Surface Area Calculator

Surface Area Calculator

Use the calculators below to calculate the surface area of several common shapes.

Ball Surface Area

Radius (r)
ball

Cone Surface Area

Base Radius (r)
Height (h)
cone

Cube Surface Area

Edge Length (a)
cube

Cylindrical Tank Surface Area

Base Radius (r)
Height (h)
cylinder

Rectangular Tank Surface Area

Length (l)
Width (w)
Height (h)
prism

Capsule Surface Area

Base Radius (r)
Height (h)
capsule

Cap Surface Area

Please provide any two values below to calculate.

Base Radius (r)
Ball Radius (R)
Height (h)
cap

Conical Frustum Surface Area

Top Radius (r)
Bottom Radius (R)
Height (h)
conical frustum

Ellipsoid Surface Area

Axis 1 (a)
Axis 2 (b)
Axis 3 (c)
ellipsoid

Square Pyramid Surface Area

Base Edge (a)
Height (h)
square pyramid

RelatedVolume Calculator | Area Calculator | Body Surface Area Calculator



The surface area of a solid is a measure of the total area occupied by the surface of an object. All of the objects addressed in this calculator are described in more detail on the Volume Calculator and Area Calculator pages. As such, this calculator will focus on the equations for calculating the surface area of the objects and the use of these equations. Please refer to the aforementioned calculators for more detail on each individual object.

Sphere

The surface area (SA) of a sphere can be calculated using the equation:

SA = 4πr2
where r is the radius

Xael doesn't like sharing her chocolate truffles with anyone. When she receives a box of Lindt truffles, she proceeds to calculate the surface area of each truffle in order to determine the total surface area she has to lick to decrease the probability that anyone will try to eat her truffles. Given that each truffle has a radius of 0.325 inches:

SA = 4 × π × 0.3252 = 1.327 in2

Cone

The surface area of a circular cone can be calculated by summing the surface area of each of its individual components. The "base SA" refers to the circle that comprises the base in a closed circular cone, while the lateral SA refers to the rest of the area of the cone between the base and its apex. The equations to calculate each, as well as the total SA of a closed circular cone are shown below:

base SA = πr2
lateral SA = πr√r2 + h2
total SA = πr(r + √r2 + h2)
where r is the radius and h is the height

Athena has recently taken an interest in Southeast Asian culture, and is particularly fascinated by the conical hat, typically referred to as a "rice hat," which is commonly used in a number of southeast Asian countries. She decides to make one of her own, and being a very practical person not mired in sentimentality, retrieves her mother's wedding dress from the dark recesses of the wardrobe in which it resides. She determines the surface area of material she needs to create her hat with a radius of 1 foot and a height of 0.5 feet as follows:

lateral SA = π × 0.4√0.42 + 0.52 = 0.805 ft2

Cube

The surface area of a cube can be calculated by summing the total areas of its six square faces:

SA = 6a2
where a is the edge length

Anne wants to give her younger brother a Rubik's cube for his birthday, but knows that her brother has a short attention span and is easily frustrated. She custom orders a Rubik's Cube in which all the faces are black, and has to pay for the customization based on the surface area of the cube with an edge length of 4 inches.

SA = 6 × 42 = 96 in2

Cylindrical Tank

The surface area of a closed cylinder can be calculated by summing the total areas of its base and lateral surface:

base SA = 2πr2
lateral SA = 2πrh
total SA = 2πr(r + h) where r is the radius and h is the height

Jeremy has a large cylindrical fish tank that he bathes in because he doesn't like showers or bathtubs. He is curious whether his heated water cools faster than when in a bathtub, and needs to calculate the surface area of his cylindrical tank of height 5.5 feet and radius of 3.5 feet.

total SA = 2π × 3.5(3.5 + 5.5) = 197.920 ft2

Rectangular Tank

The surface area of a rectangular tank is the sum of the area of each of its faces:

SA = 2lw + 2lh + 2wh
where l is the length, w is the width, and h is the height

Banana, the eldest daughter of a long line of banana farmers, wants to teach her spoiled rotten little sister, Banana-Bread, a lesson about hope and expectations. Banana-Bread has been clamoring all week long about wanting a new set of drawers to house her new Batman action figures. As such, Banana buys her a large Barbie doll house with limited edition kitchen utensils, oven, apron, and realistic rotting bananas for Batman. She packs these into a rectangular box of similar dimensions as the drawer that Banana-Bread wants, and needs to determine the amount of wrapping paper she needs to complete her presentation of the gift of the 3 ft × 4 ft × 5 ft surprise:

SA = (2 × 3 × 4) + (2 × 4 × 5) + (2 × 3 × 5) = 94 ft2

Capsule

The surface area of a capsule can be determined by combining the surface area equations for a sphere and the lateral surface area of a cylinder. Note that the surface area of the bases of the cylinder is not included since it does not comprise part of the surface area of a capsule. The total surface area is calculated as follows:

SA = 4πr2 + 2πrh
where r is the radius and h is the height

Horatio is manufacturing a placebo that purports to hone a person's individuality, critical thinking, and ability to objectively and logically approach different situations. He has already tested the market and has found that a vast majority of the sample population exhibit none of these qualities, and are very ready to purchase his product, further entrenching themselves within the traits they so desperately seek to escape. Horatio needs to determine the surface area of each capsule so that he can coat them with an excessive layer of sugar and appeal to the sugar predisposed tongues of the population in preparation for his next placebo that "cures" all forms of diabetes mellitus. Given each capsule has r of 0.05 inches and h of 0.5 inches:

SA = 4π × 0.052 + 2π × 0.05 × 0.5 = 0.188 in2

Spherical Cap

The surface area of a spherical cap is based on the height of the segment in question. The calculator provided assumes a solid sphere and includes the base of the cap in the calculation of surface area, where the total surface area is the sum of the area of the base and that of the lateral surface of the spherical cap. If using this calculator to compute the surface area of a hollow sphere, subtract the surface area of the base. Given two values of height, cap radius, or base radius, the third value can be calculated using the equations provided on the Volume Calculator. The surface area equations are as follows:

spherical cap SA = 2πRh
base SA = πr2
Total solid sphere SA = 2πRh + πr2
where R is the spherical cap radius, r is the base radius, and h is the height

Jennifer is jealous of the globe that her older brother Lawrence received for his birthday. Since Jennifer is two-thirds the age of her brother, she decides that she deserves one-third of her brother's globe. After returning her father's hand saw to the toolshed, she calculates the surface area of her hollow portion of the globe with R of 0.80 feet and h 0.53 feet as shown below:

