Pythagorean Theorem Calculator

Pythagorean Theorem Calculator

Please provide any 2 values below to solve the Pythagorean equation: a2 + b2 = c2.

Modify the values and click the calculate button to use
a =
b =
c =
pythagorean theorem triangle

RelatedTriangle Calculator | Right Triangle Calculator


Pythagorean Theorem

The Pythagorean Theorem, also known as Pythagoras' theorem, is a fundamental relation between the three sides of a right triangle. Given a right triangle, which is a triangle in which one of the angles is 90°, the Pythagorean theorem states that the area of the square formed by the longest side of the right triangle (the hypotenuse) is equal to the sum of the area of the squares formed by the other two sides of the right triangle:

pythagorean theorem

In other words, given that the longest side c = the hypotenuse, and a and b = the other sides of the triangle:

a2 + b2 = c2

This is known as the Pythagorean equation, named after the ancient Greek thinker Pythagoras. This relationship is useful because if two sides of a right triangle are known, the Pythagorean theorem can be used to determine the length of the third side. Referencing the above diagram, if

a = 3 and b = 4

the length of c can be determined as:

c = √a2 + b2 = √32+42 = √25 = 5

It follows that the length of a and b can also be determined if the lengths of the other two sides are known using the following relationships:

a = √c2 - b2

b = √c2 - a2

The law of cosines is a generalization of the Pythagorean theorem that can be used to determine the length of any side of a triangle if the lengths and angles of the other two sides of the triangle are known. If the angle between the other sides is a right angle, the law of cosines reduces to the Pythagorean equation.

There are a multitude of proofs for the Pythagorean theorem, possibly even the greatest number of any mathematical theorem.

Algebraic proof:

pythagorean theorem algebraic proof

In the figure above, there are two orientations of copies of right triangles used to form a smaller and larger square, labeled i and ii, that depict two algebraic proofs of the Pythagorean theorem.

In the first one, i, the four copies of the same triangle are arranged around a square with sides c. This results in the formation of a larger square with sides of length b + a, and area of (b + a)2. The sum of the area of these four triangles and the smaller square must equal the area of the larger square such that:

(b + a)2 = c2 + 4
ab
2
= c2 + 2ab

which yields:

c2 =(b + a)2 - 2ab
=b2 + 2ab + a2 - 2ab
=a2 + b2

which is the Pythagorean equation.

In the second orientation shown in the figure, ii, the four copies of the same triangle are arranged such that they form an enclosed square with sides of length b - a, and area (b - a)2. The four triangles with area

ab
2
also form a larger square with sides of length c. The area of the larger square must then equal the sum of the areas of the four triangles and the smaller square such that:

(b - a)2 + 4
ab
2
=
(b - a)2 + 2ab
=b2 - 2ab + a2 + 2ab
=a2 + b2

Since the larger square has sides c and area c2, the above can be rewritten as:

c2 = a2 + b2

which is again, the Pythagorean equation.

There are numerous other proofs ranging from algebraic and geometric proofs to proofs using differentials, but the above are two of the simplest versions.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

