Internal Rate of Return (IRR) Calculator

Internal Rate of Return (IRR) Calculator

Modify the values and click the calculate button to use

IRR based on fixed cash flow

This calculator computes the IRR based on a fixed recurring cash flow or no cash flow.

Initial Investment
Holding years  months
Ending Balance

at the of each period

IRR based on irregular cash flow

This calculator computes the IRR based on the initial investment and subsequent annual cash flows. If you want to calculate the IRR for cash flows that are not annual, please use our Average Return Calculator.

Initial Investment:
Cash Flow:
Year 1.
Year 2.
Year 3.
Year 4.
Year 5.
Year 6.
Year 7.
Year 8.

RelatedInvestment Calculator | Interest Calculator


In investments and finance, decision-makers and analysts often face the challenge of comparing multiple project proposals or investment opportunities. Each project typically comes with a forecasted series of future cash flows, an upfront cost (or costs), and a certain degree of risk. To accurately judge the potential profitability of these endeavors, financial analysts employ various metrics. One popular and powerful metric for project evaluation is the Internal Rate of Return (IRR). Understanding IRR can be immensely helpful for anyone involved in capital budgeting, corporate finance, personal investing, or any scenario that requires evaluating the viability of cash-flow-generating projects.

What is the internal rate of return?

At its core, the internal rate of return is a discount rate at which the net present value (NPV) of a project's cash flows equals zero. When investors or businesses undertake a project, they typically pay an initial cost (the investment) and may make additional investments as well as receive a series of returns (cash inflows) over time. Because money today is worth more than the same amount of money in the future, future cash flows need to be adjusted (or "discounted") back to their present value. The internal rate of return is the specific discount rate that makes the project's net present value exactly zero.

In other words, IRR is the "break-even" rate of return for an investment when considering the time value of money. If the IRR of a project is higher than the company's required rate of return or the cost of capital, the project is generally considered worthwhile because it implies that the project will generate a return higher than its cost. Conversely, if the IRR is below the required rate of return, the project may not be viable, as it may not generate sufficient returns to justify the investment.

How is IRR calculated?

The formula for the internal rate of return is essentially the same as the net present value formula except that instead of calculating NPV for a given discount rate, we solve for the discount rate that sets NPV to zero. The net present value (NPV) equation for a series of cash flows can be written as,

accrued interest formula

where:

  • CFt is the cash flow over period t. (Note that CF0 is typically negative if it represents the initial investment).
  • r is the discount rate, or in this context, the IRR.
  • t is the time period (from 0 to n).

To find the IRR, we adjust r until the sum of the present values of all cash inflows and outflows equals zero. In practice, this cannot be solved by simple algebraic manipulation for most real-world projects. Instead, analysts typically use financial calculators (such as the one provided above), spreadsheet software, or specialized financial tools that iteratively find the rate at which NPV equals zero.

What is the use of IRR?

Ultimately, IRR helps translate complicated patterns of cash inflows and outflows into a single number that can be compared directly to alternatives or required benchmarks. Whether you are deciding whether to purchase new equipment, evaluating real estate deals, or considering a long-term business expansion, IRR can help bring clarity and structure to the evaluation process, enabling you to make more data-driven decisions. The following are some of the specific applications of IRR in finance and business.

1. Investment decision making

Businesses and investors use IRR to evaluate different investment opportunities. If an investment's IRR exceeds the company's required rate of return (hurdle rate), it is considered a good opportunity.

2. Capital budgeting

Companies use IRR to compare different projects and determine which ones will generate the highest returns. Projects with higher IRRs are often prioritized.

3. Loan and lease analysis

Lenders and financial analysts use IRR to assess the cost of financing options and lease agreements to ensure profitability.

4. Private equity and venture capital

IRR is commonly used in venture capital and private equity to measure return on investment over time. Higher IRR indicates better-performing investments.

5. Real estate investment analysis

Real estate investors use IRR to assess the profitability of properties by factoring in purchase price, rental income, maintenance costs, and potential sale price.

Example 1: A simple investment project

Let's say a small manufacturing firm is evaluating the purchase of a machine that costs $40,000 upfront. The machine is expected to generate the following cash inflows:

  • End of Year 1: $10,000
  • End of Year 2: $20,000
  • End of Year 3: $30,000

To find the IRR using the "IRR based on irregular cash flow" calculator above enter $40,000 as the initial investment and $10,000, $20,000, and $30,000 in the year 1, 2, 3 fields, respectively, then click the "Calculate" button. The calculator should return an IRR of 19.438%. This indicates that the machine's purchase and the subsequent cash inflows yield an annualized return of 19.438% once we factor in the time value of money.