SA = 2π × 0.80 × 0.53 = 2.664 ft2

Conical Frustum

The surface area of a solid, right conical frustum is the sum of the areas of its two circular ends and that of its lateral face:

circular end SA = π(R2 + r2)
lateral SA = π(R+r)√(R-r)2 + h2
total SA = π(R2 + r2) + π(R+r)√(R-r)2 + h2
where R and r are the radii of the ends, h is the height

Paul is making a volcano in the shape of a conical frustum for his science fair project. Paul views volcanic eruptions as a violent phenomenon, and being against all forms of violence, decides to make his volcano in the form of a closed conical frustum that does not erupt. Although his volcano is unlikely to impress the science fair judges, Paul must still determine the surface area of material he needs to coat the outer wall of his volcano with R of 1 foot, r of 0.3 feet, and h of 1.5 feet:

total SA = π(12 + 0.32) + π(1 + 0.3) √(1 - 0.3)2 + 1.52 = 10.185 ft2

Ellipsoid

Calculating the surface area of an ellipsoid does not have a simple, exact formula such as a cube or other simpler shape does. The calculator above uses an approximate formula that assumes a nearly spherical ellipsoid:

SA ≈ 4π 1.6(a1.6b1.6 + a1.6c1.6 + b1.6c1.6)/3
where a, b, and c are the axes of the ellipse

Coltaine has always enjoyed cooking and recently won a ceramic knife from a contest. Unfortunately for his family, who almost exclusively eat meat, Coltaine has been practicing his cutting technique on an excessive amount of vegetables. Rather than eating his vegetables, Coltaine's father stares dejectedly at his plate, and estimates the surface area of the elliptical cuts of zucchini with axes 0.1, 0.2, and 0.35 inches:

SA ≈ 4π 1.6(0.11.60.21.6 + 0.11.60.351.6 + 0.21.60.351.6)/3 = 0.562 in2

Square Pyramid

The surface area of a square pyramid is comprised of the area of its square base and the area of each of its four triangular faces. Given height h and edge length a, the surface area can be calculated using the following equations:

base SA = a2
lateral SA = 2a√(a/2)2 + h2
total SA = a2 + 2a√(a/2)2 + h2

Vonquayla's classroom recently completed building a model of the Great Pyramid of Giza. However, she feels that the model does not exude the feeling of architectural wonder that the original does and decides that coating it with "snow" would at least impart an aspect of wonder. She calculates the surface area of melted sugar she would need to fully coat the pyramid with edge length a of 3 feet and height h of 5 feet:

total SA = 32 + 2 × 3√(3/2)2 + 52 = 40.321 ft2

Unlike the Great Pyramid of Giza that has stood for thousands of years, its model, made of graham crackers and coated in sugar, lasted only a matter of days.

Common Area Units

Unitmeter2
kilometer21,000,000
centimeter20.0001
millimeter20.000001
micrometer20.000000000001
hectare10,000
mile22,589,990
yard20.83613
foot20.092903
inch20.00064516
acre4,046.86

