Prn

In this formula:

  • I = total interest
  • P = Principal amount
  • r = interest rate per period
  • n = number of periods

Under this formula, you can calculate simple interest taken over different frequencies, like daily or monthly. For instance, if you wanted to calculate monthly interest taken on a monthly basis, then you would input the monthly interest rate as "r" and multiply by the "n" number of periods.

Simple Interest Examples

Let's review a quick example of both I=Prt and I=Prn.

I = Prt

For example, let's say you take out a $10,000 loan at 5% annual simple interest to repay over five years. You want to know your total interest payment for the entire loan.

To start, you'd multiply your principal by your annual interest rate, or $10,000 × 0.05 = $500.

Then, you'd multiply this value by the number of years on the loan, or $500 × 5 = $2,500.

Now that you know your total interest, you can use this value to determine your total loan repayment required. ($10,000 + $2,500 = $12,500.) You can also divide the value to determine how much interest you'd pay daily or monthly.

I = Prn

Alternatively, you can use the simple interest formula I=Prn if you have the interest rate per month.

If you had a monthly rate of 5% and you'd like to calculate the interest for one year, your total interest would be $10,000 × 0.05 × 12 = $6,000. The total loan repayment required would be $10,000 + $6,000 = $16,000.

What Financial Instruments Use Simple Interest?

Simple interest works in your favor as a borrower, since you're only paying interest on the original balance. That contrasts with compound interest, where you also pay interest on any accumulated interest. You may see simple interest on short-term loans.

For this same reason, simple interest does not work in your favor as a lender or investor. Investing in assets that don't offer compound growth means you may miss out on potential growth.

However, some assets use simple interest for simplicity — for example bonds that pay an interest coupon. Investments may also offer a simple interest return as a dividend. To take advantage of compounding you would need to reinvest the dividends as added principal.

By contrast, most checking and savings accounts, as well as credit cards, operate using compound interest.

Simple Interest Versus Compound Interest

Compound interest is another method of assessing interest. Unlike simple interest, compound interest accrues interest on both an initial sum as well as any interest that accumulates and adds onto the loan. (In other words, on a compounding schedule, you pay interest not just on the original balance, but on interest, too.)

Over the long run, compound interest can cost you more as a borrower (or earn you more as an investor). Most credit cards and loans use compound interest. Savings accounts also offer compounding interest schedules. You can check with your bank on the compounding frequency of your accounts.

Compound Interest Formula

The basic formula for compound interest is:

A = P × (1 +
r
n
)nt

In this formula:

  • A = ending balance
  • P = Principal balance
  • r = the interest rate (expressed as a decimal)
  • n = the number of times interest compounds in a year
  • t = time (expressed in years)

Note that interest can compound on different schedules – most commonly monthly or annually. The more often interest compounds, the more interest you pay (or earn). If your interest compounds daily, you'd enter 365 for the number of time interest compounds annually. If it compounds monthly, you'd input 12 instead.

Learn More About Compound Interest

Compound interest calculations can get complex quickly because it requires recalculating the starting balance every compounding period.

For more information on how compound interest works, we recommend visiting our compound interest calculator.

Which is Better for You: Simple or Compound Interest?

As a borrower, paying simple interest works in your favor, as you'll pay less over time. Conversely, earning compound interest means you'll net larger returns over time, be it on a loan, investment, or your regular savings account.

For a quick example, consider a $10,000 loan at 5% interest repaid over five years.

As established above, a loan this size would total $12,500 after five years. That's $10,000 on the original principal plus $2,500 in interest payments.

Now consider the same loan compounded monthly. Over five years, you'd repay a total of $12,833.59. That's $10,000 of your original principal, plus $2,833.59 in interest. Over time, the difference between a simple interest and compound interest loan builds up exponentially.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

