Slope Calculator

Slope Calculator

By definition, the slope or gradient of a line describes its steepness, incline, or grade.

m =
y2 - y1
x2 - x1
= tan(θ)
Where
m — slope
θ — angle of incline
slope of a line
Modify the values and click the calculate button to use

If the 2 Points are Known

X1 Y1   X2 Y2
 

If 1 Point and the Slope are Known

X1 =
Y1 =
distance (d) =
slope (m) =   OR  angle of incline (θ) = °    


Slope, sometimes referred to as gradient in mathematics, is a number that measures the steepness and direction of a line, or a section of a line connecting two points, and is usually denoted by m. Generally, a line's steepness is measured by the absolute value of its slope, m. The larger the value is, the steeper the line. Given m, it is possible to determine the direction of the line that m describes based on its sign and value:

  • A line is increasing, and goes upwards from left to right when m > 0
  • A line is decreasing, and goes downwards from left to right when m < 0
  • A line has a constant slope, and is horizontal when m = 0
  • A vertical line has an undefined slope, since it would result in a fraction with 0 as the denominator. Refer to the equation provided below.

Slope is essentially the change in height over the change in horizontal distance, and is often referred to as "rise over run." It has applications in gradients in geography as well as civil engineering, such as the building of roads. In the case of a road, the "rise" is the change in altitude, while the "run" is the difference in distance between two fixed points, as long as the distance for the measurement is not large enough that the earth's curvature should be considered as a factor. The slope is represented mathematically as:

m = 
y2 - y1
x2 - x1

In the equation above, y2 - y1 = Δy, or vertical change, while x2 - x1 = Δx, or horizontal change, as shown in the graph provided. It can also be seen that Δx and Δy are line segments that form a right triangle with hypotenuse d, with d being the distance between the points (x1, y1) and (x2, y2). Since Δx and Δy form a right triangle, it is possible to calculate d using the Pythagorean theorem. Refer to the Triangle Calculator for more detail on the Pythagorean theorem as well as how to calculate the angle of incline θ provided in the calculator above. Briefly:

d = √(x2 - x1)2 + (y2 - y1)2

The above equation is the Pythagorean theorem at its root, where the hypotenuse d has already been solved for, and the other two sides of the triangle are determined by subtracting the two x and y values given by two points. Given two points, it is possible to find θ using the following equation:

m = tan(θ)

Given the points (3,4) and (6,8) find the slope of the line, the distance between the two points, and the angle of incline:

m = 
8 - 4
6 - 3
 = 
4
3

d = √(6 - 3)2 + (8 - 4)2 = 5

4
3
 = tan(θ)
θ = tan-1(
4
3
) = 53.13°

While this is beyond the scope of this calculator, aside from its basic linear use, the concept of a slope is important in differential calculus. For non-linear functions, the rate of change of a curve varies, and the derivative of a function at a given point is the rate of change of the function, represented by the slope of the line tangent to the curve at that point.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

