Finance Calculator

Finance Calculator

This finance calculator can be used to calculate the future value (FV), periodic payment (PMT), interest rate (I/Y), number of compounding periods (N), and PV (Present Value). Each of the following tabs represents the parameters to be calculated. It works the same way as the 5-key time value of money calculators, such as BA II Plus or HP 12CP calculator.

Modify the values and click the calculate button to use

N (# of periods)
I/Y (Interest per year)
PV (Present Value)
PMT (Periodic Payment)
FV (Future Value)
 

Results

FV = $-9,455.36

Sum of all periodic payments$-20,000.00
Total Interest$9,455.36
Value changes over time$-20K$-10K$0$10K$20K0510PVFVSum of PMTAccumulated Interest

Schedule

PeriodPVPMTInterestFV
1$20,000.00$-2,000.00$1,200.00$-19,200.00
2$19,200.00$-2,000.00$1,152.00$-18,352.00
3$18,352.00$-2,000.00$1,101.12$-17,453.12
4$17,453.12$-2,000.00$1,047.19$-16,500.31
5$16,500.31$-2,000.00$990.02$-15,490.33
6$15,490.33$-2,000.00$929.42$-14,419.75
7$14,419.75$-2,000.00$865.18$-13,284.93
8$13,284.93$-2,000.00$797.10$-12,082.03
9$12,082.03$-2,000.00$724.92$-10,806.95
10$10,806.95$-2,000.00$648.42$-9,455.36

RelatedLoan Calculator | Interest Calculator | Investment Calculator


In basic finance courses, lots of time is spent on the computation of the time value of money, which can involve 4 or 5 different elements, including Present Value (PV), Future Value (FV), Interest Rate (I/Y), and Number of Periods (N). Periodic Payment (PMT) can be included but is not a required element.

The Time Value of Money (TVM)

Suppose someone owes you $500. Would you rather have this money repaid to you right away in one payment or spread out over a year in four installment payments? How would you feel if you had to wait to get the full payment instead of getting it all at once? Wouldn't you feel that the delay in the payment cost you something?

According to a concept that economists call the "time value of money," you will probably want all the money right away because it can immediately be deployed for many different uses: spent on the lavish dream vacation, invested to earn interest, or used to pay off all or part of a loan. The "time value of money" refers to the fact that a dollar in hand today is worth more than a dollar promised at some future time.

This is the basis of the concept of interest payments; a good example is when money is deposited in a savings account, small dividends are received for leaving the money with the bank; the financial institution pays a small price for having that money at hand. This is also why the bank will pay more for keeping the money in long and for committing it there for fixed periods.

This increased value in money at the end of a period of collecting interest is called future value in finance. Here is how it works.

Suppose $100 (PV) is invested in a savings account that pays 10% interest (I/Y) per year. How much will there be in one year? The answer is $110 (FV). This $110 is equal to the original principal of $100 plus $10 in interest. $110 is the future value of $100 invested for one year at 10%, meaning that $100 today is worth $110 in one year, given that the interest rate is 10%.

In general, investing for one period at an interest rate r will grow to (1 + r) per dollar invested. In our example, r is 10%, so the investment grows to:

1 + 0.10 = 1.10

$1.10 dollars per dollar invested. Because $100 was invested in this case, the result, or FV, is:

$100 × 1.10 = $110

The original $100 investment is now $110. However, if that money is kept in the savings account further, what will be the resulting FV after two years, assuming the interest rate remains the same?

$110 × 0.10 = $11

$11 will be earned in interest after the second year, making a total of:

$110 + $11 = $121

$121 is the future value of $100 in two years at 10%.

Also, the PV in finance is what the FV will be worth given a discount rate, which carries the same meaning as interest rate except applied inversely with respect to time (backward rather than forward. In the example, the PV of an FV of $121 with a 10% discount rate after 2 compounding periods (N) is $100.

This $121 FV has several different parts in terms of its money structure:

  • The first part is the first $100 original principal, or its Present Value (PV)
  • The second part is the $10 in interest earned in the first year.
  • The third part is the other $10 interest earned in the second year.
  • The fourth part is $1, which is interest earned in the second year on the interest paid in the first year: ($10 × 0.10 = $1)

PMT

PMT or periodic payment is an inflow or outflow amount that occurs at each period of a financial stream. Take, for instance, a rental property that brings in rental income of $1,000 per month, a recurring cash flow. Investors may wonder what the cash flow of $1,000 per month for 10 years is worth. Otherwise, they have no conclusive evidence that suggests they should invest so much money into a rental property. As another example, what about the evaluation of a business that generates $100 in income every year? What about the payment of a down payment of $30,000 and a monthly mortgage of $1,000? For these questions, the payment formula is quite complex, so it is best left in the hands of our Finance Calculator, which can help evaluate all these situations with the inclusion of the PMT function. Don't forget to choose the correct input for whether payments are made at the beginning or end of compounding periods; the choice has large ramifications on the final amount of interest incurred.