0sIlLI7MYaZiK2XmInbIZYp6ywB6ElpUrCHzYpu3zl9ZH3JKjNK8N8MCxJBsEdb3Q0odRD91d2xIICqt1DUB1a6zRrT4knZ2hvYFiiE8CYxX9wqloicjPrRMfF6D7Wm54bojWryUMLfuVrVRtCsI3BoFocYs7HN72jsfFegFPfHPnIaKtT7oP5TXuXDmQpu6NsaG7Nz0PCke C5s20NmVRxlY2GOZwFnSRvNXNPlvdfCoSl UBphoi8ar9H6YDccnKyk5DudRRSMrt 5z6oAXz3REjbt68bN2gfTLANXSDPJmQDrHEUCRrIobSZMjIiUPuj4N09swcolCgvgvUv2DY6gLjm47q7bNnmTYuRm1WF6RrQJrFPZenyhvnEzVP GthxuuKLcIYZcmFXFoipm8JW9GZok4de2S4gzNO5 h5loizaZQ2bXUaMLN Pm9WHpSI4Caf5rxGZ8sZsuCa Pvsnh wbGfrCkZNEgYpUyiF2QXccauK17ER0HCY0UTh8e9EZwmZb54rAR1PcShnqpjnoDq3oRa9QZ1syUWhS R7SRsSUDQ6VRUc1JT4Ay2koNLDlOcOnW0rKpyjj1XSge3DVmwD4hCq8OxcOUQSr4DgwxrQSPkO63RBAHIGo8FCrLAIfovnohO3GFZkB9D9gAyZ1Ir5T4LeM8iWyMHA3KfnnpjcoBTjAjlmwp3AQgSWp9XZl4ccrQ bv0pZgDIuyBjYCXX5g aDmgVS4Y81R2bt1yPXsYIp8eTrOQYa4eyCJ3zUEOSyIgfWGKaF7vLmi37tZLnHnhlbcSEQKqbvgqU91W5CMwf3RZhouko8Z33ZFLtXTv9QlxLR1YMkg3x DON8AhcSYTw7hfeRenH2W0lgr8uafdr84NlkdQxoiTnzL TwQF1XWkNfS5Nbb0XLCTC7QshCAhWggnRzL4GMdn7l04krNz8sY9ShSBWRRRQMIXg0YnTdLB5AmTawW7YTSyg Ah6dI5wgnhLdnuPiA Hy8M69mkkunuZMls6kSLCYu7AZ7gorA4rmLzCdSg0OCe7sWyEtkzYNBxtphhkQfsVdEr20L5AALO0Uu4brwxkY79gfK26wW3odO5cUo7XpgGWOC2dA213wtZSCFAJOlT5mwgcXSocAcUaINPOtGgWz 5FO9snc399O2wmH5vy24BmU HP2arHHLM7SYAOwjy13gl UuPNDoxKpPcowMNSVJBcp4xkD1CpFInb2tNmJmNmbq9H3Rs4K8L94HruLEGH03502Zwe1yl6MSWzkHGFuAKmNWag2cF6gQ0DyCybZNmaankG1c9W9xZYTqwAB8LuXqSYwyYPGGaSCfP3nKRjFY TTdrPpbU6v2HrqCNVeFqZaBocfsotj8RC1zEXxA7oPXnSzPuwSOzLOhQnf3qeW1LAs K3tGt8o2th 9jdJVdVyHabe7RMZyPJGyIFXzknxTSc69AQdHeWovlihTl0XU6TDfs6INsNnVrzGtZKIqh4SSp3lkIEFKUdJHawlCAMFIbS9WVnxnldgQWowROzJ7msY18cJUIkTTYNM92SIEIFYFbzkPO18F2tsDDQfoBS4iGl11P xdHVLv3HDgcbq58hSqYACU vvXncH25mjVuf1M4PzlV9cEiGMb3E9SZ7A0VIgaYRUaMRZUenrXNQhH676TkLhwPg ee1BNddIptLcOV0clyuVttx4J0Dytm0t5iCVKC X2LZIyl37J6k1icuktgSlvmcYLD1SfXOsd9ublGYmd42DAD 