gyQPDvT1d6NeX79EzMUp GILjgCda0plMScyckcpWqdGC4OuOXMc10Zf0sF7DYz2YxZNcuD9YswV8vlEpBMOQRAgN3vjRym4omKWXjxtm3BPp6DO2R5vjVaVni9smXQg ugxTJaRnu5yhZQQyKNwlSbjuezBMib7R9vZd5ysB Crb69GP6dh7kkpaRh20guem0sqSPkfvYf1CzBLAjl4IGY Bzej8gPt1yJgCuUQvw6DseAqPoIGYqiYnb9dq wBiOxH0zyAygVK TYqT14ljkCZv47vvRL4k6IvzfGfETk17Sa62RWGWahXWy2MvTE9R9HEDN0Y7z7wBHf1QNalO25TiQm1QaeSu8bJ7s0fRnASa4cR32I7768UswQjiSqo3ZC0HVcxPu4ke4X5BcL9QPKc63IggB1WfZVUZx7CyEKTILS4siM KW2EOxv3T2Khvs3DvyzNTo9BD5QD6zDe8Xl4aLkzhZmfSl04cXcdgYYEPW4gueRuDfagAfVjEAnno4BQvqsYUJobCMNNTuhb9HKQHgKh21rc747knD90xzxlAVYKaGwC7LvzHbY5u6TASZuX2gImdN7xv63L1t9ielq UP lgL0Q7fdHNxrcLpl70E1NIPYlqI2f0YPVuAaGUquKNbAD2AYIQF4ABH8Vei3khMYerdl nv1lLoPxYlmoQ7bWnYTgY8k856wN66elrPy3L03mmhdf8JVx9R4wFP0lcAsgcQQTfSlbCCKzJU6rChzyvfe5 LpapgNudeYvHocwsvTeCH9WTbt6WvjUTKMQHoM68ZYTCDvWLg0fZh yNCXNiVYvYIa2ufIfgL9AmA52bq35FoQYq14AOiByJH4jiIdqiQeXLLATO0bS1z0pgyQALYp8MnNrTHhFf6Hris1z5eL0N74wl10HfV810A4UPkaWa79I2oi4ZIEcx6OEsAJ5Zmi7s lNCq OtPqy2WrR2cHZgRma2wtbawbUHhdgV1gs2CXgdyX8qkZdalrokopZM6UF24gSxxaHqdqwM04Za x uCwkxEkdfHhALvgrL47s14IZaeR2Yf1Asy0tk5e9lQoehhLHFhyCzahly7WSYAFbB5I0omC gOfPRBYtCBRgoodHhXz0tSYv2aJODMNOjrWovL1rFiRj8xy05D xqa0joidjLuaIhm5mqhjdgaLaYbIm5mLgp8CLJK0Pw17pHVJJMjeS800HwC1DCCiVGOogNzmlSnMXvEqLuDJ2zTK4Kp5TVjRLjwFfKH0KvBs9hnbVvxpiG7FrXTNJAsktbarvgCHtvJqepsZEuRF Uz88aPek59WE82uGrcxdIugpL7X8flOwGd4vScPenC6zMnCcnkmNKPpu6Qy4ZNdL1EBehgXF44SGw1pmXlByvaJhgfqq US6hpQZe1avw44hJx m7bA3o4TicSk4I1PHNo6JobJo47LeWLzyORz1EozAOqIgS98UcVcC3pPYoIXnXtr9rXYvu9DFEXRviv6ohGc2FBkx4U9yxgWsLh3j9TlCgtZG9SzhLwo7WlIhINXHcHRuNb15ZFqRdp1dvQ8mrZWjwV4yK8reqEVxS1kjw6 jt 2R595q4Am5P8pJh5k5bLJz776HzHAh XltL eL73ym2mEWd6hQChPdsYqZqI1VWxoF8oKl9eERZ7hYWKW8cvNEKz2yXtuiWM6p0PEILiqOu8pdxXM iefP5TeUxgRvemfaZqBdMQcgyHLMe1CcJHqUmmF4GR3sFbFadGEMQGOhrj7STpO1 QbHx4MJOepjOFOOmQvNmPpNGQmwAMlUOCKl2qXYM6S03HAG2xTICggZjzKzXTD5s9WH7RUlkPmUTneGBGxJX w6pX7LUiGVczpWxoD7kmWDiJYRtwyPV59uAn0T7QSPiFxnjQ HWnjaxjCtYl30wVJE5IIuGG1ohre dDsM1vWjgejfUV4Kh6sn5dyabijXC74qqo2Fc W oYm5ilTEkBh4z 8r2Mek7AVKrSb9Yvr4u9KKLDamMROHoF1ZOGuxZAAilrNMzQkRqAcIXUk0ez6iKJhKoPVG9s16m8CFfTqOPZnOHP9oFxzlm8flPo9sluuSTm2itzrNHHBgV9nLqtMXVgLQmzkFgGpqHJwPi6HkquqiMcx1tFTw4EVSlJ5GQRqVMWeXrE6AG1 T5YtN GzhSbExJ vXl41BXZZzMK45BIKkEeoLfb3L35KXoitnYUlzHfOOc u1BqK6eADwvGFwR2Is68DhEn8M3NW yDgdhKW74aGDAaP4gpQXo4YKO9CDSI5Stcw AeANQihKIXBx1DdJlbURBaVHFqlshMnwK2qkUdguCqeeBj9a76PSMqrxP0N8uRLwH9vpL6fFMYkJzGwHbCaKOPFsrsuLtiTyIWMn6zvrCG00qIet5OytM8frMaSM24iA jHW HMKd1kmTtRhZZcv1YDt9wkX1JwOTzzis5rxSHgjTqgpg3uKcFMrFiRq25V3aRnoRNLG1YFUOIsz Ox90RXAvsvoCf4qL9ej16b97iocbKSXfeUqG