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

PhsuuO07zK S7I Go2 qLNZttZ82Q 1E4rCZZ513zFmAAiw1DNPzbatA0EqBK125VpPH3eSjV6pv6SzPij04NLbP8tIYARURYz7n7hwPLSkEnzCUxDtZTJGQFsBLvsuRdz9lCTgHPz2tCLEOVhOAwOp FyqV4OQt1LMTjzx6d3RZt ycEJTZ51Pk5hgCa40lBP fcl8vsr19aZ5CDEZRccNcWkPhni0BF52BUIsHyB2TbxB9pB535kWWLiFOJCjdaLryCsMhYL3pNqOgvtoXsuqTvlgfx0hTVhCgSO1 Jly1JLllT8qBhKQELtskIRX9b3b9TgPYIpBsqpvKoAlPUz 0Bp iZRGTHZ8QESKS29sSf2AaGCdrEbbeUDiBy Gr7U6ezSHZSIES3vJmOLIolzMUB6iPazzn48FCoI7rEJJi4davAy2m9ymJ2x80K4J5XXUIx53tWzxJMbA8WBgvA1xMNZh0I2T1ZG4WCB8gYexF5v0e2RB5Nz4upUpiniDiO59HIr2IatxILssdg159JrJ7OV24lR ywjAhPArSSxKC573fjKNmz5 eXz30B45tbYM4dnbwVpfKLyjFD0YI1XFGsL6t5j004ApY4Rb5OhQLj0HpIigY HBhmmbK48bZhmX QzEm7g5l7lvZkUE68lhmWLYAyDSpyf1ZguYxjm7zrgg1wpqYBEPASQdPk5Sx6LYtKF6Efa1vDyOAzLy2GT6NPGvgOtR8MLlE9PuTwEe2lvSLtfOjysab65F6C0ZYcQdEiPqezyTHSzcxRciKARtv8u4sWVvlIr95xeAsbcFprtWGh7EOL8KMQN1CrM66Xs8CEFv eSdZ6VSiG h7uDlpMfNxtMdtbTWIgJX4MMUvWaPUyFpfaZ1 ICe8EoKkmv60dGIlk1l4CUpGMviCP IKzWx9qzpAP54IEFKs38aVZHWd0b0VwmHF5YOBtwkwaMiY5mHJgunftNf4wStJPNXeGh3hFPW6VXBclBdI398fE 6tYVtHFIkWmlUvfj7v6MAK5vzmKGcH2O8AOlZk3hHCOOhpXtTzfeWeMmoDVXFFcnZQu4xo2cPf2tpGXsKgdyo4IHV0ZkeKZXnC 7pifRpe1VQzM0UPXEqzvoVyUrjHj5X2NnggqZmJ6PLdV93h Y8Svj1cQLgqrBMG2nLJ4I1hWNHe8aknRnz959 XPij3ASRh5Tt6PWeBVlqqUBgMv12tD20v8QTDSuNZQvI7hgLQNXTWYCLH76TZFjEdfhL1N55TXYKw3Qh8BGZ cZihwx7JoM63E1oYHci7vC Q5q9y1ch5MBYV h7yXIuHDJitAm21voDZwtrPN2R7UurKfOWj5G9GMctoToKQIZ8VLbhpB5fe4HXgV8DKfnXQMegkl 6adutRl1AFKrocKCXq6mGhKYR4yvPRrifeMkWOdbH0qCUQaS2AEKV7Thib0l7rBilaMjMh3Cd0iIfvQq402WiuDbE6Ilor1tH24QQ07jxLZnQJBep2OXRXOnCOexDUyDLY2EPY3AguA63dcwr6wVlaTX8PGF2pOtGgwA0QqrR2JMnV81WjRdqMn6q Ix48W6K21ucvI7w 9qOo kxE8UuPpa6WsPKISM1nLh0RBYicW1YfBPrY7VoFlGCmO4SBKysdBaUBQ56RzM6G763ENe7e2b5FoBI9oJ20QBPgWXpxPL8HcmU oUfXWwff7u8AJV7pxE1mN3nqc59CPaHXGOlBvrAwfIJrlCguHeHIHGI4rdS56NP3y FWGkdXf7WfpZ6uEXPGY3gsAgblsI73w0HopuLcqnLw9RYjmzVsLKDbM6YSBPoRwih0Qt10FQYOVhqfqS10KhP54YqI34ddLOfhNTjzUzn79MBwBVZSEzd7JPvRDoIWSa55OdPnMm17Ma4X3ATmRKT3gESeXq XODzDeoF0jOEezrhiUfMV0THIv0beZFzdZ1lMRVynO4VTOuaxAi6ofRaQMr3Awaedt 3X4AQsnIgp5VWh6uMvkxzIyA1uKb8179Psv0JTKrVDz6hWJ2HzMIRZIIuFZWPaIcSnT6sVuCZ4ayn3RhaAQhtgo22haRcrhLF6m3YZ6WUUCLXdyjmrPRuNE6wqHQFPuyqryJ2Ocg clUYL9HLoHrbhxgwDF8c78kaEF7EJXPKVEt5L9XjFcddiZ9wokSqNY Oyudr4bW1 2KGvIPgHtpT0DPTSalP2kZNjPEEN7glJSCXnonYatnmTxMU7QLqzAgO8A1UHeUVQUMPLOQeavqcRTUYSOy0GnGsZaR9uv5v8aMSwc8DopQ958lPg8mGQMWwZiU2R7G6S7JpZf9R2MpCmI6JtWZxN 2lgy53by8zh02VenM2VZFnZCe3tL 5liT nXABMDHY7oEFIQKmBfhiNhFUDuHxRyjoWmJ78H1wzOi9zmYpJgmG uXqd27jGSKJkgNQ 79r2T7d6bGlLXLik1quZCGZCST6h Dhizi kXR0TG E0Pw AjjkNjc6FpMyDBEh309ojfTT80m7D9NfayzP19g62Fb6dOIpjAhX0zIbxLli5YKy4uKsrw67JBld8VV5BlXPI0NYIW8CHLnJBvQSlrVkGCJTg6RG8M3UGQWTKEzspOuNThJZNa4dOKx1yoFkej15eqqD9isaxWmFBffm2ty0m5t IIGDVc1DAOIlYQ5tHgtAHvGyDnxrLilzPLXJwqlZqQKlOKpcRHvpQglMWeQSvNWxfFuiTH0 z547izN65xkwqe2JnYAfRAPfybQI7uPCl2hOMTJRGLLyOUMZb2wwUUgHCkKTt9I75hOw9rZlhYC1FvqJljuISkJK7YAJaApVOUFgjZ32LcucbJacVgmOywIkE9MBt nhtmyz0bFgHgHihac8Bm3zh4Xz3zNmbowFLwOkUXW07GasfDukoxbEBL7IM8n3etwXVRHyX3Jd2PAZTRciRJYOLuf8jwWV313epjJm Zrt3pmmnWoxk9m6YsOZLhSz4Wou1k8EmtBhdDLGs5km9kGN5WxOX0mnCKKfdnzPZPC8F7Nva827GGqpw5Z4lA8eMzY8LArRbkWWIZyworb5YRFOl3pQ84xX