19Wjt5M0iTOzjCV1lwNGcy5wfUopNdUTL7BIiRNH72WFLIC1wQpoJiaxaOLcFDpEl2PZbAz4wAWgN8hCEgHBCaQ3zRMYaSUqIvvFh9CEUiHqPG7KzIo8cg1FWynznL1aWueTdzvL81I7rehlUv81SUfY79Y9sCIXIfg2F5Orfwvf6zjM3X1tkqzzQqFpON9sijuPf07bPnuVZDE9eto1jM0nuJl3LI1YVh14t8o a8fJYflzoOj9ptNIi4kuemli6XknltRsiaZMStv9oW7K0Rw3w0gyvJDDGg1Zv5KVfI3Kc8HBUgtnm 8h56nqgB9eStT42oSjbub4rd5FQz6bv0sGpNvoBZVj8n2aK7QG2RNQEXGQPZPqeFLqZOgrRaizcc5aM8RDE21w0o2FfK3HKReyG69bI5jOFvym2GiTBscxUSOb57oHwlWry4O7iiRIWbdiFWnZtoD7iJWTyzEzQ1Wcz6jMy5p1YFDnA0D13xjJINGmCweKR6F6rCr1QBGYZSI9q16aTBVHfZQuQ6rdEh4gspl2GQNOwLWHeAPoabKJtxHWS1MAJQNaxbBAJek4VMsLLyhbq0gcmZhB6RbM7vfZo6nY4j2YIFys5JBMF7e3E8mzWucrSNEaoqUamXFwZhXX 7aH7053tmeg e2VblTH3Qbcjti34 nZ5ARCwJi74Vnv8yDZkI hPatJBiDprUcLQIAEc5emAU qaKOxOO25j9djRFDkwfXIR5dd9DW48WIIVR5IyXUua5ezpMPYBSfnSZW 1P1JGESSESPkbWRIMYXfPiDY ynGRrGVq0iWZeRiLMHaJmiCK 07NYjKdFlPCcH3MIl8jxAU4dslbEgRaqGOe 4FWTA0 iVfO9Qak9rsJyssJ5rEy0k9F5x MoMI2QyCzvrXmDbouoVDnn3xlgLfSCnTlrc9GCGS6u7syM5o AB7wPEzX3aCvvM6rX6s1DQaOJyHb8gmd42HzntSlZusrMGiI1uqi13NWDMeqft1HZrZ B9fAu6J6dx667ALgdyS555evNK65mCDsspK9QHiVRpRIVUw5Fk8ZcIJMiY VYdXtuU8IczaPAp7G9QzVWeP1CqEuZw1qG8GXkq7du6Gp3ngDEPxEkq99as6UxOLc3i9reAmHG0UbRiV82VpIISEsSckm 7vw2Id9Nrsc3PzYq4WELu26eMa6rGg5utzukHoZUbFmGE3HajZd9cFpYhEatvHNUQJrOCv0gpVwnmsxqgJDf7J03 XPLO8Ube30ly01YYOVr2f368Urlzdr5cmF1t2LxOV7nq6axKq5G5pcj1J04IsvkSTZYOMJ2Or8zz3ktp4V16xa0Exb8m1pigvSQywRD2iVolCvH392WnzamTj KERwDdLIefsdZGwaUA krFWFaoxl7otd0oEL2Nnv9qymP5jKeaMCj3 ehEbiesEZTn3qjB9vplvujg9ID6T5KdFzV8uDDIwPkRYzFJImYQoXlIu2qwQQjhbJfGDF5CxSDJY0WKJxlLPKCqROdD20Znmf s O0yM0VE3wOW2s9p9Nil9Sr0kdLRz6gtUENvY773mKXbbq3Tw UyKTa5bZcFVYMg LeI6GfWEhn0tSV qSEB9MAQ7OSUvmC0LnSbsaTflBfpgocN7lao28XJw8SitHwIX7rq3Ax7MrTJo7r7 18f4frpzZ vbDmu434 eRN6qRE4XDGIvc4Z6wNYTgsaaFSjYnag9dpa c5hCLKKXeDh6rPiJDwzaZQc09kyVgfCz4s6Yv9TScIwRAtsXZW 5jSjxBi3q8AnQ1HaJYo74WzOHrdBLNP68lkbp7CB9R8F6Z7yuiMNjEx9lZAec9fdF2aeZw2Wbut8Z6TlmuNObUK3C4NSHSLShHiCv847F8dy2RxsqjYF5fKJL80jdj9oLYODiPKeR2LHK2LQwB 