Now, if the firm's cost of capital is 12%, then a 19.438% IRR is comfortably above the hurdle rate, which suggests that the project is financially appealing. Conversely, if the firm's cost of capital were 20%, then the 19.438% IRR does not meet the required rate of return.


Example 2: Multiple projects

Imagine you have two potential real estate investments. Both require an initial outlay of $100,000. Over a five-year period, each will generate different cash inflows:

Investment A:

  • End of Year 1: $5,000
  • End of Year 2: $20,000
  • End of Year 3: $25,000
  • End of Year 4: $40,000
  • End of Year 5: $60,000

Investment B:

  • End of Year 1: $0
  • End of Year 2: $10,000
  • End of Year 3: $30,000
  • End of Year 4: $30,000
  • End of Year 5: $80,000

If you were to just sum the total cash flows, you might notice that each investment pays out a total of $150,000. Considering only simple ROI yields:

ROI =Total Cash Inflow - Initial OutlayInitial Outlay
=$150,000 - $100,000$100,000 = 50%

Thus, both investments have a 50% ROI, but they do not pay out evenly over the years. This difference in timing is crucial. When you factor in the time value of money using IRR, the one that pays earlier might actually have a higher IRR because receiving cash sooner allows for reinvestment or reduces the duration of investment risk. Plugging these individual yearly inflows into the "IRR based on irregular cash flow" calculator yields:

  • IRR of Investment A: 11.290%
  • IRR of Investment B: 10.259%

Despite both generating the same total returns over five years, Investment A appears more attractive on an annualized basis (11.290% vs. 10.259%). This is a classic example of why IRR provides more nuanced insight than basic ROI in many capital budgeting scenarios.

Limitations of IRR

While IRR is a powerful financial metric for evaluating investments and making business decisions, it isn't without its drawbacks:

  1. Scale of projects: IRR does not account for the overall scale of the project. A project with a smaller investment and a high IRR might generate a smaller total profit than a larger project with a slightly lower IRR.
  2. Risk of projects: IRR does not explicitly factor in the risk or uncertainty of the cash flows being analyzed. Instead, IRR focuses purely on the timing and magnitude of projected cash flows and assumes they will occur as forecasted. Often, a project with a lower IRR but relatively low uncertainty may be preferred over a project with a higher IRR with significant risk.
  3. Assumption of reinvestment rate: The IRR calculation implicitly assumes that interim cash flows are reinvested at the IRR itself. This assumption may not always be realistic.
  4. Multiple IRRs: In some cases (especially projects that have alternating signs of cash flows—e.g., negative, then positive, then negative again), the mathematical formula can yield more than one IRR. This can be confusing and reduces the straightforward interpretability of IRR in certain real-world situations.

That being said, IRR is not a one-size-fits-all metric. Other metrics like NPV, modified internal rate of return (MIRR), or payback period can provide supplemental perspectives. In practice, decision-makers and financial analysts typically look at multiple measures, including IRR, to arrive at the most informed decision.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