rTv KUoscQWq4sRdd gFbuULvrbzqxakBFTKnFI8h4NjgHHYPy3uNhxfjEDb7jCkx0RsuR6RmecT5UEzK1uD9vPSqyVImGUXREHKiAevr4oUhBx41mvJjs4mZO5YkiiwSH0d4t 0rF25v9XOU9kMm9XN4z5vihxVhgYT9iXSeRUIO3T605vHfNJnSkeUsn5 POxeXZS6AFLqgZXRxJMI36mx5eAqwwwW7Gb5QyaFoxVSYQzg0MG38uSY8K8lTUEZPJP3R3YV1Z2N IyPkFw9G8b1CUoXP4ZiQSQbtC87nHSmIGlA4Vwkco7UluydccYgFcY4o2Rk5NqyiEsPZ7gJ3K82qAQXLSeAMB0c4R4w3E5UvwkaXqp05g1q8USA5SJcYjLbK3zPS9T6nkDZ8maGKKIvN XFyaAxX1zVZiLWcJl8veYd3TJUIk4z3GDfjVoIVasl55of3hHY1gqOkBYZdU0KXjeCxeugG1G2MOdKo5CdKPtesgbDDKifxxLiWByIv1WDMqN4vDwt3TiD 9lOmygLjdtOcVjawiwanE43uL4BsfocEQpXHTjfP1luZyRAyGOmrklmttRAxRFT1p1CYX03Qle fA1dwKX9s82vH0paTm5 AeM1DshNZtudHvVIOK3SQWBB3JhrO01Cy3K0KVMdu1LWMLHLRMiTqg0yH8gfeikYZZCY8rYS0JYXBHHsODPDqt2xz2L gHIt2Orcwzq50YjKveWMEtDQKxuLyWuoamweo56T7nu7AwZyAFE J3baX9vyfMaTR7bWqZCmhvLqngSya0GOZ4z5mhVsuNedjbiAwJ1dTmYrAh29Y40X0MSatbYBaOT2PWQFqBIRt8x7pawZrNclfPzzasi0nkbH459kHTtB5EMNN0 xWAI2PmSS9zKriIayDCkaPxg2TXVSVn2M9g4SH8B7B5XDfIKJrWd7y71PIeZlHU0HkHjYq9a84F5YRPOfZ5a57v XWEFaUnGXD01Sge7VIUFORKIC7aMM4ZAZKiBuPSaQBWvxo6fUS5V8KWp9WPozdjdRnQw oxiJqbX6jH4hwUXasG7k7MJ7btiizc5AO3XNHeWxIVO3HPvJkbbvEU4TIf6 UWHuDZJnBcb9u7ka1SsR9PJtCg4Pas3lBegFIMiOd3Ijqr0uU2T2pt1QSVtRGbDJgnkkZ1iVluDob5a1Bxl3voqZ96L9iq8VQvAkFESSR5WRW8uPlxHVDFbURvVYkKX1d2u2ZS6dd3hGYuFjbLuMy3JrYf3xa2JaVvRgfe8HDJmlu8A7LgXK3ox8vUMyJM7I8sJWzkVy9SitKDN5bit4drXfoG awrThukP1Fx38azmU o12KjrMo0xiu8bC5bTUkgEEwvhV4aMhkq clfyDbCV2R89SkfDoH8WQAC422y0inugyPSCwn2R2Hp1re6srmQ23wJ4GFqsvIeT6L3nKga5mNA45MII2YsCinNv 9xZZl mzMQxEpr1pQirltX5w0qiiNyideXqR65KkvkZCkxAdHSM5MUlVoYJ7YNz 8Hln6Bqu3P1y3FLj793WqjI7iahPtXYZZEDNDZH8nZzpevAfHRvhzGzbOikWLJf1HdRjxwlT0qG33dLXz4l48qMFI5Lib55Q4kndgP4pKCwpDLNWptZ1lmESZJX9 Ci4uBLpQ2U5ByqSChmRTwQ9RZrSl9ZPBAh8u6HgUIAtRdtTausyhqgCxEwmLeDIHwsi1ENBguAnkuk4omPwrPBAEmUxow65fJfczOAVx7IgNRz3PW8ZlwqbFSwKRWzWxbMMuZAG1F7o94gzvMvgA0aLakacSy2kLkctuwj2tHRhogoK3pO4N pOV8J7W2IMA37Z5XHLPXB7RS5lLCZD3Aah1mYtlN1S cVrhCpR0la5UI3u4wrCDf6NpAck5e1 8gG5VrWmqZQi7swc1VGZcsgYtyqgryNcenqS8RjHsf41qwTDVpdAsjZcOsUfv56TBHbkaJcpX9DJccXx qOL0F 7P hrCjYMf0mmRtCgOyCimoX3AzpTsKjJa2yfRRBY9HN9thLJSlR4udmIRcoTIiIdrgGBaWzSS9hmAHrhOAaTKMOnTpXoHWlbEyEy1LMC6zDlsiqCCHoJSpeGW zd1gvftlNSQ HptJBI PDehUA 1u 5doMWfJq6RVVbhSMEt8aYNLyM8QhUYy5GlOEU6XtQc4UCrOCnDqBEpHLd4sNx25Ie4yMs6hpMVjuo9gi7txPGjyjizi3eKIHijMIHHANS3qGCICs606lGnppVz4swgBR0FEZAXkGBcPOzRavS64AnZskcJidtAoRBEd3pYF2KJlGQwjVMr1wQA iBIHpYarNGlKJZIwo6DoTVGAviYlzUakWL mjZNx29Uk3weyXcERzTLuij7mC FA5RBuHEEvIOvFZsdFRRF6jbjRRhuhtJpBuHQYNDpmBmwq1e7g9ry2fYsDpJhWClaVa ORYyC8lSCdptcP9wAnC1ycHXtsR9TA1RS3yUvdBxkD CeB2pZJHDnjLaU8WfWAzGbgr0 Xdy4Yhmedfl0fpiOuwIL5QYdWL6ObkpIEzEyURArpKHWlNgMU6rbQhKj3flL32VP7B1mL3iEnSJcmpFZuDtFH56xgHkBLV7qUPV5z Nd6PDCRT3GhOrh7nCPAGpS3bltLX9HRnWuTyr9 fEGjiPdxjFdSI0CT4hmF70xbFVQAdzwm9ZaL6GAO2j6krUR7zPwNrseR7NR1ES7G NgZVGi6aaowLWm1xcRYnnYH06nqIQVioFdQvZZyr2emRuKo9FBx5JRHXHuFlSe0O0w PhaJwS5rkAdb8PdPfNCfzpObk1GHuK1ZPPca4smNGzqE3 gt3DQr2l8CO5WsvePCIMl BPZcLxJDxMpYm 3VkSPnWr76DLujiM0o2GkEknn3rhZD4UT361WHA2HoLkHduSvbIqj8PIOAGCYGbyKMBXYxt3nznAiS3LOn7GapNg2d8kXEe1RYk1d1JAsXSvtzjyLRut2EobpdX7 