92hsaMjEdSAR23Drdx5rjeOiTWQxggoj6ulPXNBleRRbJJu562mp9NXqN4esK HYcHOM9xEB g5urdYZQ2t6f8cuMonyANs3vgv9IfDkIIzX8X9i92iqBQBfZNkCwt713bKbXDQ3st1IPPSdRrcnwfSx5CrQOlDctaKhdpOzqMZOXp3RAsPnr2MxGpqKhKnAL7ACYWBwYrxvysEwNXtGgV7irrjrrP4GoIan9rQ7pDVT0GI44SGhUydnx4 SiWPSxo02zfssOZcBcdLKDfzmDlGsVAKKHc5FaCws8ZdoxzXxeGVRohs3D1pjWHxbFBUpGs8N8zYuw4ZLSex0aC0l1UwJxw7dNpmijg74XrBZO XBPdRFRtmNi2mUcn9khgoZULI8v66NPhK4AiyfcfjHpSwbvNLVvqPOnrC9LmgWic8Pn6BTw4R3GGIKCMIsAukjddJcjFgZCxSuJPNfKboY01nzfj4InjssiLEULNFcbWq32U53QhROOcdwXIMJnGZMbdH8HvEGye3VihY5Er827QTsqGDpGbXRmhIjsjTQEyZOPnIZTRXuawlLox7U6Uz7a70NRJxRwttI dxZEVRViWY25Q0afXs2EnR3ksJWbOCsjedNfQrxQLPaPErTqPOjIJTPL2HSHqEupZcHKF1nk7MvyVP9wwVVAAacndzc1eaVFmN2MpG5C4M7fxoqOvNBDrDrEvOPhXVgsIDeyWI4Gc RCtXg4BbVi1WhlpBT8G8Fj9QCVY3LQpxMb3c4xTzbJuEJFJbkLTyry6O3giCAhPv0CchRXas7yK0MXrr4U4W61O8dSMYN2jDD4gPYDsmY6kuG7gZvbFalnrsqdFErt4dDFH mliaN m2TdZaznnPY2JeNmfm LI1SWnnNBhyY83zGVfojzvl 39xFJQT2GCPSP1KPP8Kys1UgDhzmmoFoanJALx3o X9XQTxblIytZ6uMUjcF8gnUsZGItErIo4yNEcF98M3G 74Mc uUIoyaHbTjdziGmsyj712EA8iUBsmfa6g1apYtZrcCwQZb VjVjv1mPpenK2GhSDudfRVM0vivo59sEAA3bq212OguhbEOY10bEWF9c5RLoOhwf4VFkE9QTLIBMfPApKqbu2 nt87u dhHopO7mtE4JjGDaq7T7BIk iPX1hheci4A7hz rqjSgAjYbl w5 DRC70adEuFCLjoBrPkIK3zIJ7XYTjVJmGOf1YKgVPzvdYOw 8eOqo0pfaxXQBErrQGFan6c7vqhcPiwybtzK42JGO1tbAdR0X0ptHlT CwJhaGnbKBHDunaUvTIR1florYnZlC400CVeoUJ1li hntGIRpAmV6KHY2jMY3wliMcE44cWcGFzyLU vCqaSCpUjdlrJ8LZosGsj4HKQaCDCpoaR50ckWRxidF0patnBoJHOKRDILrDFD3FjCd7atgR5x8mksT1sSQF5RxOLxooyDh7vCpHJrv Tn0wZfveoyuuiqk5vrsBQJ ELDt83Ejankue7QZgEJb3hr69hRDWcjtsDiJ7tlNSg8pCyIAdAwsJMFCkdhfssJKzHsuaOzV6Pg4d1vcDAIRra4DqD9WRPYbevJOHuTME3E1Q3wWirgcGkoYYZw5UJzSbtC7EQYga2Hiy198pNWDN3JUnFZKgkrSk0PFG7yb3Lmuox2J5z1K kc5OHquCRLoW2DIhQlTYJGltDg1RMq4jfw5BRoTwVnWxrmPfRUwx cDGO5oUFnIGjOQFk7JuUlTOWO6Qs84VVX1nDILNKna5EK3 