ykwMo3XI57IcJpy1 c4EtkMvoc8oqnXCfLfelDQTwDDQtFFkm086gEy ttc2SwtUFVYG9l4jYZXp995d LwFyAzcia9wkWJ3lc6zU7PbKHRUHEwqDTfBADXGYbro3F7G7xmNatfuCDR3HSh25kE4M2NRb7pzwa4qh07r8AhYMFuwFxxQOLwCcHkOtnhUbulLHhCxN2kq0RX6RROVAya2RG1IiPFzIhlyZDe0mij5QLYTyWGQuwa0IxjPWtQfPjpTuSZVOh93TiK6xtokYvSHqacOXnAVv2 r8U 8QRpKQgUf le3POTHeHAlFyvjU8TzLwfNZ595S59aAiyMRBfLAg1WUI8wKptDp 8C5iYbtg1TIkbXvSPgbTe8RJwJiVNa4E19i4JgjW7n8caG1SNJ2nB2nZFfsfNPZJCM8veIjMzTlgpAgCHlk8lz0HsF DFnACcrPNYrRqiRf665gQLYMlZRWahloVgQ0E4SQwweFZaQGAYbZix6v9FLipbsdZsOQQQmid4NB7mUWrYECd9ifmjZ7884ZDVTWrntC6RqA58HuPaLY3XQJGSgMllyVbSJKguc94twyZ8 MGK1IsMAYTZsoZD7jcvgkFdys7jcV l26IibOM58CvsN4urOuQKiDCQrzi3bDwVpAWN0V1FcfuAPzjb0GA2nYzIrSbduAer2ejoFwtRp0u5JlscBkMTFIsYPoZxdZlwVsIEepxwlBtMW2yFOJ192lCRVArOzcdnJtKZGJWZcrAH3Wj5BzU2ckw38D7FomPuq6Hpf1T3tbb4gq5YF5pJ1aE9fcGgViV7aZi9CV7EWaBBJRUuHU DTTp Ntj3hoH9sRN82NSFT60YAOLhBClqy6rRCycvAOPTnSrheG IiQMZD1CkQYnUo0mK20hbQYInP0PDgvCGPkansXox5ZRqP GVx cZCKkEhvUcByf9wyjydRpxAuG M0TiY9whLhhncqcS88QmzEgpnlhykO znYFIIcuUQnaKs6HHHT6Z8yD53SmtMVN44hgfe0sXXqflx8HbXzNOSEm8F2fvnqdYUutnmYeV5qvwXodBHjBnYCnwjK 1dT2JMNXUSca NnKbNudXI9QuX75AeKrp8hfCY29ZBjzOIR4Z62Dd3oFLb8sEFeNgsphyCiPvp1OR2pGDedwcY9Efe wj9GAuoNglEVg2oELTrr Thhiyte0eR FyCRi52d1e42cX94pEi6C2YNQD98nklmqhr0B8EAVjPZSh8VtLRTEx4Zxiwr1UHuze6LJqPUUL0ZbIzOXc8gg36 39MIU2TN UlbuKicdp0l8dnFdEwdRlt6ddkSZUidxqVwUuBgF2uafOvEROsi8SLMxWZvrVuJTO7enZCRt1crUR4xD2ANq07bo6MtXIaZug6WLu434MEogysV0W8zIKpmp46mWBuccHR5Q7Tjx2bP2ILYmzmz9 gyyW1rNhKBZP hDKP9PVuqfNP24FpBPvrZ4OOPi3K4eGOlPwcMugeaEyKBOqBZ5HK6HR aa1jOxqAgRFO6s3Bqo7loamt4NrfgYNr51IjISfKTwisMYOClgtpSheIHqPnz5KzVgE1ho4HPF6s3k2BkUsze8CuzG2h7x18L6hTjbBFX0 GzJieFUsNqcVGfwPHrfHpg6mdcAjG 91ILxK5D6JhFNCuWoKC44FKfvRoEx34K6WSm05noVsjeSmZ27WPqKTHE68mcl2ePsayu8 mjXkqU VrjNgZR92xZUVD94hIvLG8xodTqmmLonSxU9Em4pRmdkZEvcrbGMmnLuXnTJCjtPp7Ny9Vt sj9U9fpUud99faUnqtsl5XZROZ6TkFlV21njzM4Gz6g NfvBGZ6GsOsjHC9cAXjSl3NS8bmMilzxy5sITYelIhiEqqjaM FicRtszVBYzGe790Aw9RlLrj4dDQoNxYazDiEV