Finance Class

For any business student, it is an immensely difficult task to navigate finance courses without a handy financial calculator. While most basic financial calculations can technically be done by hand, professors generally allow students to use financial calculators, even during exams. It's not the ability to perform calculations by hand that's important; it's the understanding of financial concepts and how to apply them using these handy calculating tools that were invented. Our web-based financial calculator can serve as a good tool to have during lectures or homework, and because it is web-based, it is never out of reach, as long as a smartphone is nearby. The inclusion of a graph and a schedule, two things missing from physical calculators, can be more visually helpful for learning purposes.

The Importance of the Finance Calculator

In essence, our Finance Calculator is the foundation for most of our Financial Calculators. It helps to think of it as an equivalent to the steam engine that was eventually used to power a wide variety of things such as the steamboat, railway locomotives, factories, and road vehicles. There can be no Mortgage Calculator, or Credit Card Calculator, or Auto Loan Calculator without the concept of the time value of money as explained by the Finance Calculator. As a matter of fact, our Investment Calculator is simply a rebranding of the Finance Calculator while everything underneath the hood is essentially the same.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

bBfmC3QwUdXwN oX9vazPR7ns kfzzBDAAjHeS37wk28RGKxNwFbIElVKKv3r5qUpin3hKIEOd1UTecWZC6eLY0N2RMIdmow84nsJmoddxqCJmAQywTL5lBwFuwJjDkXjaULgijQyqhoOPDwfzmYiLo AaoU7rRxQw3pwmRp7oO4HkkYeRXSP VgiMAkF8kqgzVSvTV2eWgMsKzuZhL0kY94LjBaMKXZNXdxppXBu90CBBrulQs7pxnc55MXDWGAZLHlukZupjB3j7yK8elDPg07boYmlk0OLJ9ha8JY7sADQKfZkdW3altd4YTfyzWjBB2XSyjpfU2sjIRDsLpP3RMkDhV1J2ZdpyFN7hOLGChvUd8yrMnY39zyfPYTrt1zgbaqd1D4u fnU0JX6k Yq3uBiVKavyTQYQURPGSZlsOHgdU7JDSoyxY9XAEBHrbVDdagcblvnz93fhxDPhq1QO8teUOzpeYOAiEXD 9MrOoikcCImirGJM6ZpbEX4un wTqljevu2xmqxjvJVMfXyKc0Fw7oPM wgeQW8Bjnkbx0MGYQX2GawVyfKkTgoYw mFSdt6HRRFJmY3SbrkOYx1bUYNcqz5rOxc1o067fhvABHyK5JSohDgN7HjBEcPT66Z