Pythagorean Theorem Calculator

Pythagorean Theorem Calculator

Please provide any 2 values below to solve the Pythagorean equation: a2 + b2 = c2.

Modify the values and click the calculate button to use
a =
b =
c =
pythagorean theorem triangle

RelatedTriangle Calculator | Right Triangle Calculator


Pythagorean Theorem

The Pythagorean Theorem, also known as Pythagoras' theorem, is a fundamental relation between the three sides of a right triangle. Given a right triangle, which is a triangle in which one of the angles is 90°, the Pythagorean theorem states that the area of the square formed by the longest side of the right triangle (the hypotenuse) is equal to the sum of the area of the squares formed by the other two sides of the right triangle:

pythagorean theorem

In other words, given that the longest side c = the hypotenuse, and a and b = the other sides of the triangle:

a2 + b2 = c2

This is known as the Pythagorean equation, named after the ancient Greek thinker Pythagoras. This relationship is useful because if two sides of a right triangle are known, the Pythagorean theorem can be used to determine the length of the third side. Referencing the above diagram, if

a = 3 and b = 4

the length of c can be determined as:

c = √a2 + b2 = √32+42 = √25 = 5

It follows that the length of a and b can also be determined if the lengths of the other two sides are known using the following relationships:

a = √c2 - b2

b = √c2 - a2

The law of cosines is a generalization of the Pythagorean theorem that can be used to determine the length of any side of a triangle if the lengths and angles of the other two sides of the triangle are known. If the angle between the other sides is a right angle, the law of cosines reduces to the Pythagorean equation.

There are a multitude of proofs for the Pythagorean theorem, possibly even the greatest number of any mathematical theorem.

Algebraic proof:

pythagorean theorem algebraic proof

In the figure above, there are two orientations of copies of right triangles used to form a smaller and larger square, labeled i and ii, that depict two algebraic proofs of the Pythagorean theorem.

In the first one, i, the four copies of the same triangle are arranged around a square with sides c. This results in the formation of a larger square with sides of length b + a, and area of (b + a)2. The sum of the area of these four triangles and the smaller square must equal the area of the larger square such that:

(b + a)2 = c2 + 4
ab
2
= c2 + 2ab

which yields:

c2 =(b + a)2 - 2ab
=b2 + 2ab + a2 - 2ab
=a2 + b2

which is the Pythagorean equation.

In the second orientation shown in the figure, ii, the four copies of the same triangle are arranged such that they form an enclosed square with sides of length b - a, and area (b - a)2. The four triangles with area

ab
2
also form a larger square with sides of length c. The area of the larger square must then equal the sum of the areas of the four triangles and the smaller square such that:

(b - a)2 + 4
ab
2
=
(b - a)2 + 2ab
=b2 - 2ab + a2 + 2ab
=a2 + b2

Since the larger square has sides c and area c2, the above can be rewritten as:

c2 = a2 + b2

which is again, the Pythagorean equation.

There are numerous other proofs ranging from algebraic and geometric proofs to proofs using differentials, but the above are two of the simplest versions.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