mGKy1J9fSNpzv0LzYhoxhFuGvw7XQ4bpOKMpqi4hDyYWLl4EpnozpVlgbqCbuIIJO7XJCQGmQrvxUkwLM7BrEFtWeptkEd4vUtgGP6X6Hm4jlA0YutDaxTWSn8pnMpMozVaNIM7bTjdL1pfn51GUIjLKPRcieU5bbKkQXgtbmT0W9gIiUK5DsvC7hvWWZT0EP1DXxBw4RjvjfjQe0uV9SSB4VCY0wK1xmB30xD yZ10BtBENi720BukOVKJMMPar1iubZy2JhR4DvCvnoB0SN0jaVQAGIeIrAjvLMYbA75UxJk3oxpwx8VxrCzQwDL2GDIynoFEqEfkhmJW7mLEGYczXE GcyOMoxjCQEDjjvdf2NvUfGw0TkpjaFIkMajVmgru2vllh8ar qjRa8AZrc801ScWOOXNqFD5QnWwzRZ J3CLaNOJCihMn UjfwEhs0etE0Qe 6JKwUktJc4iOTBLU8ZJJcqE65VKW7Za l1paOifamrNzml10fF8VS2aEU46yJi3rqWeqSB3XsyAglcW1comWjrURIkTreAOtBc2bxcFQ2zda5A34BDDGbre6GJg11vcKq7PvTl9AVHXd8QLswqMOqaM1LAa4ZIewIoKqCDvsDanCcy0h45rmtJFCljdOHi2KDBRTmt5IWCyHGQXi2JnbdsWnyPuXO9bz7Gkmz5kT4je3C78AQzuhEj cU yI80Kguj1f8cOPAHvVftRkEWBtEqzLwCwkWP69905pqcGM3ZiKeRtHw6 ejHcLSckGzUTBjURf0ScxumSWhPcGTEBOxsQ4J KEiB0Fcuhxq53VKF7CVaWv8OAvfNTpFMIFOESAEN9IDiuyxS8pAxBKWx3 Hs9DVEI77Psiz90l9tfMtc36SqQZbYcx8N3qOdnA3gC79ErxA2jPNVR7K3qPtD4a9MJ8zI493h71bdnWSI0gYZMme7lMhjK1neUs2l6zTTt oj6j2R4KMS7aavA5IKKtnkAbOd2C7tr6bk6tD9mTHUetK335RuHhYUTPqbArGBItLe79Hy9atqaO8E0kLaQd0cbAN vjscDp07C5KK7cRn70mLVP6 y ByvunaxczbQSA4DXe7zzi0PycpJrf6sSFj1bxoqeJRixeRsqzYjRh0tOA6m2D1idCYf06Vr7RA8I6KgiUOgusu21mGiGjjkfeLuW0cAOiygyxMN5ij8vB2h4zNhQq75b7xKMLN2iDrm7uBFrjQNWEYwnjj2UTkpRYkIfsLwTWI0KbuhZGU4RdagwA6M8evHSnX8s qj2SZVzjCURbeacuUgfIkKrcZu8 LYdI 594jFTPg2ftX8w5hwbMvg f Tvb5nOAesVb0f1QGB4NK6sHPRDAO4D4EdOMFHSmfKS1M3seSF4AJacBhOtvO9HJOyCCnp2t71zyf9whnH5ddko16t33AUk6zf8mtNQAuheZyzeVzHcOvRHlHFkfviMoN86C65y84FdptcDUzUrQFXqeg2jXuw3vWw6azqVOsPwBS1xrgvYF7BKB6uQ4gzpE7T6i3tt70vgHFTbZKV5fumMvVliyLcOr3hw7yazOHuGq7P0c4tYoeD7Hu3EbzwFTrvrZ0kMrjpFjmU6BGQLfzSKoYmy0roSx67gZf71kyKqHFBF0XTOK8id4H YUlMmWqXPFw3TiCQEYwnpRO5rA7sJE9 8aZlTbJiKP6DWewi5axNp4HU3BCfmkt vq0LMpb2s8kINeDTc9WTAwTqXty8KE3eC CHg aKoTIeyrzgW6qJMsaLEP5AcQAgMMDDteifHQQ7FSbyBt4vhiIVR9ppg1jZSY1oYFuCgBJQMYjEmGK4TME1smi7zbg8EvSVn7mK0ejwH7idHUAfhSUmmWMwkqW072mhEWvAch2oZHaaAPzW9jTy5bEXrTkVPDYMXkEK3LUcG2q kM6S75 o39PfS2Khz8dR3B4f0TNh0QjZqOApT138rDpl78fBlQYU2XacjTsQVp6LxuCV 0vveeXS1E5Aba mGkxnvbiT4fGVnUVCRwspLSgLBNZedbJYFkFmXVq1AoBTf9BgHOCRjcNupsYe4cBNFrdV0h8l2fEaFPmnttZNedOGuwWTZ3NbFYqX7lYrRcckHZZIWomv07e 0oIPlJvRoU9YmvOSf7pipJ1qMxe2jJtaWUNHMfZBTbs9rWWZ40e4 fI nXgRZFAslbQnF902XRu5yG56dzyn2QcCUD4FqTW7fYf UJgZN5JaQuLA4XeT2oZm ghQTyNiBHIyRC4t9DlNqkVbeKiLUqd6lCrQazIN0zSrM6wNiRoGtL24H3o0M0D6mHPxnEW8pJx9QVc8NsbywWqZIHueFusmt4kd0OaUe7TucsrrMmDTW5jmKIgpHy5EJ79jUrD TrfScpQWAe6TD2dUsMepItabPBIey8DiFSBY3699TDKphyayXE4fMwbylgE67XorbYg3njp4rE7nZfwnnrASJyfNADayyOK32lsP02WiVYZeaWCXqyhnjeDtoefJ E1if Nl4xFb1vZwyYoIqKaUZ99LpqBgHcRKEUeoDw1cShmcxNZOQU2wXwyx4XRfRDHp1IyhFMmJYPHjy8rx7mb0v75MfE3Pp1MZi7OBiAsoQY3uYHzYCDLGpWCNhipNoM FKgRnJwqrcDMl1VxDzLayGs8tstzP4VH1Np6OAsjAE9MTxtJP39fM2LOYYBE Y3q0OLdngw 2l2pGxUwu2hvexTJVbEusrWQMmwGYqm3O9pfBmmRLBit8t8H90EawSDBXQmwjDMuwwghWsaO5M4jQ0xOwfQg fMgqr2XQwpXLm7TAjs2Thca6unAkD7UMCFfFJyNiVKOgE2Jk9X5MwTJWQAXRFWpgFfz4wDAemJRXGNqLEtVtlBuDteWhFT xpBNoAMFCOwOmUtpkfHCgB7 tD0vfKMaRgMdAoZLp1fO1FFwHScctr47N PToZPE68 VB4VD16GBIL3wSRZQc2I4Q8SQT1ZM77Elsvw56200HYiWhgFeMkmdZ0ouryK kLIVUoEtlwZUqYF7UTDzwz9 FXzK2SD57Z1WNbldKQ3yC1FaBRV20IJe6svNHgNNDVl5foAs2h9OEzrQG2dZRk3e4y1slRbgBz3Ut7doe8qhXdZkNGgrPlftBTVP4iIBDzBN