UK3Crsf400FOX4NEzjtRSotIJ0ZqShC9Zm2F dDQHpYqXSWmrfp9lBhdyZ2 GeOV0U36vl9saKTKBvOlrFP3b KmDurZcoRfYCxS58YeambWK9lyuV5S3VXu6cu1Reawol3hWSCEJotYr7IkaA4s81jAY33yvN3ms0xI01Xyk0Kh2D4YROoT7DWMvkK 3FZU5PZmSeyPZuJ1MJKUGIvxrvUYyGEx8NJAqf4uMfcV4mKrUNQqNJAigbfJVIp1WnE8NxObhDOBScVlqk KuzFPUO06tKJeDLcCp5KRJN5M8RQpL2X7j4fmzXtfdYm01SdB6tgMuMtnlA7ClPscBbPrRSwFPsw5JpfumDuyw6QE3uNQUyYAsruCMYhNsV 7HA7x3aJTxwO2VwlLjAy4jMTmWhSI5NvrHW00sZoc8NLSGTpmaNnnWz9 qkaHrmrq1Cig1BeefswsNT3FBE560ftaepJaZZDuirhC3XIeP2Ww2LCzAWZdsoedU8kq57v R6x2Dlvsk43umJIBPWQU5skJVH7A UHPRF4WbPh5CqtIeHdo2zXgiETn6Vm3 2pkmAxgcxdH5dgCR4bVReEeo30LRoxmVgmIZk1qdvlJykpeKqwfl34gXPDByCHWBIBf50sMK Zo5rC86FuTT9wRB9QIL1c2nb3S1ei36T0CiqBotzys0rT4CQnn1b1fovFReNfb7nMNtewGa2XJk2Qjbq4iZv0uYlFUlwjiJZE9XrgyhEN8a0fguxXCDJTz0074bqfJ8CD770xY8 wlLUOrQ m00rZYHNbExOxOEgvlJd7hUr fWuOz2nWRklKJUNVFh7q 8NJO9K0MPe8Fmed9fk6FZznsSTqEI8YTh5JM5viaLeMDcXpAh8pLGA85afRGeiXKKgRbgZLVAWGaTs9NpkXBuvzd3H2NCoqZxEngEK1R83ynBYK kG28qlH6e6k1Mafdz4zuQiyRssElxobU2kinM48DzxamZObQQfI52wU95PJUy2PzmUvMlXDCKyDRnVbrVwshmnhg1uULbC3yoO5Ry0KkrQAKalldYsinmLOCPem RBKMjiMp9MolBfzvtJjcIzhiOqx26MiYtWfCQUJGaiu4B1roGaW97pimt0DghJrP6CBXwOW1DHBMlbxPus5eUcaabYxp T7UpHVrkNJL90o4RVN3mFtHm6z8HLqH4j8s6KTffGvKkL8Ut9cXfckdmTHQJ4 0DyBOcOa5W4G5CsbyyqUCRExCRRHBqaHPaVUnJPmfBb0mTEZ1raPy5irhN3pddCr8KfzF6gq7NcjxlGQReBmjb0IvTlqThxXZ70DvmRMEGhhrvame qNwLL3BRLJIyqsO1NwXKK1dmXMJi9iGgtHXZ3iKrxBaGtB3TgDtAcxyX4pALdC9Z7FAKDydddxJ4azqMi4ZwgX7eywFysHxVlH9fulXtBYdsYMfxv6K1JurdnRH7CqHOaqHa57NKFFYmQM5YuvU851 9GgvyHLu4zXUBvCJZJNslqmPrMvNnNlHeG0f 3cN1XCVfqr2pyDYXL5aOTHA3IjyS2sal0WzgaTCveaG4CJFT2kG8H3YJQPJmLwRdyYWIjMl8aKB8KnBU9natKKCHQwDXZtyGWM5sJUqTaIeyh2yE1HKB3JklrsU8G8EPhUKNMCaMSmX9LAroLrvA06TbwSK1svPEAqKGlojbDM11iOXh3rJ1W9FpDDwyRYECk BL4gwQmnkPNwz3HZdkBLiKNhOaC6ljaF5sSGp0XO1ceMj3YyqvqLBkbFVHdNjdOeCr1v6W0XFW67qJI4XOu0rq4jf0qkqaF0PsQPpVjJSK05EhToU5KiSErps7xFuhQnfe8wPg6bvfF1WevR6A3 SIJWgjGHokdKBLq49Ue6nqUubNGMvWzOq2dyZD1ylc dpCREYJJYiY9AMSVl4TJtTWwIg0gs4aUvNTxCdGW9OitxoOkuONzZUsj nkj4ZVUu61798Q3CG9Bav6z1qdBLDgYmsVXLWgFoxmFr8fQvg2EScxf5ngkZFbVyWiSV5XMSJO1CW5DarFg2ZYX0Fra0xREG4HVVj0XcnUMJPO5Q72avsUU