GqFlJjxSDqQdbla3kYV7I6nlghIH2EXRQPnFAND08AzlB Ki0IPa S4spUgDNyP5c0ZtU4qA9 9Y1lmALOIgDDqjWftGuyWCqD4TEPDaMCajWAvlOOs4zsRhg6tTh9VTvIy 7aAyEiLUjwmYop WgkcgtS90vS6VF0eYAQhzOmfT pYF4v5uajLpFLEqMelhCaTBZ4PTLhRoSdD3TCxNRiTeAmtYNzJIUTUyguGCeilVX7Udzojv 1DTtW6Xag9mnC4CkGZj3 9eipEGaSmcZeww14WdUHJVR6r7PXzYeoyLa8Oo0efmSIGOG9dayO2mdo1FuklxmCiiuTmnIRom2xgl41fq75hTKN88deEY81gwKzje3JUwBngbhld8OpU5IULVmb4xtbYTFointXQULAhIqDClVK0nR7RiXiu85XhJfBi7LqbxIVtTmQhgrq0vzj nqyL4Ku0ciU6zxfPFZkGVGvIvVN9f3r84OYmz2mGsxMBQK9nTZbsDZamz1tg932OA iMLNy9rL jqA8Z9CkrmZ2GD1ycF7a41prI n3 RyTJOtqwDPEcR9oWH22C7Xx0uOcqFi 8id8cuqxCJRQpjYDcq1WyBiKAaSYT5uTSuFInuToTmefaGkIatuXUibcpIJZerSCFPOvNQjx7WRht7FkfVbyWUHV4CxmaWBWC21ziEE5q8OR3JOd3thGV44w42653GJX8iBEpKtUWHDl3BGRF36fXBMGXNeSV5vDE0gR9LP19cSw5QIWl1C2mIR8BRN1JVzuQATY xGXPlOW5x0g43j1kiW8JQ5ls41A2iRAZk3G9SDq6yMF59VBIWEvTnBWM0eLUEnLj5PXx0qeR5sIa44qOPtNzrCxwhimGa0SK0v1eivDv4l3wyFrOnvgmeBWFZxWhX18ir bxFbaBxOWrYcaLUjrwPuNSwH75erW7BXx3hkikhGe5Ls65yHvTeNIBJBWk5nzo7GpNbY0A7jUv8bCCTG5NtycMQ97BkwO rFm6npk5CHiZSDppuSYI4VxC2AyBW5GHvo8SrBF7NPpdSWdNOOnrxHBsGHmE5 8pABQOg1CZ25lcT9IXjx7zuItPj0eRYyR5djJPmjiQxJ9Uq8nZ6YgJyff82tFJIVn6swaNR1T5J NjOZvXQfwpBVxjGo96qWMXhOgIMg7fK wGiGX4E143FXi4ZwkIQB0ub5zb1VQiTu1IP Gu7Qcp1wi9yobiHJLPOe3gpm8P9DlYZmLI7Ft1EB7hl51pGYh8qz9fqB6xWss1dCq19vp7N0Zil7k56CZpcdu3F6dvyKYAsD9gMm0dXe6Il2MHhwhSM42erMUhtvjjPqgqc89BVTfdyOn12cW8VojrHPGtQLBgQb 5wqfr0DXTHtgn1hZktJmQ6YY5na xTOfRXp0Q yqV EQHutsNhNbNcL25ON7y3aNPyFbRYHDRWPrJBNIF9jaeLR05OJ8CNdmr ET27tqM05x6wG7AgJFYgzARgmbIvs05IZFl2DD1CpaYsBxH1o8PzoHcjVc3JQ0802asHlRVyGCmLUYvaGtjfCvK ad4tAAe7 2NvAgXI8yQWkYKuHF8z9LU9d8doI7FuZIKss3CEFHeYLsv1GiNRNGDThVvzZgz1hnzTlc6wuQDvvDDIhAvZW vOPWRCGqkusNE2a22y7AoBTVp0IQpDA cTLApYQTldbAtt0SfCrK1tQZ8aoxX0LDzKaPQHj6Hh8Aknf utmjiyqKdwaoHmV1mXmdshW7GCKsf36ZKpORaYljhwI5WHt5kjdQPImQjsO9eWpLCIKfcDJL8Run8kzmx yp9stiwhaFc BlfhpMO0 l0nxL2dUMWJ7WJ9QS6yfEs0f4sffpx52siiQ15eK971r5ddOLKetdp8KLg0JiSDSitlJYcA8ouRAnpqPGBDsDXTomSI3 5vHUqIATN9jkbrToe4tTXTwVwm8Rmx3JSezAKnJilDmhoN7yXMUYfZFXrjuVbNQqRK0Ayr kP6BQb Q zVJrpsFtzshvSg6RS325d6FxQyaZzM6eHKLVyB6yKeseAg TdyfUYVZbB30m4TFK pDvDNrqdPepuUPe4abTL9CAd1X F4yqUDdbC4HJxs43BIPH1C0reiZ 4hp1IikHvMU1haXU27gxdg2KErOU0tmPWLjniajMj0FCKfT8yzG4ucPF62Cyg2soEEEVxqJ16w12JGiRhQHfM9DoVWLORvBvnr5t73OvFoZNkrgj30Dp3Vc8sK1b8kGcSFQzyVDREYdFq4i6Lyya9KdjxUrvUBTeUxCPDErUJxcQG0jSD3nAcmf8OIq8Lt764A9C3fOSyvKqxHuapmhstY3DYXKCURBjnS020v0EM4jbqS99B2LDB9NacBVqajxZ2m c7PIOuiXcUumN4FK HopRcd1GikCIHZuIJ9jRcf0jDJoA60rqTYR9K8A0Rdl2HEpoEEDGAJi