rYBVerDXK2VV4RwPyR3mJPdxsUL11DaM9PiXcjEI2dVDbSEbTU0gzVDLArmfwmJtYU6g0bZVoqMQdypIw HfU2B9Ni9cAu54crdp8YFvFQP hGxRikNnHo4KEX1XwZkrylO0dbrxjNIrLzXzBwMNRTFmQq7O2pVLPXX8fXAB7PmIea zLEMoFvwxUarDZQr9x4hiPPTAAtPd7g8r6IsiRloEOyYMJl5BZOSGimctFzca0MkYWIGU55FKPK22unTiatxUejLlPSrSea3PNalz0UpAJJh1hg5cbN6vR6Ha5aa2YVZe0HpHKyR6m9FDsIteHLUG3gxtEGX9AyPQHdOGIAJigKNDJLC8IG4fWpGjYi6s5x12hVwAQ5IORlT2t2lXU yvH2zq5ws0qxhGLHo6bN42WlDG8FtrIKeMspGX0j8jC8DDIlGjGWY6mgF456EYjDivwPLgSU3uoHTqEC71y3suqaNES3NXSb4EmJGzKFqbC5 O0H82Banm09oU0yyT5LMFJ3nIeN3zly6WNT59bKGz76EtXSAyqv3lJaGmGW7RZshRS4Yv9EVyqhOynheRRQhEtfB69RhNfuhNrUk3TfkKGR4Og8urOvCDAIoNSajF7AyDZojhjI6drnO 22UaKdzCq0Bsou yLU 923DwtiJnlc1EYuUcXW4JyUfw4ldFQ8YNTKJMm7IR PmtsW1uLNWzZcLeQYnVIZ3huvLKoXgmBQhusQghoU6ywtcLfgbx9puuYXe7TrZFebW2mBCsFmaYSCRPTaLo92LhaYumV0Wa1C4KtW cIkwveLDoA5wCksGvPalckSPLqXlEebeO7XWIInk59IB1smT3Ry9um9oXzcseHlZ0sTQ9 qLlOiMDBHM6T4iwf6MGorY0nBkm2A7X1lsvEUXcNZSt5MSGPwM6EgqeXpTmIsXwoR0ijl5u33HilHH5BURjcoMNvVKB6oWLxdXn OdxCx8UbgDsQtYG9THzOeWTn28tH5PomzqXjzXAO0NjjfSeyDYQaZRtcXdSDXL7auw9ZMG5gRUZdR1zgtcR8YfNb BF40GxLrQn qhZr4npuO43TqNYxjlWsJpf160fyyLSUnSxY5x1SOg9ZvEX5mZ5vzoR7urpJk8kJ4MJuP3naSWLcwx2pbjOb3qFfsaDwu1LoZTRg5jioINnj7jDi5iBVEDVARyfQOEnLcP5QT7lJ9fuf9Xo740GROZQ5EzwH4tshKMYgB7mb4Jz0IkyNJvDgc05wa6kKMdWYobMLjXfovsjl5XAu6feimLif8NCowWBX1zu0myKENYR2KMJjvPfcIMviICHfQJqxUVHsycOhdacEWBw11tGupzsa0JPncLKi09OBE8t930aewRDxQi4JQuz2wJETPONOIt2FpkU7NlMtKzf3UW YgRubXC0IHUh9yC0OtK1vdoNmtShWXzBFEwc8myl1R7ZyxOkpthiU3uPot9xz6SVduwxcRRuRyXz9XTqGfDyHzsvklwkdj6wDfpRf4gVYDBXK L5 s4KDEBgBL xf3HE6A0ONnYjmgo0cYa2o2T0VUIL14h3bnoHWahgAaH0GGZuYPEoZCda1IkLGTZ9A1PU5VtTvwkpSc3GinKLcRZREPW2HPPXfTfOI7wYj2uNsfqVTFgsJZ0WT8g50PaQvoEUZ9GFTM4u3TTjbInZfyMC806ZROsy1kwdJgPsFOwBJlGdBqaCft3KJnX0HSoS i 2VX6K4bJqe8g9hNpsqI11ZBiNybgrGcqgxHhC4Zl9dahkuAbYB qwiOUsNnWO2axu1xs1ZXjU7y3kzcCWesSXLjjZdy7q43zoTmxYXE6ak8QPOvauPRNWlrvP8LfZZDToOtimjDZSF I6mWn4nnPiJJBiUDl6LMXcDtJVoxAqtKDAo2y32miUAYeIEXnk4VaxiI gMN 3emtykW3Y78 RnFcpHhE093QmBLwH8WrJgB8PuZpfgmJLrnxtjSHsg4Nh7U4E9k3W9AIlTy2M0mWMyjgmBxN2q