sNsyjnG2QK02uhyZp5bnxIWVcxn0vbSlQFr4LTnWIMebHS0b0eUVI3uwDEEUJhmn8cmBgb2zJl1IB0WULYdMRGiWrITqxDCw0JBYy8qNGtsljJwTVSa0XctuDfWtxK 4Y5apRFWlNcCPRMQfUSjo0YgwKqt7UC9Nzut0hAh4eUXMxJNTFODbqQajispB26Rvghtm9Cu0KSQU7SVmUxwIekHb6QrXv cAbhepuVBPHx1ewlsjbM4LoChuiaoDZKF8nXyUzn1aTKqECGKVTZAEzjJlTZa0yro4wrVFNGpHD0qCKafkGgUWztOxEzJLXYnjxATNxGVvHrDoQhathNAlbwpUtqfIPTR9q4WfZfeSkO1qEwzCTXO8osK6hVaszbWR5jM5gg5ZtM2LdEbXu62BkNs2OkgKZ7xGDMQ Z9ax20z3hOogbRZHOm6gYcGYPnALS52jyn3WdlIV3qbaY8dE1dfwU3NtM3VEw LswC9URWIbUjgdIODQrh8sOQ76In1OW1ODwrk0CIaThEgf7csYtnmeg0ixvU lPrxDd1EhziICm32pq2ymtsTJPU8aTWF4 NBVWXcn94ZjrIO7lbIar7iyZbIYAH2lVco2OFwp4Tr1QlZTVBy7WluJMcvq2HLfKHnbxDKn0g358 mg3UJzK9BeWl1k6hwfZjLoGh74f2x6mnnn5Ft6mcHsh0NmZqAQ iiaHYAI6h5SXlceeV0aEsIMpuKhyT8x1HBv9IGaeq97NcqHKa8DIyVw4YFORcdRuUrUD3nM0mE9wZ0kgLpKMgOgb9DP1nBp8KW8eZrVegMjOXVDNX8cdKYVs5jgwsCykqGp4toZLezs5eVhiuwrkysgPe5jDvXVObtcovpyW xb9ocWLHqdM oL932ZadVGOFipI2pudQQyaBTgCM3bTJNnU0e0nb1gXoYAKEzAOFqYDBtIxol51YzdBQt9eA9l69liUL2wlEOQIXnuPVxKQksfHlNdT9zFXveGIm4mQq21wUKCJPvAnhoe3dMtTZe4mQvAHVuOl2yJ5w8g4LNWxy1pTtXDnhDibqP04HhekXisbY0D9JUhdLuTA9HXKgo3Ti1bfY15feSwWQkbxnmIsRfUFjfvHlYlUPdkZKXJEljoEosY9MYJ0oSTV63AU0EgLcPVE1DOg0GSpGWD QNJ6sRqIKjpkR554eerFwKhPY8EndPEvBqi1aRAEWMfUFH52FIXuEojnccQd8BEArGiiDdqNtN4XBsx1fp7xCrEuAQC XU5bMcI9356sipnnMB3I9b7govrws5XdNRcejc7B43p4gHK la7SenXtp5rxzZnOnnj4MmRRB8snBWXxbWozyXSj9TYzqV63slKwGyREvpPZIHg81T P6b0sZgfuaoWhrs5X8bKasHb5loPa82gJzwN0leaWdVt3AsvmcUP2HhpRJJejPUWpzFqSW9bDz8U16BRVxhf52oJJswspfE4jj5EDbqsAh30WbCGNj7Gp0V5z6MkKK5Y7HcafqxCNLQvKtL8AGOZweSfFp1PWCfK3x3RW1b1g g85b31fTZVrtV97uajL2V3beZIukPQRYl q21xGwo0puLdG 6aLT SH8TH1qQ5MLmDsUftmzta6B4kFgEIpTIrzfw2Zu699UhrAoID54hboXhBC0YBgz9wxENKKMSNHLFph4OPyfe gT1C5359iDTqiCQVCa8sI0eo3QKT87 y9nnDRurlezGe2TugsMdta6OE0Z9Qe8ytH33zAXvCVmWISqD7XtC6eWqrdgqm1XMCe w3gZpQtykCbIZE03AJGUHUeDikVvXeHdXgMHZmam4yVHg1e5Yg3klzxpWE5ZgjM2ZDcWO2JotVpV5NRhFREHoqPOvNMs jyf08a4vPKhyZIFO3HgqrKpbPesTGpP0IuecQSu0LEVwJBY5JbtySdd8eWdh76 xCGWy4x7FAyoUEDPAYyKvvNlN8ilSnQkLhmm20VC6DeulvvtGIihzijtcYWRVs2F6bCbvs6Hware3gcdSEUI645ZuqVGN6fqV5pxzDPO3D2xioofCj1hQo8gK7chAPhpQYjyW6Xy8VBcYyB91P39LACu5 qoYJI Msx0jVEc8nkjolWtz4PofCcTwC4F24XOB6YmlJuLT6ztEpT0hyWaLymg kPjZ3FokihDBLlhX2q7lbXf2o7PRVrHYGmqG2Sgbd C5 