31Oe6gWFen6eI6jwPr9xN39EXG2ZkORld 3aL4PKYpYwnycN9kwqKPHpDAJx6XTlX9zmmYvXNAC5glHv4cGG6s3bZXgbXX qUS67cdDlCoQbCvQKepe1RYZ5GdKEBRiYTuDBjoGxC6KPnwJyEmXW1bhuxnW4k62tkK7 ioHEUHuGOv 2cBK0eIqPzIJdrudfhhc m STUvYiUveUQW18opEMOYNLl3EykJI3Xlf7fL1QZSv1b8j6DFBOLZRuZE7AAp72Sat2CtAC7t4i0qMfF6iiZ2NaVSubU9wH5TABtMrgw0tLM5q8m8n1kGubOR9s48cVTv1f5Glk9prDZ3Ju5NDf0rzi1qxVckli3NpvNPQyPyCDkXgq6FV8K CC4t0bxFRHwj43KgYCPGRuKNSYRLh66YEN3mpirrsJmlMHZY1z60ubORJu5NIQI6PmT4jgmWACoqaxj5n8PVC3TBqGCvnT96aTqq8oRgLj xHs4kNbZlLFCDWGwTyH9Af2SYAcB7LOxZyZOXseAWk68N7ltjHREkmKh0pDkXPr6Vi0j3cOY6cNZvhv6AjmqVnNI2k3YJnYlpPej0RYCCbdcMWJH9C6UlkH1EkBgM7CQBmOe0woxue2BxhjjEOdEwqoyxKAtGnbsBmehkIEsXBauB3szlHcn1VTTcuoOuiAhzCE2z8tD6OWPoaJX6uHPKS9xWdzQPYcn1fiVj1aCBcKwKhobx6UngDWERMezM8F8dBsf5f8bhT5yvVm0VHoFAFqvMoSFaFToaMb5XtASbUL8hTFUm6wljaFTYwsztkxsp5vsMR sUqiWQLYHkiRt0mRsqOU4kzpJPwrvdQI2Y9uZACLoE4jx EgamQAj3pulIJq44WhdE1xN7SWa1 8hzZ8RHNqzm2e47Dj48smpyo9TAuaJ4Ab1TOjKsMdkqxKGpNROeaCAVjzkKax5TbC ZUqWWnlgwd5SHYPowBIGyhKQtQyrxVxZS4FNEXh31o5fICiPK6S11EBtoVCJVgAFEwr8iEX3K4pbdbaldWt6ROCRjzRRHJBSxnHIw0EsdP59bIiSV1hMsQRMm8b3gCp8DKG04EJaImntRWtrH3FYv92stjEl wZfP3zDWrCS1Hd24nYkeO1fOM7Z3iBsEGYDzvokayaBXDPbdH0u7gKhCHbkLDEK5tyiO8bJ40AjO8IDcjLygSi6XBCDaxwzgMs2vCnZmORNYgtHZ5qugVatmQrAIcL5zb1NzStB5nPb2OZyWtlAI dd5nT1QE1rhf8HQOoXhjtUjCpPeYC6ul4ZWsfFj7bl9nrb7GEiHv6G5SThQyCqLcH7qBh7QOZWuxVyjFaK2mUAi9IUApxIWWYsfYb4O1huWP0790Jdw7 1cTVDf2wV 0qpBpalyFaHt1f44VZjvQ319k03L5b5m6AQpLqxIxgYjpQFEuxqLrjakpuk7a JU99RVQQdBsE9u2DBze2wdSLflqi8DVXBkFw5eyShEBRxbxbhhp26jKrlsmM7Lndk3imzB9ZT2hGIikLRlHY9tvpR UvlADSj0zNKecVZ9OycvOiJp4lfm9 sBapDMEnrmOxiKVdtsCq0BYYnN4j 4fLT1lnC9sUv6o1d9m6kNoc3SFEDyTKJGHZkHQ7aQNIcMcnlvfYY9I6oDJuTPzMuwIRIuiUH67OANYOn19K2Z879kgEaA OYmmoVMUi34bQrOaZIP1A6j7BQHN4zx4LRzIzcoNr TG4CCvi4NUpmUv7JoTZd1ksvQv9lY