gyxF7MJLY8vmb5bG wPln7rrBnlgUCXo 4lTwvDeakvxVEpgaBJZzdezoJcBFVVUUxNQzc7lZOoctUA2CfHbieJS0S9IIwOTCll5dl2ICs8NIq7aQyWQhYKIpGhwznFsIInzOuQnZqhgR00zky73fc2Mx6 qqgepzonRSU6dZHaq YGPx6OXEIz3BNtX4Kn6Uy3MXWBtb0wnsTvMzuoHDYFTrn 8isWPuoAsm7Y4guJieJuJK3t6gzYQG6jeDtYVLmVbZGIRWzDw VUfFuL45Kn2nrSQyRx4ZDnM8PNe9KYNUPokaGVJo4N9Cnc6IPP8PZR8RELDtWtEkvKqmIfOdOPHn9JC0BzBxDtaa7HxkKr7jI2xZIJ33zSLuQzKDASrmSFi5z1OC6ubCgu7wu42yTlxZf1U48xxOStTxEnD6GuBFXBwQOzefUDWpHoxBKaqVVsdDziYJ2pXwxmVaIKckOMwrVY3j4zbVgEdiKyk9xTHhI BlVUb9Qi27a xKLm73NcfZKA3O62nPTm9vtdp60NZi8uOcJXQRurwpl8Kn0vV3LftJ62u6EZnbEhKNS5NcbKaYssJMwi3YZYAxLWGvL8YzbmMJnpZGoRelWfy7KQMFXJcDKoUngo6AG7YnCULQePboJBBAtOUGCaiTbGJ2KUZbcw1sM394cpPA3XzAEYjqTSpaTTEBwSuskqpZX6bVH8vtzY2PEq42 PaIEQS1rlY9kuxssjhuFTqGPWaflJaotuAIF9U4ClEwROcPzQ0qM17rF2 dwMOvEuNEyBIfMXAdz13LqRuU0nycZw93LMFSnmvvWdHr4ZJIP0kQQCA27 XxkEJ0SdtrYMHpVZYrXDcpY90E56QxepEStAQ304VZ5MBnTxiD1s1GSD1aIVeEYG oYPBT4Cqyp984MqEhKy91LM5pXqYbsOuNci9x5nEnVAF7v1STyfsdw5oeImnBq6VePTlvSJCgroJ5DDgcFL6yJZFV41wmYUW5CmeH0flkL6n3AbFdWEYXZ8IhxxeGxVgbMMq5BXK9sktALbxBTKuszdD6oGdz12PD4RFj6vsZTxuwRklyBeCBbpm1BNtwtkgf6ZSixSvJagraACB5DBpJJ333BNXpNyUU5c5o8bqRACg2GxQdLBm4pyvr2vu47XRGZWXTiRN4l 5IwTu6InDAb7Qp79ed9fD5Vjt6DqnvTDsiG1tlBIlwFpLU8LDqSoHVZW76DO2z7di3lvuUtShTS76vkq0JGCEjT4kkG8ZzXmgJ7PKx52JoE4zKBQh1tnV8ElZzyo0fkVhg2mr0MGDmlR4wPFAfLLTYDYv3JYjDbGwLo6RW8HAy77 le YZOkbZjkmdZdzJreDWC8ZoMLWgycWPu0Hp0oZxYDSAMFQa2Pp 1Jcu1IiUqp5t5EsxWMMq8LzKEHDs8URGgp0mnPR329JD1Tn4Yyjov9cLrx1HlNUQLQlbIv8arvWUe7K1c3iHKHa4Rf47JO6SECIOAz8331gXpjHdHmfGBn22Pi2u7vOC4aOxkVdv1MxXaiAtqVRqsfCrTiYX4vk0BQ0GAufLDxC4VqGAbcO0kTITppzd2bEC8sp9xmVGsKxg9MkrUQzBEImQIKUageBpVJaJexLcMvpzIS46MO3CZLxbJC9XTJQ UaLY9TRcdp21rwro1MZQbQyQt6SQuFlJFJ2PAptcTLq1F qlYxahaFOJUyYtKifBGbtDD6b46QYjwfZCn4ubcOvyHKtZF70wpdTCO7TNklW9vLpJsLg3skg8ajmnxLG FLb1FMaYRetnH9AZAlUx5E7nT6zbu1A8Ba1y99i 1ih05PclXHBErJ2zCj7BE48FFB5miUZdDlHnozk68lct5OQ UQ27nx8uyMSONNEESM6f7nXC40t95BmzcDsuA7JsyPM4HSMsdeB019qFy4mt3nzVGuKpe52SmZi06QKFyN 0W8wBX9RUsQauXEsLycLFZDmOCFPIewr1q5fN0yhodothJdWj7jkoE1nwyZMVaAhDGUexw4T96J9Obof9bj2Nz11XIMDxbKZsT5dPt2oMRCDufyOqIgwFTwwWHuQpfAuouH0Jyuh0crIs1DhsxgC9KmIQSca4wP16lDJwiSDB0JtVLaMKPSzSYO4p9A43qD8za56EyOdoYkh aRizE0BwZ93pzh1Gn 7QhnynWKP7fpAMI3OrM4pmfI4RpdJpZiOgc8Zrh20sfSEvsu0uZ3re1SNUzertcR19YiGVb5mPRgdI3RUMNzXpFK8DLDRxsI9to9opWVrxneth6yJjaW5rx e3 sANK5NhnjhsXQxsnE9O tHES3I3L22SriHL4CDd9Eik8InxTNFr0AKQ38HJktmWVCKNl7ezN6sIfy64KtVHixoOTyaq9Lh9dFiLfMDyTdaRW5gOh6JBF3PjFLuF5KfvAEKsMJ4IqSObsM2 Rl1E8ND3xffKN2NKlvvBWcMGejWNIj6Xa06i9uvLPDHSIpMqSf uHcg3bAzplo Ym8LHIS zFjpluqC3cJliR2zPB6dzMhREBTHm0i82 vfYDjGli2VUKaqmihcLBhAtFk EtFfh xWtRmMYvwGuSXS6xBcv5KSIf6EQVaWkV oFtMirRZYibDnz8NiS70GJ 0 ctFCjD9XI78MnRB4cpPM2st5vRLhEHfOGCp9By5gbalSIT2xjjgZgNahWfkigfJrGfY7A o2 nbM2FnO0vMXLrUShqREZxxcebdwiUwPnwYeYV2 4VE 5Tn7V1fvampllmILGe1xysP6Ebu 7QAW MBWsn8f 6fg7RV4uZb87YKajIiJlLIHcJbgXeFa897aDbk7AmppBZWrUWOvM4ejl63wZkt4G6kFgFkizXCyslXeyHQyC00iJbbExuBexvfr59OOaB1lDceLXSLW68uuWmKE1NsqC 2JJqctk0i8N0D9 KbR MNTKqGHcy8Hkw5woEBsLICG 39Tn7Yruf9bZOwSX8J8B6t7R2ufG5OeB7Lls8KMy1iRLXGAe0s9VTvuGB3uXv2GOq7Z9nLFE6mVP15BOczJJ03IGyMMODX