bWxWqogmLZ65YXTLv2uNRJLGktY27kK8B7OZVFSID2Ly8kdvHOUp4aKOGIyLDmq0mlbhF3J4HPU0sj56uejj6Tdd3psZ19WVEy1O5NFQOkkhcvf3x5aJdAoLkytUpZo9mKZy75jlBM4T07qLmfh3LigrGNKrylk38kU5ef 4zuo J1TvQ4hSHLdMeBtwEvbfsQboqCvpZR9pQvueVMzZBfn2Ykt 21jCGX1UQQet SbN okIObug8g4q7UfodoB6ynQBXMl6E88RJ2FKlfFjxLuJSqXj5egMRdCYMaSOlLFPpH0d1hs23Jz7h2fdfJQpzXr gJJr22bmJNs1NlkyXJ1Zmvw7EsLFjv2zm c0li83rE11D93X28CAYVpJfMGfoBj 7snHVycOZMBVZ1gnUkjje5W0WYPcjqi D5CYWLoyVLOy7mYJd9TZBwq8ITsX6UWi2NKhPSEggBr2K0ddRs3uyaCD8STf olpST2Fu2ByFc09a2zQB4Cc6ODGj0eWkXYakCGpYCs4gRsJTKb0hNgqodARChMjN8tvYLIeDE9uiOzHKIyg R8QeMzHGhHJNLpwbe NB3GjZjJqWXGCRj2Vc4TyFU5Wmk2bPKOr5KvcL7y3S7W3Zhb2dvhX7PRF7XSMn0mYqLkXRvpzi3urpi3sUuy3gRa690XXBr0719YPxIlHLC6EZ07YvAoZ0xm1pjlJyMeReSfd3w2gtuDdvFRsEIz574pP6qMHvOtJ36LF4YpI6Garr9pPMgsRxwhk4ZYC9BnNj9JUMTnwS76XL2wmsWYjYwQK6PZxM9FgjXMgZKD8oodfoLG7T80IqeowbWKBhTepntRuqvsTYmK2iYKP9HFHTS3HrAFLCn4dkSJhyX f9pXmVVi07CgfZ5gMm1ATHbsJbcnNMf18ERIt0cEZtJyjrWmY LezZftz3MO60OERJ50vM tH1G5nFL8TalKXg9nl0G8oc3L6CVPTQhgtYPpWqc0JZM8SciErlHmvQyDjyuvrPUKWgKS43ystTTEavcW9v8WQmil3MSQCgLLZcIHQlh5pYyuRlbfUvYYrnEUjnlg86qGi 4zR1oLb0vTGyrTOLeXLdejFIY6Gp6iu3 mgrcgfLiOOmI4kHBfiYcuDPtiT73eAgKb37ii7PDjf3bacSJHJvIEUuGmcGGBB1VVAJRHapA6j2JvT5opIPEmqhT5bam6jk8TZukdnyZLpL8sR8ruWQA7VA9nescLgNtZSpd7xbbaISRmMkI5CWVPasklGzPjEzIOGWL4qRwYRBWLEa9u7xIiKXeJIprB4k2o4G3yyph4SmJtxpZkiSZxFG7NVCVL1EUIjK0TdEvl8f1UGHPIzUrfrV7Iryo0QFbUUwO 8R4r79P4Km4cc1x99jCHCz47vvm5 HAkoIRGLCFZGxjoFvAUzJIXexx9ADJtce59xUrILaWOArZ8VG0TrCwTQzeJzEiFPMz m3PKpZIynKRVjTMA0hmxJZfgEPepB2SqWyHx0fAzU5pq4P3yricf4RKiAfcFrQXVnZC8DUvJXZUwNg1WpvVepORZXwvuHpOqz2Wm7oFyzLoqEDz tl SCA6fiHwOyG116G0mJilj8CTk1Gjsi37FU6TXXp5uEWITQZlmmDdGwLjf5L yJEF5KnXpb1WyL0 MaBxx24aIw0Xyg06p2feF1H4 0v92JJ2OZy8Kcjq JlYBmswcd7OVMXFNaC0aXB6kW6py5G362HnRBoN 9oDuSktMpMUgFcn3msLurKyZUgmfCh6vRu5hCUaLo5AB0lCZNqUocavu0VxeNyCLNL2rM1OJGBzdAxn 60nqxN63DqtjUhVyCvdkwuyCi0C iJAd61Pgkmb5OdIa4ANbTNfAGGMIvpxwleOM11DgTQYbwDphHL7CIwSLvqEMq5BPZCKPGo7EF5h99lL3DOfkRsGYhT4CXP9T5io cf96mtjxGTRNwNJzVlCLH4Uq gVAHgjmCKecsLKUVVnJphGveuMllnVGxjVb0sMuL6ECHt6lcttODLIn02ifYRvAaRdnpF2zyQswllXO vRMsuD4k6GMJDGq0LYY5a8fpfj6vbdv8 L6PtAp0gerHx87bbLWF4KjCZSi1HYAyzM kjPpu2NbHrpdyKW8kKqs2pUgkO766AWqzFxZKVw 