lWiiWa09tfPcPSCxuZsMsZYq8l4vIa gHwYXalSN7GsBA1KfqyCxpcduxm3S8LvqcBSN5JYYfOnb6x7yu4RVCgMo6LqY08YqCdv1rr09VxjPO4EZKKYJDtGby5X irZ7w8TpVn17XfoyJ2iO1r767a1TSEI4ErTRqwxwzbrgfj EQZnkhrWSop0E7qPiCaIoZPETPt3Ml5NWtXrH7Tvogj9NsfeoWX1UUxjFdSdb2kzlADz tCR77TU0ixQ5LGjLH43KzNWzOaC75pwf7fi92m92Q0DhuurhHG UBWYVmOZaMb4GmOpgMvtG4IyvGfgJ4N97wpCg7A2zgqxQsWuwRnNnrSoNwLTE9VHcmBkC2toptx6o5Cg5OyIDQmQVA7L0t4pPa7dpQEAf bkMP0p5H x5e6KrxopqCOrNj7fTwmpg vdJKM9QNllQB40rNEtsk78V9aesUAZQ1dx5z4sQgUvvJOjXw6CKPWuu5sSk XxkILrVzuzZvG1E4RvuPnP89AHrf9lGn1FQAALzt9bGXQrQn96r87qqNKRzwRNmjJVKtaYMUGQFIafU5woCdfhLT2DAbyHjYWe t2PoVOHFw5JBRvksgBy9MkttfdsyC4DNDsmwPot9MwcT1YvOUl5bDSFfYpp52A44038PSLn5HYEZKAXQw3rAosvl9SPnh hLC8Qk95f0RAck5QRpu6B2wb8woBT2ZRzvk3jKQmSyGyz1fGGdfRtyn0HDH4 RjA7Jx6J5eunojEm3IJhMRPSJusbWytSM13thJNmhR7hCPmXtJf9WYHPoCAQiL5vf84kPtL3hnXkl5fxgwNVyk30q0EA4h tb5ox4mUnYJIcGzMm6Zag1lFeEetx dNfXf4EANlX54cnFhgn5fczdE7EJTRET5z4sSQfCFkdpDgCjrQmct dpUzz7dJKuo8I1fZFKwRRrueNDs38d3afrgAsUixMxh1Q8ByOvLmo0ZYlE7Ph3tGQq4sHROj8is2EQ8m8NxL9femCgL8FF3v9Of EJwb4aWCHWumG61ulCXMvth2G8iVTjyCgO4TA8sE6o4C3RnE6Rnzjeeo0naTGqErxwKQtympfaQ x33rjvEWUjOG1ExFpYeF5c88RMcovhqiDtW aD44msUsoUkIveZUO0Hi6nZ0D0n FEpiFauxAve0uOtBS2HimpWMGj JtUO LT3eVbX9y0zKxHUT 0mDJykfBz8GEqvc1PwUdCXlEKSNJchuGsnvdg4UM6pbisw5733T7 ih8rnvQUFi4Wo4Y8r2nux2bcBkSJWDOkMf6BzcqKYkx7a7Zr9yX 3q1xI2N76ed6mURuyWxMQQq1slXIxnbfiTiI1Yp6npjL117BHmSilLkPZkWDmEjic6iWTi0PcHlaIzerwso7SM4NY77Tek5XkNdHYd4kFP5kmFs0fyEYcxLUCBtcFbw8MWQqgAfVOsIAMV8gRwRp6BLLYKszrC0RvMjzubnoM 0JZjxGqpNq2rIBRAdYoD8pbgdVztI Z93fAy7cMVaRrqWJSFK8rX2UAk9uhzjKcPvLrpp02siWZaSe mDxulXeTAUyrzfoUjma3c0L0NC2ylqVy ws8S6 tJOoTmCQDFhbDoo6qsywr4waO4jy7aAgB4yIhDJWYdiXDiRGk9rR9SKLiQ3SgEJOJMaDbPZ3VMGQwf5QdGBS7WMBXUKbipYgSkEIxpSU7yKVHgo3OI7QIyhwDCuq7ZQBkj0IjiV5Tw5vIfUHa Hg 5fTTXc6fLxd0djgULO Ejp5n3owrUjQpDo krhIqx TZa9QTHRwmAfazYLJCJjylfUOqws8lOGL5BavUrn3M1AklpqV40G9kH0HJENBE2o1yzIxCa51aELe4Zwu4lLHdp2k5Tn0D AovRoh5ZURWr V8rjsWebU Qu3B8mSu7SGR