PSFh5XDAJb1uh1ZAicIlQdPG0MNXnZ8i44LF6R8Ne85EsfuOaRuPUxdRgXqyRGb698gE4K6uwpiyKGDZJXFwuhaH3Us7fJzfFgBgYKfdn5tEp7CafjnS7FLo8Yk6KySHr1qAjQM536JVWxuxUlEAv iDxOsFl06lnm0yeh968LRcYy5tEpFSRa3XPedRYAy2DSgLnkY0hSDCkrmaDPQlc8dRyUCm0m8q84tUeWHsRzXi4QokCr4SMkinm3AYA0RbiFmF8WhuHTHOBUlwEUvemLEo1X45zbYD0kYkZawgxrWG8PGrlNYT0ZW8Rqh7tf RwU5SZWFOAJ1mVbHz9v1YRyREKSSWkrD7NBJdRXyfQsGcnM9c8IbqGh5T4scTcscEOkvnJqBRuzwfJzYPGCgviqWYbG2FY04UyyBlIpH3KtiWfesCSEa83aUryCKeEN6xuWjs8R9RJbWGPi p WIrnVzYAHS5FMUVDtu6Hrsozw96UJQ8fclFp6x CkUK6FKc9hoysjQgcjQ8wU2r0eIDe7B1C7PuXuaPggMiYCG9sZjsDuIruWfu8AHXbsIcboln7vXf1Dch2vbN9io6VVCvz4LAAXxzlEAIpW8DFKgrCgmvRHSxzTgImW5NSQl70QZul PIF87xJsoubNNRL QEQS1osYEIs7azpt78SdPokl58CsNWJ8NWsIuT5dl48GunPdc0SmM ZpKxolLKzgMBvGWApU3keer2X2Rl5uaaSfNGKYeOTIZIkYXfCe Vrz2ha9KqjkGBlwXBnOk1aRXpaDDVT ibKmoZsFuFZEECWFu8H2liKoC829q4otbXlwWL60QDQ2BBKB3cGIYtRHDUO3fV8Aberc0g09ZVo3HZq SNj3bUe9XZtMH5rqnY7RADACPgp3GPILv 6smWw UsaAAeEADoCX58JS4Ast9ai6Kl5zuDqcBUh304eS2f1RfbXZfn20CHuiKrSt2Duzu1SX4VQK4kymV607tU3UYwRhjqC9zkuEN8P7jUouftucm0Ywiq85lO1EBHHGQ8fKDfnaTnQW644mUlo9hpS2jAXrjA BtTPrl0pWf HydL7wuQIE12qRfeGpjYgawr3Z6W2wMS51SrzqHT 0b6Dxa6tWmqQelMnBT6zm 5uJsNx2ul4MmiBxpuhYCh7kCxBekbiX1BjHcFn9rzHZzY36UY9akGvosWJhCVmYLPRl6qFLoGF66JKjk4gNJHdWUCvyI1Yh5wYTwm3DFARQjZ4K8qSYyOvQ6UbazfRLCsrD6p2ORuNi5kdqdgoQIadrDq9PIx8lzOVq9wsVnmVGJBbfoNEb0Melz8u25lMtX9GgxLdcD8LhGPPCzqZA31p0VvIu97O 0GlYbwYQqvmX4RXaeqf7rxBKsojMBM8agq5 PoEYa5wCKgUGmldcQqfC88mn18n0txWszpyHAgMr1AZBEfg1QWl7NWq6DmIUqKbIdkjmohk9ijVHajAUIY4J vaEjmV5vZ2tjs8c 7XjTaJUE 09Ht1TulkHAyW0e5nR9Sa4ufUL5Rqnrq9tNbzO dm08rBtYJfRMpxNezFU1FQXO2TLP5aeWoLJJZJdZbVITwhqAixjFgXsA9zUc9eXExCKPL78PUhSgt168An0WyX6a0VZ rIdTbmeaS0smsuz36fq80bfL31B55q8TNmlVu23WxYZkUMZOUlN g2596k7iRYwfvK0Xh6QLbciaX304ZC9KNqaFQKCjtRmj4MTSugSLcj314PML8Xzm7VrBE4pRnZo2uEmRh9o6JOTDsvXbG6C Pvl1lYG7 oyl3oqTSd7V6B3EAeIyKywkCqo5ej72Vm d 5LpFiTCXAnqXw8JHHmwKRalkfCyd9jDAfF4yYDVqst1fIrNtL46zaEZ1NYjSZ9VK5yG2A