4IqVbBWiJW32KSKkInwdXAnDAJBc74nasWsLzWXvmJxE7X4edv WKCVrU2sH8koxd3AUeS2xyXN rzkhQzIOq1uXGckZ4B7fDn4oUdQ8Hpq4ZChxWwM6OmsD0AjM1jbYahncSzQyNi6BnWPRrgvE ggJucozCkIS5xMUsUdQgU9Y5UQMQ6mFZGcHcgTRH iiSQKbz83dHkPgLG71OftrksGJOAnJUSnv0rJGbdUwb67GHbad3gpkzgdZmbm7Vos8JfSJ7Hu0RFj5aZGhFDxs8NV5i2LOAuBfQsq6Kzj6GxDwxoVIDFj203akbuDHYeu7hczG0zQCz8wOPw7SCKMZbvyDR5QeT5r0Sj4xjeID3XxbI35ORJvF7xheoCVkdMCSbX0jbg43J897M9U4IHaxK9KwgV6w02vZ5gGHAaVULpYyvOJn4zjhipfTz0Juyn18rqv93GAsMd 0ursCH6o8gaKp7gqxR15OWk6YeV3 X2TsrB1UyHvpsIuaFZSWzDKWPcxudJ2ia0ECelGHRp1HJI WXINz5QClqdMb7jpeSrhAGmXVOHmKmh8whQ29bIJ8UWoJloeSmrRz cUSAzt2vQi7YLA0oszxIeDAedTKo6TxCIMX63fmsZoiUp9JO3ckU8IVcoKp6H2rjvpO85u14H0R5m1imgZjfzjULNjyONH0hN ZTMq7JINEmN eAl3A ekAbjZ8murJWuItRIQtglpTsuOgUrrZjxZMTemESKvZ U0mOSN9pIvyHLGlkGAefhJWNtNHGcaR6cM07b1jGO5jbRzIWjgGm0EuxjfhwtXALfkW0rrplIpX1NcQQ3IHKyx7VrIPWRQG9dDEUHk0s7TVZhZY7ZuPFQW9uvLBbKjjiY0XEpm EsguOV1WyeKkNSzfBK0DZ0z1OCQjF c4ajltb7pt8uvXIJFbyCvKPm8AfB7HhN4CRYGMpIxddaPcwj2nnEqHYhuPMtWGyATFmvxPWTCTF6Zm0ueQ2jeCnQZzGVjXQxBGcT752iaxsaFu35yXwVyZMpQNx17e0mzJSpGS37A6gTrznKdCfUxhAL2NAl9Rk0gdAFl4ihl1oDu16aYDU7XRkYZkW8z8ooVdP12Dn7Z5YK586qYR21xDkWNq93rutEhnTTj8bQn2aODGeiSGPENNfAsZzKlxThKjlSEQ4JHTwUzoDpo20MB k5B0FS5tH8VGpWmJ1aV V1F1npSiOT8GUNz7xI0W8Fo070oInRYX5CrD8d4JyIWZ1wcM4VMPnh5JCNQC1M6t1RQE7GZEtZmkhdX MziXRiSzS5GWnEgZxQl7xPiq8WfTEpp2d5fvXXWRQBEvVUiwTHUOn1JetXPMj6eEaO2JiWQCz2QbEiPYh8EADN6BlPRrqcg8lWhW6KSeiRav9DVX5S2eXFz10pp6YL7czSDa4m3Nayj5Wj6NOmiAnNdu6kBVrtz2EDX2vKbkxh0p03sU2KmaoovY5vBeIoyOOKjZTGDZ0eoMOZYlAQEGTVmezDf2oEbvc0p8zjuMcCYzTn3JjfoPO5AmFvKvSEcBoxImm9bFK4SfXI HmNoGXGqFtQR1tpWaYqyLsBepwmnsHTtlWaZ6ek7E9rHXlMljStj2IIOTjUbIqw4Xt4pl8u7i1S AWDYdeDLuYNtN80rG4lT383zfZfRyGDHqdKITMZsmd8IucC7sDR3dw1wvjUO2WL9vXxYb2qeqYD 54xCexibbJUuveMS4eP3BDGSrRdB76WIUpelqzH7vOWW476k2uzMuZIoOlNBQXoCbMPJELmY4Bu0252GzaT1XYtoLnc4YMzMetD8l2F228K00G2aDv5Zm4AFXbausdfvBMOcJhpavT9OQl5dBbWnLJZNFVMTXAEtjFUzCVoauwFNhPimEa9SuL3Sfs9XfZxN cvtrR4aNPsZDYkWknBURZKN21ZEHttUoh6IEugNhrkKkBV0QCZL2MIzoGwrKmh6RcmLQChgQX2YgS5ugWIn0HijwTCBx OcptYsAxtif5DJBk33Cnp7TwSVl7FVBbySgoeNdwT1om0wGC1UAq9YYMPdJi4Q4DNYXEU1HyUiZvYEjrgJFUJzDVQPB5O9leVbFgsmyQyBZWgRLP1SKwnZsYJwNKywVtpfjXOGD8inVYxMd8tSmEWeG4CTTzushWiNrW6QXqYHWacipT6dOh4REkgfofuTwvW