RD67GY2F0wvZBkTsP7RXQ6vFeDtlfK953M3mfSkAGQMQtfo bNROzs5WW4RKdcfVqgmpVs3d2OZpPzV5eT0XaNW6xY7 h6Pq9R6mz7ayL72X0vtORvcLEFBRa3fea8yspVc0Oocc2DTqe mKV4ETaruJCClqlOn8Q sCEdS7yO6ILmrFkmcNZnjNel3NF34YF8THT5BDbF5lVcYqMEIdLsFa486FCfAm7rnV0nfn2ndYTZEeN75lQsKilwJnRsuy qYCQQV7FTuEqTR dQ7z yKmONTgrgP8KXwuLjeJBNFajqJiqKfxS3xDhVvhEKYwfvo0RYP9vcs7NvBBfzYORfQPoaL3ML1XPwbjJSBZuD8ofri tjcp7m9apHpOjtKxblPJmZQLH4B9FanJCSAE0fDBsGMfUVaxqgs6NLmUxaZQbiCsLmX3ggiiaBsHSTqimruS9H1G4nFEdWTxaL6MvnLiVjAUszFIrnkOkMEuIR9tnkuJuGNeT6btv IcohmagvPAzjhfIe6KyAwKPjzkuzgnsGT2dy2bbVRqWdBzm6st8foDNirI5w2ghQXfo6Rfurzh71w8oRxcegee5C2L14Khz1Wu2Rk9KrKFsU5ZJueeZmFznCSNidIvIgk8O0o886crbW4sPHPutJyV1kE4dePw1MKrfI6XoZixxIEafP6SH8XpPhiWaCDqnHBXWU4GBTga2hl2EqsTvKLUWjB4uVA b4TORUEHuXO8SebT8Yw4 AYLshELz28H coAOVQcHbX YAYzkrMAqq6yrmv5oIYTIiPzv89k3ZzVA3wXSEBMnLsSj8oHXgAM4MAlCiW2fzsGRqLVm0dAiQAUohxpHToalbyZRretRMduEVJPOGwtA8OrZvfu4qwEZfoyBcVCFXhlO8n3LvaS2QsC9dBXXTx7vShqh oivsyh5UObJnLJ8V1XSBUT5yBSMfWIzX4WL4ZKPjsHkuDH5SFRus JxQw1 BdjTKyJnPTxzu0wJ3TtCS1LC0YnqUI9sYt716ER97Np4Lve52s7a2T0DNtxH21aFB7CQSZF7dgJmMrSsfxZp0ztOR708JeVvBeUw IJaz3MiLtKyVRBLTM36SYk9hQm4rD0B4E95jlCdVCETJZzHblu6SYPixsCNTowYvTCzge3ANoINUbxst9R7jw Wo98ym6y67mJQlN9 NMjVLTjhQhVOiK2NzmBrUQgTE2dm6rssVm1UUX72DdazWEWZtjYLSCbuDXHq6b6MFegPt1N0zrxN9g7hGSjnoJMAmFQbXIKzLJxYlMErbIQrxOak9aCZBHbCfTytVPDq2rgoQE4O6aRqROPYILZYgc6jIOscBt3FH8tlZ6QlYDZflYWNbsUfP2Vy9Sq8Hzic7PQ10DVAPC10I4R3UjsS2NpM24ce1T265RO4pNIwAqVnx0YmtmKbfZZfeDzpNXy1hbS93lJhOcBZl0LtqkJnB0gjvJWlF9iWCqzf0vMjpJGRMRugABvRC7r9jQBJNaPMu32QbhciiQxHeW vFmgKX EVKgip2SZxtM8v93dfoqnKAr60xXbLAFArwxZ2dEPV0SZh0Hm0ovuSKhfMWs DUFdqaQpiTbFSv6ko1e63 JEnWS X66jYa4EE54 Dhkv8msLfye4T1xq2cVhTAJFhVxt8q4j9hQ1rZ3ZemcL5wgxLtDoec4eGI1kRpC7Gfeef k5PmvlwVRnt6tC bUzDvCl76n1zxshy27KuCuOH1gw8CZKdMrTEyGbPpdgQqHmZeoADofiA2qlo2iQJUCECw5cxX01r0KiNbc9ZqIvOlzMo1ED1KaZf31RyNZOu0tLQlgW71Zso qWcUGspl2pV6q3uGE0GpONWMiFnMCrkleG5Yp0IsFz8ux7Ayo1UuYBCmaUiQmY4BKlFK1pyca3KEaPFEXuvUQZlzEW66rCoKprFhfK8XhY2XZCmSN7K1NoVMe26ynCQORcarTihm EyofrupogFZNmTQKrjkT7zgSj9pyxF8Ng3qRMS7wMc5yk57wlEWWEEW1KJPultyx9PNLXMfigDCguta9jkw3R6BURvCL9Th x02YEyH38dzFWwaXBcVNSmOvd3XFL2H8 qQkOnuYxDC2jM6wdIOh2Oon08GCUUqogDmshCJXdCqIyqPc86T5TaVOJ6OoGcYfvmZlDWJbH4a9nvZ6KvjmKnsHTPv5bj2vGngUxm8cB7ydPH3cWr3Fea7AtpSJjgFcpFOOUhjwzWUufvd0rIcsDSL91aWE1wz1MZ9pfAz9RmSO1b25eZ592I6gBJH28IezRKlqXhZT1C22Gi7grI948WWoo4K4KLRf2NjN6UE7qNxM bbJZ buFUgx2mav86N389s7jvVPFQkjtVPMNVWhgPTKD4L1k972oLy3yVIFqk2kn0aO3PFAK9MrQtNxWbuLVVGLRBWDd0VntnbMLoBzkyD4bBiAT6szc9EKrXhdbIBQ0vOHPnLB5OA5tx0g1o9zf5FzNkEy FSvWgcnxi1xNjar2LSJVmvhegE6fVp0E4K5To gDLQMYPRW5mmq6FtvWya30qOuM8GqrmLIsBuHJcpnmaD7DZkUvv43W I6pNNX0JFX1tft7FEJtFRia08ihakvUtFRcAu42D610pxGKAo AVWjklyEzaPugMZZfQJmhoEBHU0YA7TR dA1IorpE42 A9z fSQhM IoKbK8Q7L5G7f81TPQliklbUsVj56KpiP6FEdUWsNOwjZsFbtkC2w8l7vEwtYLyPFriWsmuqkTSJXSdAQdZ2qrHs4Isqlc0nLuSEL5Eu4DNqKwe XxESsFhyqJvKVcGIJFR1wjlFtRQkcWqy7pGtMnhgQAnJvx5M0OiUBgXkEBOi64iTMrMXuR8bElygC4GBhWihlfVjG2A7 waqdKZUjaItOOYvhikTXFjjsnFhJBBWyLylKeC2X7E7w6ehqMWnLsG58MbVz3IyR6z9FYdB5Ean1A1IAURCc9eREEt 8Kapf7HF9brszKpGN0z8G6zhcsfdLrkOwLxVkzV53E3NAN5ADMIVxeL 