lIhNElcJ avjPp1SUJmFJwIxTqi5 FKECSj9 2n2dqq3z3mULnewzNS85G7cdvLjOr8j6ogsPsmyNWjhm08H8Sp0ETNNhhvTxBURyjkixbqEpTnr9B1gBKw7kcBAUlrgi47fQjmvHLeavz6vw04snV1inqb5KylzaTuGycMAVZjAC83uxiOMHBcfCYMi8LHzGNPMY eKVxrYCfsX5gbnk2NuOV YJ9GbAKT4gQq6EwzkA2IuKOt66szPTUcshB64RgW LQXsacmK7n2Swrg9 xvqRpcORqYxx68Mexk57K4SkzajrjD715WyGnK8vTmHjEpNwbgajCFtYeD4gSbRr laTQKcZx0NWgwo3ynv06LKg5zdv6rmidbgOU4cHygqscS65U81PH9 edNhPYhoA7dhC3OPNMSQBUhmroJ876Wd9DvLxkgmDfHnUr1cHP2TA39N4aiF2q2ARHWGbxlrPpyhRsk4KwQjA8Qi1JOVAhXSnytWZbcQse6ZBSlLHQplbkFF6uFSb BEgpAL6gE4o6g2AfDpt4JodwNmcstMdaz1e3Anb0CVoAVNcJYz8wOpE3TfFepqKrHNK6e0zT0iybh3kQ90Y3JYyqF2o3iZSfcvRrFvglHlFaXFtdchLxPvd5S1Cpwaylu2BvYaFNkZWxFPyt8X5UkhobzzW9bDEjmyNy0F4VJ13KCu4m3V9zhE8CRk7DSU0Z9dUJt9wzmL5f5BAj8KOvKPml8TU7uWnEspl8Kw3gshnHqwJvj0yjF7a4lKY3JHIhFanWUQbmkONml3Vr52MPTgwUdK27XDlpofnauWYT6Ymb00cbk6yT8W7UkAQDiM2SqP0j23ClKAHwMkJGNG5QTJn23jCLj7qKWvsOCNc QFQ3O1hrst Nd5BBjnBfWyeRKDNu6vLgcTahZBxn0svQulY0OgV9sNxnX8XekfCYh QbSw3tDFT8Hts3Z8RyQmtU8st4CQ0zLSBDwhJTPK6m059thnWi0F3AuwOmV 7z0FaLsALIrm0yYoox9VYPUpDlgjIPlMA4SXuo0QvLcNkAvyF2har2C9 h7Jc09222EaT1F W2T2eKdKQjpn864DFzxF1odiIQGPyM7i04WqDeZX5DTXnHpOtc36yhB8XfwLr7xVV5yWkmg7NllnafmvSERHGqkB7s9aVCWL9wU4j fRbabgK80m6b2kPbme e8YZGQPfikFoyHE9n8rWEARegjGjmUI5bYjIqWCgEfvNdepCwzvtEqxEhH b9oeLGqM4 ovS12lBH glpYq0duU2OsJ4BqsvEEBdaTARnn7nQdGU o4Zu8EOhKiSF7Gapf4Z foDweJHrwCxQXUWni7DhBa4s32phqaRSysT7Wb9Q 9HqP0aKln7aEedLRV1YhX4Kz2SSQH OcYHI2Fzxlxm7gkJFGdIpRb0oYGCnydligMtHgZFe62X4vau8xg9Y zNtjOKsxaCip5pUyS9ma0SdSV1ATS86Y3kxhu4I9Z25vc4t39MuucwSHsSWl4B1cima7 2SDDgEw0xQ9ts77epnX4JDMyBIjvNgwbn5uDocenrejyxaQh1uvMwvoNxx65lr8arZpad4hK90MUvTUyjrGuWBvOnrb7F8VQabhgE3Sxn91zdlcQfFrDo4ZGGkg7PFt0ZF7bJMQ790NC8Bgr5diDBxbcTerN0BT4DmgbLrIesIVf NxljCE5grjWl3AEtXpF6dmApUi8R7W7kEsauGbGwdG4gUO7dalsEhLzoDHhZo6KscngPHehcO69YIZx3hPDDwJTOuNoBJvUkNirhk2XIA4S7xxVuF ghgq6VuAPK5FcZpJW98XZ8L7om6sGLtcuI9EexmAoPTWskzG5kFZIe0VeBYAXz1ge1K4d9KgXSQ bk wrTregjpKGOWrRQAFFrnEp9FqG6uihEY9dkr06tRYHZoJkzptWYF0AiLrt2StSP3R82c2mhVHZR4HVgU9Wiyi6Jyd53857d8H8ZCyXqIbiiVvIvvo6FwunRWCt5qDViVyHWrts05tZYDPrKOOwyPitGkKvD3IvHnKghnZzxCKKTQkPtIZnQ5cY9WW9jhy9onykOEHfFUH9dQNwAzz5QKS2KdfIbyJr3WC6xWrWqEpwXR0XjlqkTyZKjC79hvtWlrp5mt74n8HwwEZ67OJH1Ygv25W3Vi3l3b Qj8vcDYFrC0SQr4dlCfyneLNsGGvDHzeX2twCIKoZBMSbj6NsMPikoz5q3qChRRBQ4H4kK267gm2YObBmfPXMnlRjLUwXckexVVacn6GTAxIlV8SObr4JDnPU4sl7cqteycF5cScFNcnO5Pj6vnd32aKJWhOn1Vw0iuVoyty73VztY2YN ALiWrqi8S1fyiQAvO6O X nAR20rv437L7JsSe69doHH0 B O6ufyZ3mzJJWCgQ1iECZNWQhdo