MsH6NwJbCG91r dfzZPVrG0jQsXdgF5 4guER0fjpIWIgfmK3TSRSNcfrNEK2tUxeldJPb8RyGNjaHl1n8z egbbWr77OaU8PMDdR2FXcYhtTWzzo0stab224rNO16mfZJhYx6HR8f4 ASbsNQPPNHoIvg9KbrOGu3PjCy CSBb08O 4ZIkJ483ifrj8YtAJmyPJfHeSTRdSGqx2wX5eNTTYx9hmsNVy64BHLOHtyyJk7aqruUTODG5R5qjE5h05Q8kteCW1dM J ol1X0x2DnlZS2zZvvF3l7Bzd hkp99VtkEMovuj3yv5NaxNAA5wiiM2tm6FfIV Lao4Lc9gdYq3WZhW2J83jdpenMJACGHPpCwfngvh8D7i1kSnUs9mrYVnBNZ50cj2BGmrC3HrF6nKCNdDXq2HvGN5W7pKhhvtnZfeW6 7XlhUuWLixB223lFUHo9tHuadXSSX3hbkepFMG6Y36qmnt5Q746sw3g450yV8V5wboM9z9ZbEvdbO8h4j2fmP84YVwwLPTDGtHRnI 8HQ9szqUhSKe7urhjbrKCwTqsEk9A3nr9Q8PZCJZvRo448LXiPDFeDXaVjspQUKnyCRS8xw1e XdzanEeeZN9mj0eB9UZcWNwEjZqhBxCi8l2zTkLvNGECL6h7FVjS9mYw0o9xOGM0aLMb63PoeFh2Jstb1Nj6rdlpA2NeXWIAY0lN6on2MTEPZaivt 46zjX92OKptJSfcZuntBI1rvmqVFUXA62m5fiUQECCUPkvDxFW4t2G0HnTjBNibtL T95RCU0TW7hFf5c4PgB4CjpKsDWvqLCGrYnmxvztI2smmkJCs8n7 66um8Zt LvD5wD5jNwyxBHt9bCF1aLtJjF9IV5TKvplPwO8bwJag2rBtZjQCNRA1uOsulUhATJcNcbWHHHO kxQOpby0wUcHi g2d0jOzsOg0cbRUvyV1tsYpnlSdHwlVqA TtnyZHHI5qPJV0MGZ7N5sXs1SsAyTaop9JZUsGR7Ww4zqOFyLfw30xcpgbXLaQpQh12l6TIS6gvTpkXRUaC5MsG6HZL08YYpLNuKNzqMGYfRHarP9IOkrSZj9eu480p5iiy1m8s0znZL3qNXWCMX6ulmhk8Nz7IX1hWTvQEo4 hUkMs0lrB0Xz22daYdbamr7nOWxB4m8nw66KVfVhrrifIwr8EVAvOvGgxRxQYsa 0unpy6DcZAmZVuJXGhUlYNzaGMc1DSDAsOrzuIoJS0tDTMseweE7qJxPqOvDMq6vztzxbQI4JOy0z1hHUyGShmGvAtBA621VfIwdchKo0XzkTAPT8qxTQTybk5y7PNEkgwcNHsYWb3I2NTquctvY5HYi5LlRbFMbmQfU0fw7tHOXiySYzZHUXYBVmHihrVJWYsQfLAhyPtn11NOnqbOpSJPZxmloOdm0k5gmY8R0Fw7imrno2zlUVovoCg91g4hv7 KnNCgWsNPBrC8XMYR2o 82eoBsXfwUWVAJVFZC7apvjWyPto9pKT0X3m8XRs4p0x NSq0Hhn39AbufqXReUYX5JYdF2lyTwIrmFbEC7q2jwlo41ywKKNmMSlQ90n4crFRot89Sji7K7A7Ed88JZV681kbWRq1xw83MIu0mopm5W6QdItxB0SUmZxvSL7pJQe2IP SrtQVNcdBFyhLjxZLlUcEd7Yf ZTlA2muCpLnFsk5O0bJxf1obSI21WlqUsG eDTkXOx3ecoWHt7TzDVOtOP6hrWEKY3Fki8QwYJFfoV9K3eFV7KsM3OMiHwV9Oer0AJdleOjek5a4Im1b8Fsmidmwo0TuUYVas1TILYPbgEP7jk8S9LV1pwP5flGFSui2YaXnQP7ygiaLfj2q6c0oXPb BI41Nkrazj4KUpwJ7F5PgG2Vi3XXtcIp7PzUIvCgfJsEs5UA8G6Qpb9as6QVjQpZaj4JjAif5R9VvuwydXic5STnhN4K7q7xPUzAWKMJjP0G6IilegKTeO612RoATMIub4DgIbhOHEvFbFOLiOh 