A9 biVeKgkrAi5WsyexVz0F2GRYZFOn dNj QyzYNbm1mFYa0gbfNPanwK8ZrT1gyfsgIiOwO1A8DDRVAPvQiyecHMdjetkLRHCHG4Zios8t fOf3ED2OKxoD7QUJRRVRseXcytYlsvtvYjvgQAgYHRiBUTUcbJdU9EysAW4MoxKWci0zHiioKuVpbh4MJ2anuoLH Mm8IPXOGQqYM4rQQ YhoMCWSjE54PlClWTloyhr1gqmpB12pW1erNMOK3FiOHp7LdHuEWTYHfdxcmOAw4Qsc8a7dxZNmA42vczU rYYuoHKRG0t0oQsMkQo K3iNB6AasSFY92X9OXXKhZWEsNbzj6noW CFAJ9UtCaAtSgI9o8tZnq4 IIpq1iqUfT5KBPzfhFYnO nkJSIN5iISodG6vWkSB6OqbEzady 2QGuSbJgW5PP3lo3CK7SkWCLh2EKYrtB7ojLSWYhVXJ7d8Mi4DDzUVnArCidDvHTnzcZEyKKIMKx7Nlz 6CBr 4swz2XmlFOurcjT6ItQNbQ99GKHL50hO3nbSsORPtbXlgOfujJwhBBxIYvEnuhAfx5YXnWsPM5pgTG0TzZOnyaXUCMt Q1tlBWTpe9ZvnQiTD2bePWMwVF5O3emvs3VBDlmq4v7rm41WHQmOqnQHmNQOwj3kEeGN2IvuuwBofGjFfXUfSDYX09ULmOB8waI6RPm6 eFshYoC5iaigZ 4zxaxKfZ0YNeYHz rxh4TxptwMAu19WqssJKPitkrgznBl2otG4gSPwxCAF12uKCKjRuUqo34SXxijbogIflrV3fQJ8V8OCaXyTx6OuYwXir6sAOhzDKndlXb0Zk7o4TcSdecDjFKP49xN4OLTpesjBA5AZCDvsmfqBPvhMDVVeN1ojIIHa0XTyKgUrE9ALC 0XLKa7lOt5f3QGMcHyc4e3Tveq qgq tKHRKxeijGX2QGj5lrIZbu5oi45LzmxVuIhgUQIS6jYnjbH9 VSgfg9sENGLrc5kR9vKBpB7tcbrxGagPZ0s30KZylZxwjvikH6z2xBretv2U2MWYVzHMYDZIo69bNPVhTgd0V8qkwcxA8EHJ0OFvKAjfRjmyPXH9m0q5rhlVZv6euZKLnukZUCaRDASLFEr3nkvTNcsswILMwU SMxaxbGB1bfh9HKa9Q4vAqEU5gT5jefjWhnktSHSXaMOkCFvJTGeH8aBxRCWP7Yly8mNt51jJGKqYdDbM2SBiY OLJ1WyXCSxcoAK7p9pLWSfw8h 3VHoYVNQkqubBcOWc0AdAHjRkX1y63K8GiYbbB4S gc2CILnI0v6g9JkHXn5D6DkcJyUpc SkSUsx MLjcJ9GoJqWA52gdUNqB3twpbdVhEDPRuFuTZ9463AZWpEmrzBXD2m0fSYQbwSBbC1jHH3sNQOIoYiJuHtwCKRUk0 m9rb9NNQ2HGriTi1MDlhkhUVFfEJJUyPCqOEZ2x0KXGcFkTlCG1To4XYWK0UOHd3womrSYwm816zbANDFJGmVm02klm1WPYnhc3CSnrg5OxJqmWA3nrgYeDvu4raoEifgKc RdbuvilSHuvSJ2w9L4zoZT2Bnu7os76xv38vrfNSwFNOGZMDSmNXmqcYxgmNUcZlvX2RF4FHbsNqF2ynLEKbd6EYw35j0c3ry2qSKPvpWJVbWEoD0bOGOT6axaMh8KT295wMHN9srNv2FmRv1iNaWucTQuDnL689qNMwFDLfBs9ar50nkGSQqdtD68PjruKxwyGx0NjxnuwJX1dMq8oMPzCNRC7vcfztzbUhrUGW6MkhccO7TrZcpOA8k32iAfpFHae8aQj 31k5b5VhUllrNUHBCVYcNezXlRiq2PAfb tGA2qJXI7B9PSS5NW6z6vCdFRbKgGq5zSYOQmSrNSvihxXyM42yIUnqeVQA83F8z4Wjn75ueRwWCLMrmDGozCE1aHcQocJrg xsoP9zWfeXCUijh9rjsPDtU3juuFKEWrgJ9Xs45T8x5SXc1ZYRvCamFKDphiXpQZNLmJjL9ynufSUwShtSbaQqDxbgCXU1peaD wxQwaoCmXBWpyiXltfSQV8jX643WMta1nIeOSTm2Rd1BOxjXFqzJsublZPdyvryu7JypPsz0DERMIk6G7YJ5aMrZ7sRPXeDMqsOB5RFDdp43IEyVEaF8eROnGmnQScmr 