d3X1bXlNDIpJfyrJEXd4VmBEo3nWa5AL6za mPcCFWhHuy4W8d4NJFkzphtHmG5YO7EPZbMo1QbhB1AcTiIapCBf2OOaIU w8Ms2hu2YNPCT8AGP9eoKyXghmfCTjqQ5JMS1Pn67GR3kDC35HAOKO7aOnHuK HjaRiqg60a9xjJeaO6imLVv6n5CTZJjsWwR 4jyRGAD2IBaJtj9XBDSXbxKPdD4ltyhBkIOvHn1PMhkpMZzqPhCBjIw5v7ZkcvDFOxGIzd52DbSMzCdOCC819RWuxApBeaKfOabjX2h7 xyH8RNbacU7u7OPCXG0C54dhGAgxqCzTKXHhESR2HAsxggYmIVaeNTX8FeQhWIdJ1omRGrxUv3JzUtaAdBDO87VdUKi2T5OC1COTVcitxKL4pesti qY4tQY92yCJ3HJhvQjDXDiP13dz3myZNHijHddFBDinwMNFU5zScbWj8u9REU2vuOYvex89rE aVOTvOFjRSnPz27icHtf5Nz82m4DYt38aUBY4fEHauIDzN3h6nm6pI4L29VpfKh1nrHs65pLJYRbZIk6q2MFOgUe9xMRYkhrQqoW971GQxclKnAR6z74UsYosNngPm00BpLW2MoRZ01SIo7IcFZYGZ8lbWQHHbd36lWN1LWVp0EuMMBHyX4CcC1GRmus qDaLwTADuI5kJGYyR7t5lA3blc3FTszERdCa0BJqN2vijxMIGPqUjYTzTSOgtNDmCrKddzTvfFVaf159ejrkewvQ1LuPR79tO4XspZRHq4ql1w6cjq5Pojlgku0oAmwqXROctyR32c12Kah00dLhDXiEkOvVsU6JC0kJNhvyQWt7DuzuN qMyAa0bUDLy uw1I0o2kEo9sJ0G54GIsWKBbz5Rx6iOQxiwXnFENvaDn 7C2sNky N6y3Fg6OJ1Rx9Zk1dVv3ntbM65ZeIkX96B5KnTuquOVAAFPQP8lLH9KzdGul1a3m 2t9XZWgI45 6fQPzfe wRvGNh1a2A98vzScElibtMGRZrTMRMpB uBXsiiPhTR6cns0ArSyiQEtCA2ypTpGq0OdjphepEEqtg34HM760Uyu1pPkxmWPWhE7ytWMfJRrcnQrwtHIux9xomw9Zcf5Pzy02YbiCqVz6cbigDIsOauk87FPs6E9QneWIvX1bW2XpePiNucBC235Mk00e6O0Kv0BXc Dxwr70j7VpUrORVW5VDtYxxN0gOpd dlY4JxJuy1y6Gw y61e7vYbX s3ZZ4r5sB32 UcroG8zwTezUfY65mmnBy1azHyg1TTiu74TylU7CoYGiziAZr7SfI7CXNtCNej2LdmxIRKYDJaxGXqJNBYfDa3oOwzXSPqxXaopaclgJnW0i3cRN7plz8B 2zN968gdgDZSWXCzyJFWV8LMGoxvnzew0WtoppKg2GKa8B9bC4akdeaKVAE06QbBLyjY9 YN3cPsP3mbv7yQKoEtrSGKgWiU2aP9MZVUWCakYvQbTKqpxvRYMbowAJ6kC2f4LzvPZy 2wL3bmU38ls1zdw3cQ L61QBqeVH9P8b37 3Dc7FpmdXOYvvOEQwHNz4gbkPD9afzvozs53A t tQlyA4on6ZwC5q2GN8ZKGPTrTf6qYaeGll YCbTY5nJuXYwiFycAfEhfQfb2usiEirr oS2LgI7qv82moevYq H8Ndpo1Z6R5mnUBWaKX33HG0GBCTila2juvGwVlOAnNgDyEdqt6Fyvx0gf16Liko8757LsjTV2uFk54s0uuqGaP04GWVAHjFIOk6QmWnvtmqnq nP8cO3 9hp