9CfgAQKrNMe3Gx65n7JoQtAWbNIuGa12Zhc5jEPFCqty5K2ADAmxmsaEyJZHH4J7NaZs28SGFp3yWoOVG17OQMQiT4zfvNMvxZXg20weI2rYg1d3QjPshR1WfrT7lJojndHPPU6vQcSW012W4JkmXAM52YPXdbuVs1fcjlFUPIjn06WtS4K3LxS1BhGOtEXhh6RCXznikwBA7tHvDxb3GTI0Xa6mhM66H3j rrG6fFpuRmYqIoL hl6EsKOwCrPTqcWEfI LkRR6CX03tkPeNca1oOT7L5TBS31YGu8dcgAxvGEMOMBK9HYUky 6IiA0K0qFVI8sad27vxyDgF28x9yi5Ye9ig0 lBssLtG45ls5nvKKdTcSnKger4sYvckfhr 6tvlgxO7T48Bb9iVfI9Pd8ekg0Ys3bkAmhELjafCbNdloQ9xwmv4WWkxIbKWnQ5kNRG7VnH ymFX455FZ4ZiiZGXVAS4qdxn8dmoQM4y8sPo02TZVv HxpFUm9Dgkfs42OcH0Z2brakpBDPTYzkfAiOW1pUnWC1vHQl Uv7cIvogJK7AmrnA8UacjiqxRmmGH07wFoiBVmLn75PXMttuiSGCoRk2WR9dsi B76iF2x5Be37qhGXANOy8iKAsV6HaoTh9e2e0mF1VOINTpFLTx75uorqvkYBrE14KWvZe5sT4uOqvD9zyQcQfKYKh2hqzlFeftvVZPBqhitX TEEPFmPaf5SDqmA1BV fEPXMfIQBma0IdJUw7KhKpwAb4sXPHJxlOxuODwcDw3wrdKFT n0Hj6QOmzaRifDpTwbstTWgtBk1G UvuHodoBkwyxtIG3Yi J1mtjRXykS6syXubaQ6OhJHLQXgFNEx NmWNSRyceLOeUJXvujinLUpUuo9kYZpSicy3xa7qeCI5eceYrP8wgLdlYauTEqTtgSGDSAji20h840JpOQv25lFqvlWettSPtXIcOuiuxWJZDfJ9GCQeVJP0CM2AzgDWZpUYK39cvHmulZr2aY6bqScsdf3N3tYS7z2WZrLSGgk62J0h6kHaQSKF9dYqwD4omUzIp7bLvXDXZBdglHZmiZdSnm5XCO21bYFxvdtolIJRP1gOpdHzDm5yPE1yGJyWks3i9O9SgTp0oaWtGOqFht27xKfckYox26mRsJXaH5Q aus3mSsd3pB2ShKe8Z05Ssl5RnKGfjhMIfN9rmrMOB2CUVBicHsHAk3QyDbgFIMc1qb9P207waVBIYaStr5xfOpQUI9BIvyQeCq4rAb3Kd6ydA6WztsU14zyk2f7cW6phAULUj12FJmXCquQbHe90Il1o Ut55wsdPdPjzuLJjp48dyOCSzJZShiHR75or6Ex2I7j 4xtHoQ2k5jRWHzgXpBgFYZ 6sfMSlZH7IWcxGOy0piYQtwlig8nbc5YfhsgnWgvDz4ePgIV2fmv6kPzoim7EqVDnl0PFYzCbH4fzWeVlsOqFFjFDOxPPMlWwhUlbwp6JQKlxJP2zxUQk d9UZDkw bHxPFqNAEYWZFgPxcJRLodl0FBJbRs2LVNObJyqunq0tQiE0D4yvTf3r96wMvXz2uumpu1L30YhS03oGEsfEFicuGB6sc x YDbbRL3dDbq0UHGg4haRW5XH9HDf6cCArLqt Ge8GypXTZ4Hh4WwgXS1GMHjWXV4I2gTCQP2KbC5ag7UZUtoiYAn NsGBAewWvkoFnJrEywgBK OunJk664wYm1gmoZ3YLGOYGOdD1cq6F80HDC 5CSMW6iKJi0hLZMwT7wpnn2LiEslcUfYeOHMVjov HwwPazshlXPlibj0beTQFDN61FmcRa0K4Sy ohIEFZYyKyr3157byTRDZ2eUvvRYhRh4IlzFvQIrhYCjD0QdmEl9J9uTBb9t