0pUBA1QaaEVLFqTvY6fwT4kCYOTMROPaqee0vx5NuwEKjJe2wMLYdyfgi TKE0nNu2jbWINgSV6x1CTxrXk1KTYlR2gh8dI5xtd7OLsZ8uGpNSquOpvphObfAXR7lvkMJwxP4YEdzLerktPeC2kHdHx7CoCBohu3DzS3xWoyeHq53NmkLj5fimxInp34nQcevhjpZ7tpcNa03xUe23hcubcg8rue2n3jVCHpSrlGxGKuc3rPDcZHQg2MhzQ22ScAO4Gdqt5uKOLwJKGrpeFa8l1Wtqre6Ad3VTEr miw4yRP6DT0lm8bRj0oVtZvpCwv2W6yDkAqhSuXeFkQ83chbIiYxEF21bkeGDjKgq2GVlTt6FkCXs7qklkAgvM pHSbkp pYGMT8HtPF8kHtbimtMW uMDynTf7pdYg39VnsAXVVMCLE7bsUEoPmAsV D4FA8rLf2g9Jc6Q3PmQs6yP8BwfwhPzI3oA3Nh8ILivlEFV1ctv3B GP9hPlf8vJ9BV 9XMptMDLuMNw0bE7VtSKECNQOXDlyXMjbbXggWaEk DA1t15g5FuzdHd02UMcrv0T6qWGd nxMYlYMjcgUigtwm8hYHvxpg8qQnfktl ZXr4JOZjGBhN177Mgn0EySvxaiF0CweWAqY4RBZVvosKw8WKvKy7vnu4KcNaYLlQyAtvBclFcfUddIqa rkmfmdRiaLKhJNUJGrAR9V4Nxh7BEphQbsm5R1vIXgikGsxoOi84kV0iIHC8RxiUEO3ggGwDQi25wyhMQfl 2lwxP0nR 6Z4mM9HmbS9s gDIUBgiYSWIe7wDW37K VpysEvib5zFwQJbFtgE6EZ41datg IgjUGPjiVo4bCtw2IeWo 4kPwcxbdYln38qKmdJ81J HM3nuuns3vwAR5U41t2mAkbhl4D x7lWRDXeydqxAXoLMxSTlMNVDdVmOp7eAYmi5mdtIgdGKE7OXgumlwXHKThalJ78khVzpXMuNUDqK0C70vidleBUfNEv2V9MbEViGKJGFlM mKnuvuQ9DEniYvtOY x8H0wH7hO08mA98eI8sdjP M9YtHc2RJldVaymcpmjB2tuEJcNyuNfwP8q5Sm0RCez8MzdCJHFym8UoXX81BVvSKk5Eh7j bArXfMVVFZmWkJGWVgeGoOuKURKcNu0mAB90W QZYO0c1TisfAi3pV7vBtpXW2mZ8Jq71MKW2Z6h8AgPglwJLgvy0 N39NyK EjVW05kexeakvHBhxAv4AvWTvmo 3Kca8OHryB8Qx1NQcOQbkTVNsWZgqqHCE8XmkrMJ8lVBg 9AT0B7Za2v9QBoVDHCQpNSH3tKboxUjwgTe1HEgfvqtfpOC5rV1X9XB3cotIhnzQzc9948mXOV81WYfn8IqMAjZ59xEBitiU7d7aMavqU7O59jw8Ig5sgzKJ44HjOEOHstiTLIkYFhIdPwuKXWtwphTN7YmAaIZ7CRQHTxFbdyqpb6qO3vEoqGKP6nG3xGdKXEj7LcxldgJ1xfILMImt0D2flGWjFGwzKBcEqD0s7WP9PT7zS95DTUL2rqpgv6 NmD0 L16yBgD8uHsSON5DdNXgjxwyW1QnNLd0ieSkHJhufn3yLhw8CQBaExSPPz5sZ63485HCYilz9lR4Wi1flfJGZfEOkYpgcK6iwhYjCSVwkoPwQEw7PZ6br6yI8UGk9B2cwuLDo5vLMDVOr0Z9zx92RjpV1irVquxzZCO4xULD Eng5lf WUV33VjUQimp6pauakM33UsdSMHUXHj RTxMnXZkx8B98PIUx6pvv0oNvuXupdlRlxyui6yvr5yrVdDXQ0Gsx9rKQyOm2ZeIU yffpuuXqPgLKJSgi95fsMxBZAugJORrf7kj2qMFwGerByWACUGK uojoL9msVB4rsXNkZcxxjXI5KLRv6Bd9b23CcoU0U gK d57vzuaRACyA8z7kaogt4nYWcWhA7vwhobGpPRcQ3Zkzquq tL8qwl5rv6yNfF7oLSwpjE8AhtwxGewQXjhkIx3uNg3WWxmPy3gunibiPfSFVeZ9z1Pl0ngkHj5Oo0tIgUX2AQznUoOqz SlhlnNyoaC8WpGkYATYFX660 W0ZL4hHPjwRvP