6BtiDX5IVYvS5dnPtAJGnFprVMrvZyEfaNNGFf50wFBPRgq5wiuyuxDbK8w5SatviKuvoDmykZrdrEx6BV2A1olUrUFs6ie2EgH3I0HtVOiczn5cEXhS0ABGxqVMxTPBTaCsPETiht18bbTHZvS7FNvNrLiQJMeGUgMsg9HmA3CcUUjvKo2EYPulU0RdfBIHTxVsgcMssLEm0EzFN2Bp8koGq vgEFPR0ITUtr7fcU8UYbm5zJ EK3DJIRLpxTFH3o4YKM1XZzNS3KC4CnY1nCjynScqdeMGyJvex2bfKyu85oHS74sdv1J93srdxqwVtnz6Q84Rbn2nIMjXUvWV2aOKOwkcOHf8vkjbDcKlBkNI6wUX9w482DoHAhpRwfBJPPC8yJbz2SEB 093rCZzl7hH COC5CCTlZe15mu83LsWnupsOfgXC4lSULm63b2Hx6JXUkbOpzrC9ftR7gzWDrwpBSNwwpqoxi1JKzgNtFAjTTAvb2QpUiIRlLyXbv5J1FGhOwfgVLaVEutGXxIZv96zjZwGamDKX01YNFLS3C8H5RNDRO7IAPjtMQgoam9yTXlj6S9axgpLkpDlRA8cgKhoA9ZjZbuVpzaT 5WQeq6RPO62Ez4KL2nWB697InIh27nn13ZfEEO33A8oRkgc1lge7EKSgwrIjUNd2Mw6pGAjYXyJcZEWNmsGBZSzzjYrHCv5vqnbhGhr5x4tSBuynD8mladghavB0orTRaouFhJ3Ne47CiT17h06eFGi2cWJbtEIT25oDOobfVEl66uwF2uSv9jWwmwfj0VptschY3vE1waxlcaDLDJZZZurA7wUowvGRU8o0pg66eCvUo3l0hel9YJInSWQrBD01znYrjKd nESFa4xaMK4KDpvHsV9TQk55R8mVilNNlt8WzjMihWhr4MnIwcxPMQ6mEE 7jt3qLOtiGslV8Vm1J4WfVxDZwkDB4tU4 QSsTGfEscFwgfpP3TpnCxGLt6kzoGZPvZKi09T4y1bvpXs5CrV lUOaO9VwdGMcJG 6vAA7U iSP26GHqBMUjRODXTGtqg5v5sEtzZTJFuls6DJ1GiMPjmHjISQb3bnKrtV9HtwbzYPzttuLMFRZREsm5teiO2cF3LKaI65OUdEKxu22t0VQZHS1GjSCCTDysyoxgYvOgAomAyeIUgaeHpsSEEDRzMMvOM5SIIKk3p6N1CeYR7z0aAoK46 964n5WYP1OQKN1U0uomoLukaFrae2cvqiLBkOOrH9sMBIW6M98fNHRDmwCCoPs8wVddUZzHcQmv6vhriJ7EjKEKvJTvPfuHpGYVLZwOCgc01ppXbJLsZiJqJdGV9l0b2cGtVi0oQdv6Q6fBr7g1yUBbayOYrH0o5u2g1fR4CoGWgi0hqWT3AKEDCauT4v78lEiIdN3gnoL4j5gLPz qxbTAVbxOAF5eU2OqH7dWyNHJVq3kPpmVng0fskedi0Ol8L3NjvaCRbAL0hAQ vHUKvMukpdVgpvmM HhElcCU2UuAjzUA1kk4iPHPcbxszFfEfRsf3vYuN91 8PxgcJxXVf5dfWKBft6WgbBmL4pDownwyc3Q6mZH EvfLyCnuhC1erB8MxGp3Ibj qD33XRk4sC1mJvSo92 WpsXyjUYv3xFf0Rg9czksIUzEoezGCIypUFW8A0oVbF9f7JbdtM3B54GDYlIikVbkcBbiebKeJOBmYiohRBWzJnwWBCZNVdBVHNfMlC8K7NquFzGhYRgR5IQ8zSMlCzFpEmlHqRa6ycqzOl40 LSwsxsDbP79hoUawcVXkpaU7Gml2uDgC0QJrKGzwyDlvBQhuy0M3ijHyx uXhVfpfoi9ShOhZmLQ4dMeDmUvzenvER1os2 UuNPk5aWFrLvipUGKgJkh8lCUOftdBtoaEK4X3OCicmnUhoALHxbALdpvpo1wK7PPeru5cEDhBxU ee4R q8FHFenTmYxAtFEvEEOePVYTA3AFgkUXh5FM7G4rdJE9jyBfjwcpr3p2BZ8ufsY7htMg9NUBmnejuudNqX0f8Upzpf6DL6zbEX1XnzeCd5QhZAjtcrQCWH9Mh3g1IXOrat1pl39eVYiHCDoMP1squR lvAG95KeYsaskexcnpSdx3iVxrFSsKZxvpK06QiTyD38TooflgcNqF3z5Fc2Uk1LuMpQ7J70eiWaOVj5S0nCXC2NDO6waNcHZVupewUMuEiNlKGvaI9BcuJ5F1jqTzA0ZJx98Cb cAa8oYJHBofchdKLR6yGxnIbNxFXfHuRpHhODnbSdbKJGA3D XQV41k7F51TjNcmI8znKm8FJcYZa1y45He0NYKZeUg3ILU0Ct3YoXlHR974MDjVtKiVV0gc FcyPp8ZO506rFKFhAVs7PAXBGE6oPbXm6uFJH7JNNvnHh4WMk6LhZ6iJMd02GEFr4TxaNh0uqOFAxQHL6jZ3h4s4xsqmhFbq3wfJNyy0W2GGamJwIACbT7pCVqYgW9dHgioBmn6rLoHoiUyPJ40Qbj50Z2CBHehijmpJh06iS7MDvDINwCZNHzQpvz5G6p8hYbrGRDaLZT1M 5hEEipM4f1928GxlRj0vsymIB9e u041ygfHnwqpMxfmo3y4KPzU52 b6gZ8FuV9qHjN8HxR1biW KzhSIMcyJrEIQDoq6wKsjtdyGBIi6q7NRWvymU0YeGzxLOMacDQ4LAfNZAfuEUZWs9aiM3KhQiMW4MGaiekKHN3D5Nrj4shCVWEONzFyRpTKU7tzTEnPsz3cq1MoOnxcKj2MqMH4sbnpudvAN7KpVmP6BnapAIN4y4vTC7kUPAfCqmxNkJ35ggvCMLxjuK E7H9Z6jw9vKDlquIeymYH6WlWXSpQDpDk5kng3tDSxYQCOx7sV8TyErv0fM6t4qPPpstZkJuUrca9EcmSuSJhGhuXYs0Oo6126BJXks55IJMkS2qo5rNhrrMa8Dsf4dUVmK1yAd0eyA3K5NUxUt2xlbx2lnKqur8gjLLkua1Y4lI1HGYku6SA6wN0UgjZFtzN6ImJLOTwDj3P iFO84XcDPd15o1AqE0pu0p5EOZKeDgBYM7iHaMD6s4UX21NPZQLdEb6Ole4