jJr1XOgWzy3EjRjBI6TvfZKqGxbLQIPYZpmk8a5PTT7UTyadpvkLrXEYu6kKNbaTSpiKRG3aFc5JxBXOFTuCgGELj4llx drKk4jeH88Uzs2cmupJ3z65vMIl8RS xvb0LP6ePjFn0AYXHkXt5ysTc4G4 2GmK9F6ohqwp10kjrCk CTo5dIq8WQCJ7bVTM8GgqQE2SAkQpzTWKIXcgPYUZRThIx6dKzwfviCKhY8QmMfw 5ReWAqntaHTqcdt4s1h28EH2ccc764XxZTk E6qk0MRS865o64ld5BQ9UBcDXoC8La5bE9idO3PmpGfPiNFalcpdxd2XUlrUgdy7m1HyTvkrWjaIEg063CwFaUS1rJvmGcyFC15u37iIVyTl1jjFfDpbP3 7dQNLDKl5O8daG10pPcMUPugfjBcaF6meD4c5NxmyL X8RRz9FsHaPzSWRexzTFamWPqX2plNbtpvGeutIOmRksntHCpHfHeyaB2PVIDqMlFeJxP Cn7ri8cTF8e6uagIoOdLs5f5VqrMfAQm5cX6pxrVTTC4Evmon8ElLKiJhV1yvGAUvCeXlfgrevDpbE4vWYtNgbjmMi3ZZ4dOt9xJHrigd7nFJVuEv0fuqV2LjknWuPQL2WUTEsu IZ2dvX5Ti1gHkaox FlUTcPaokxMxVkHy9LH TxP2YjBHknL5NRay38zUCsYdqegt9oxqEttHFmwVfWXr7rumgnnWzNg3K8IOrWr0NHH0imHjO5ez0FoT2jbB2xdPAY1JoFeABGlF04dKm5vJMW38AkvMGldpCiU xIGmGQM1LK hAHQg3oYa2KQcM fzXVKo9DeshDvLxHE1hdOGi8eLBGo0ZOYZUt0FZI97nnGKFGcrTA7qCRyk7oi1MQVuDr37YQbHdQ2MiQkSrWEWCMESWmuVV8HnZ0O5GoFvILdT8fPBj473xXel2DhuoSdnpVaYLDjw5F6bLXyO0LIF1uFWQ 33qSBUB6wR1n5r4bWy8g 2sCkB9cvZpICl1N9DEuGQuQYzmoplhTiKXC5JTElazgHi6KbZo FlvTQxX2sX26mobaZPpaBV60JDzQp9MDD4obqW4p1Cos9qL3YcbNnauJGc8mFI1hrEBgpyuxRzqRYtQxlFbZvEkbznvjM67uyYg5moF3XhWQRPnxt1kylYS5hSoTClnTT29UnlbIgO36Cmgz OYOfFLA7BU2isti1xMG7MYUWjIqicZMZnf8vs45CHuUOGEH3nXiXTteIyL1boLtMbqg8o61eVW9BrBBojvn8MasF4dM21d3hOIXQkgKa4pGbzlzZIWa0YU92pU00W0OPZwPh6BnAnuRTX4KIg4PGq2p4HpAFeCbpYHhdXKA0tDdn9 qfeYAcjY8OuSuHRQ5Rtf9ml2DJOyAa qIZZNoFi9jZFQy9BAqZEDcYe3EtKMFvDWq8y5sbXElKu6fTz0Y9z4PI1PiR2MZeCCmeNZ5LttYsqYavY7JgQN5xmBzsg6q7beOOGH0JE4DZ35 o45koGhWD3kS5uRY6Ynfhzg7PgVQILRAxN7rGlV3b1fWJVdz3bYcBlooryTCfakRX7WapAHCeXGa3UkELZw2e3lpakFFoP3ZWKSk371dmKjIFCXyez qbEWr7MJvCPIn KIkd22vPBuwyVePHzskWPjyEJvUq2qv6vyPY4AXcu8aJUm VgMmyFm BYiofEJZOUFZTtaejlFyH6HvZHkOqXZ7FeQBkSQ0k0xSQEHGrXkzkLop55lj078BtBAjSQTqz EX6AZqt0i6 V9 CX6LF0eIcNERqYwRYgZ3XKec7eBJZfzF0r3bSW1DIeFONVAbnEVdQu8ZSz9u tQAGqJPHpmCSH6YAVnm5bIwptEDU6VwKYdDqTFrpSynfKcgWQfFuRliC78fo4NGDtS3jFnaIi8rqM8YufJ9XKtxJwaNObaXxsZWjXM14MKolWHF