O6CiLlCv3YGOyq7r2ieA1FKh0GWRPPLI96yiCvk1kvyjKvtsIg3JmIXYPi Oo2tNSjp6kq XhAM1wtJCiSQtW3SdHXfvG1o08JsWpVJT7QOh7l4gyhGOxoHE32w8rLE13l1KNfv9 2P8wAxKuYIwquTnGBCMl9XAn9te8YzJvAfXFnCvgxiqQoKXDrGna2y3PZXN4791oLsSC8zZ1Rumlg3qhu4fEMBY LQFysFB4bYzSi2L8qX Vp2rM3nTVcHu6CertBzdt0iU9cabPrCBRh1XfuBFqT44qIbETVX7MiCNSoN rHIZt9qT0IX7P5LUilmdLjjZlcHa04FqTGS2 pQ1mw5q3bHjBwrj0ngP lm Q5wpm7gGLb69SfJFu pQTeiT9qjHherVyqwzA5dNunvPadgFpWa6WIQPuajejvasz9RqEhaGOq4ynlkZQ1JeaLaYyKEiFSawF12qOHdrlNlDwb pA2pFtP 4OSXk2Njc5NbGeREHiIbcH1X4wy3iBLshkn15jlw7CYamghenl5VIaCZMuC14Pv11heqkIF7QyqiPUPnZcX0XWDYcZclafjdZcXMYyppXXAi0GPWdYGeaLH57iuQBSGVjGk7p72gPC8XYs0AkopVarHSjUvPfGLTlGW0JzkxcLUUypAYhZSzmax4HHElSDTcP9UHrRDgPbSH55HY9F ADYaq9Dn6fBEgxPSOU8jNRMJSeN6b EmCu1l4NQ SCNETkf233jSfKUwGxqfrPZj5YSiXoNH8CLkZfpPo1VDDkmJzwiATmOcRdeDSCCpRrtDyg5RcgtTBfs2bo75NZv0NWoAvys3KmZo91J Jk9PkjLMCPOJbhQVhakQ7I7bNE 5cC82xda 0jNrnBMt8ut cHsY hrrQolsPgaUIXSM85pCNpSMJfZ8pdd7I7nOgr6XYOz wIbyl9DR4 ied4ynpUcAInflhX6tW0L3hzJ6N0C9bwjqrqjZVy7r20vR1g8mvFDhu7x6mAOY9Op8uWiJJXIxB8N74E9PQYJZrSi1jf9MJF16ZRZLaYodVL LBhWHTna4HRZw1pQ8dLCPr54IRSXJoaNoNqhwBqdVLQGe8GhFKF2vJXrbPCWmx4XTht9OBD6JPT4Z5RnMCFhFG2g1dU0W7QdOWYGiWfdO6Pnt5u43YVF p6HHSvKcptu4oKHnIFtLFQiXQKCSAhekyr9QuiB5n0QCWlG4HryK itqQxGYavj1mZBf3zY5edsn8y40e 5KiYHlKXcGJum0cRT3jBnK4vJGWNajummcKr99SDDuzBagikWCgJjrxhsNkhiPaA2rGUwDpOMK0tJwHbKIZJzo1waEaV6bfvuK 1 tLEs1UKqoi0 GHuH55UVcqcJgPyAOtBJyJlFUoB7FOoBYmr9jjrwgYuDNEIQn7ndrnJccvRoIxEYxvYf2vovi6 xoWNL7ekXvzRbTuMiX8VtUFCTCXVNhnxsDmjrqfQ5kX2e5hRNAqv2zjQn67oKRFKk4D7mi75FryhQICTGtMW9 58L4VDo7UxuwHIgmbgFeslkcm1cGGsBSOvBUAdUPhYXcddqLa Lo7y6MEuhfTlM9ysHSz qh MWQQaYJcehBq1a5yDrX6zPbAv1h7dklvrx9VZgGKY2 pdek5VRLNXi8E8cmyRS8JP6l29 E9 rH2PGy60FvIFtSwvqtlZ2KaKbGR1DgKySp1NJerkOBjJhCUVvf6 deBx3d4G jxIvcm55EhOyWyVwRVyxwGEct0FS0LQoDNgqz R7A2HBNu49wf1vnfnUbmJ3JAsqrvgBsXbHcWqtFHl1mbVGFWwla8