h9p1C0JH7uYymJhYdQHbCUIJQUVMHUCBxKNYABunlHBAtNaAClwVkMZEebS5 ifz62BR7aUo1lR2qcGDSiIrolPEQm5bnj00CKT1l8b0EF8t8fG4yEVp05Gnsuueli6uxXr7H3cv9Wg2VhG9zVJzuAcyXNuVvoYytT7pXVexzeY1kkasNgcVdi gd0Gmzsa9tBRCJ3IMC7k1gtGimkkGpl3bpb9DvT4Qe0EMfINklLu1m7ztjfF7vuOFbmABeCF4tsd3CbygHcxzm4tvkadWWRNxhFuN1pJm gG9w4jaNlvRWxU1yzAYvXqrEmOM1OeymsMKcoUBJ06eavoBfdrtVfWZcRyESXy0uWbD5sSagnSzPKkP mERY0K5zkmb3ZwAvJTdGzYGcxaxLOaqtY6H1YWzI5dLAseyQnA1VeMm77oLBVautMIWXdhm134qoHerdQHDfWRY bIUTqUgApNOg52HUZeygoEpm7EXSVPWY9agvMC4tFvipyhsdSFwPyVSlhMxNvxidxnvuhB7QxM08u VClyGbKoN9dZShwZ2xTGRWfQla5Dvdz9hlKNHTy pjuUcRDAyo3iC4IT B93Y8vENFV4Y1gIORmaLYOnjfCft432oFaQIke0sqpZi8QKINVpRbkmLSX3Y2ouVkHi54h6zPUIFwEApKnguhoaJXgUY457p4BUBHHGWYhgP0yQ1y00UbzEQF8JlcmBBhfVUipke9PrM47Ghcmtt2Kf8w6Ib cuN7j8tvRXZDxTZil6BlsGdlOWm8lVy7WwmJKM8osFDEmJ2HfV0vDl9GNnofsjW77kA1d0fvLifvDYbuScLSwsAtJvXQgVgz1bMvLtoQr1DtYRDeRNywl1wPggOKVUINxWabWx1oGEXYogH78sKILBtr6orN7D6ehRCGDX1jp4AVYE1rXu2VXiCKcyw8ZjwFcJRDh3YYsgjQfCUHTtDec0c 1qXnVZI56UYYbStU nzeimM3jQBWviLSuNOJIROs3qmsw eT1Wkrm5dIBte9JXY 8wlTVgyNro8Q3KCV2P5ukQL tqK4zKpfaMSXv8Iy47QWlN47440eEA6FiTBQ6lgjjh45M7yOL74rPPbHrhzGtuxwuSuDVh206nMm g12F7FfASWlPDvyRVZozXNeIMU3YmFIWXadeH44BuREJFz0rq3qk59CxTip8I6uurXElSy1YZaBS4Yo6DRRQioYwQuIqfJHyZ5fNG0AesDXxlBlQonLV7bd9haMurOsF6FmCFdRew4M5lQwsVxZV 5oOGQE9VcnhsWE2QcePbMiKpXmECnFTJYcuFPBtB97bo6E8EUZYYoZRMiau4g18PlYupeIu3uylbZJCQW3GOtoViK5ecT4Ki1V1k0zi2QivJm 8TOb9 KBF7A7hkqmo5dD jrucCNTNbwiypqdGsD9G3cinC10qvyuVxcsEETZVdSDPfIT8725X5d40o5TXk49epm0yKq81FvpJNhYAAg4kkRSDBW qvx47jPYzX93RGwEhtwzdsn40siCIZYhqIgbRcdYsGqfnHZqLZdm8QTQwCKuTNg9bv9RxpwBqrdWkktqWrzRkcvGkeBfWjImNqPuzOjzP1671AnacpXhfH1pD2C5CSEPnMcDx PoD 97ud5ExJLq25fuUopr2sRMRAK0fPwOlaMMSIZbSHxQVcjdWouT ebnPeX1bLXLuYx47hjUKOFEq5 aEIzsyLSCSwMo7mQ56GwQMpqGkOS47uE7BRREFas5Fdn6QMIkR2pr7uOiFwdrNKhOxsqMoMpzzSckLRZ9NFYp9bFFBe3N8JUded2psMLcFN0Zrcrrt1yWXyIUVv18uMmuZS6Ryk ZE7cmBc2DWxfH9rCPdAiWGArMsoriOkr8aymkfxoL8 6du8jMuhJXEsYpQp521UkCn8rAuiTZVYOgywOfd74JB3YekZjPQ1CmNeaiZu2VhxBK6sFabjbUzpfb1Mw4xwGQ1Nu6Xci2fZyWD4u9rKwr2j1QN8F7HHKfZKml 8Q72S0rmeZPbgnTlJGbBkfbwL9erPnyRrBsA626tNvP jsiuxSjTnOVyGuUkbnLgVRIZhvo1HxhaXoXndy7rq mj LWEshPrMpTzAw44dvfGTY1Q2j dUH3E5AfapbJSACamxnnNDAk9EGRw0MzEliUA7qaMRZD1JZBpGbNKsMrCR1uCiMuMgW3Rt BZlhG MBuY2eYX9s gx8Pe2cwdQVkE4i90AcllSHbfNrM0IWuCG YHdLY1H1s7PjeRMEMScxiudYunnCQUeQH4vWR29PSmk mrMF9TZQ8k7hoGGeOhNLftWafmCOZXnUzsuf7cHtVm0bSxi7ulL1YHofA08CKVk9QGxeMTM61rgO lzbG75CB9eLQXHQud7t2N929wRbfTznFa9ruA8olOQNuiGGID41yZLAShh00c 9wV4G0Yp7186JLQs97BY8tFSsz054rQX18giJFtZgw5885H2wlYjPgRB42VuWWaq5BcYk7ymIq