1TTSkCpjqvgiinGj30zkMqMvZmNQAAOZhj6AU89B08pxaOGKhIfYJ90RBmHRZnxVY6UXc8rdNBV5uCqcIYni7DO5PjLEyN coQuAs7 3QkYEN6D0qPpSgs Wd9HXPFMURFzSlNON1Yy6Txg7LYsJKJbsdi6W2Uypm63K0hv4odsrExxGt kZRWW7s54ila50bZyac3EfxoZhc8UzcfkQ07DM3KFR iOrLC81N7Ad9kKZ09Hr4NM0A oSXUSQMomr4caUTb9bldbAR7QSTzQDqvUFwAkIe1LDOAssY3pQC9Bpkq YEnxi3RiluFGzRUpv5IvJyQIvGQ9rlZh9i7brfQGnTN8P7vYGhE50oxg9Of jNDiyGu7hPXAbMaKKxfVE466Z9OPHf7eY2Ev3s0 PhJS54JA 5oWh29WyRjhdtV3WCjy4iGTRk Qb1FSZTus1uFw2GiEjMYzNWgZA3sO69OTEnhsOZU6LaddbE8rRKMDaFCyjGLK32MDkXsgDTUuIIUfbqbAROGRJO6EgwVZJW7Wyuz1LjWlpT9Laev5hcIMCSwSrmNRZBoWdBMC23ggqnIigJoG2K59xf7ybzQNZaQKvO2XCn5ajNIqb18aVhiH6L88cDgOo8wTbux8Bb394l2ZNxiQ0B1ZMLPtgqJCQDgeOM5yVgccvXRruJ6UYnk8RDFrT P8aDV4oHOw1q737xDtucsF6t3NoHzbgQi2Q9nz9JVTBWladfM6FORlVdUO6fJ9tvpQzDDeBDTgCsdg8CPIXwHuPCEYhvbxnzsnSinF3RVxE8Yvy4Fti2X2AvbJJMquGaaL7j6qZ0FPECTQvhWTsY0D7mhfy2Wk5D4wZmGXTHdqyWS2dgTwtEhKxWz9nPUAA5J5iLjw X81mj04uRLMTTA6rg6FF6r9qCfKHHgpY7oDgsAKuqI7ZY44diM6kAQP w1zu9m9nkclmRy3YnAwqbtLMrHqzIfcZo7Br2gMpDhreFE2GDCJjU3HQo9pwyxxDsJr1JkIXWPcpQPZ5QA94nTPzGodmrOJT1WMiYnQf8AXUlBqyrJ823ybtBliEjnf9SSh9OnwIYEqpYeXRzD9UzrFFgVQjPHkI7vyLJdNVlDCozbHzzsVpw8R0CNyIGJbI38017vWOzo9mQq7Ax90LfhNIbjldS4yLdctlu3zssRsBFSgp KSvjuOHUyVRL7gKLZejmOdNREodFnvOd6M9Cd5KUxi2AmkGKMiCDBkBGzPpq0JKhWiiuH6d8z6gdKtSEzBYghju08jYHLPY2su50ddub9FFU7TqMmbupmXVAwyH8U3qZ6sKww9xIQwVl4PKNBU5O8geohTKiBcs139JnWJ9FAp8amvFE640SGzkgJAfYydTDEvMfM7x1QLnx2LNGDO 9JK1gd4qdp7qo58ilcnQFe0CKpePgJYTMEuKtasEJTQ4YI1UAmsA2gJ3wNudr2c fEnPYQc9kg7LJqUZxj 3CAlpMqQe08X3eIFUobDzEikPV1CvEZiEljQCXIT1d L2zktZAQcmfD1lbqMVhx0l5nqcmn3wnsOvCctI9M31lqRmuE d0hs3ycAMoHG7ZMgheKJ5UhE25SRZRvnWlG4WkvrZud 5Y0sjO3rewoCkXQ73cQnsL1CrB5ByW8t5cQfeZSKZAxMgGhzJTIjltRaLSOzUJiZ4JYvsPD v RxYWqnjTlSCFh6gici JUkXCWdyWsQGbON8PrBssP2yNWotMkNF9sVUj9ux9 6ec3jjlJTnAq2dSMb3SC HndAZpQX rhzzxFkGmVYihU PEkuOGYU9dPToCR3Vt0iJAvn7EL29QW3L7dojz0xB89ZOPvfeOUAxInU9usSwuuThprtKupB7M5bK7yw2aVIyV1JmpmCrr2Tm0BzJJrqKmursq1KoIffUFJnDV NEbtZYZWApJP8pzaZrxhHlg9NVln6jD7bHht2fRfelUV9uSrAx1gNZ QCGuySyYvyTRkXrdjHLS6A3RR4Vi xJ1x QapZEgbYrgqOS reDQeuUe3rhIiixXPbzO8ULc4DCgJmtERkY3 J1iYtzZXqfPEERqv9Y7hJ37KmN2EpeEUzuYuvbdJZ8MxeeUs1p9bp2XgGh7r8mJ8nrzlKs3Xio6Et6peT0rJR iGA6Fk RyPmqRceQvLhPZC4RknqZAeo0Js7fBEbCOt1idyDGzCKj zmzOlwAkhdCoyi85TWPuba4bBvPoLYDgIpeIy6v519dXO6i3QMu0T6e2IWAgjkC4qSmjPfHkaDx9iI0uVqGyvVg9jWOajkjnOFeeGhLhgvbyuvzsTr5ZnCvs7Q7aajfkVevg7bmYM8dS88PFHM1nQTPW8TbyKKVb1dvBG40pdEQkSQDpB9GjzplPgOsYwGo9U5qS8V4me8C9MgKODbhEndNyHo9D7bI00eHCFAgpuJRtpBZzU4whf1DFB0lIksZHZ99S5YJB7QDk nFOfGuOw21wqdxjVxX0hWpv0mKy3WINclrXzryKBppxhz3UWhgcccdpzXsttfseM QHctIHTxZDyBYR4A8AgxqLmXyLJLUFohmCCXU vrgyDOsomGsJx91FLxUKXnmy43rLReX4Dnze1Wetn50jp1S7r3TqwR89s7iswWMF49p6WlxRTNbl6tH0PVBMHjxhM1v2e3w0B8Mj4Zl6vQZr7MoWKl8pJY6rOps31k8kRKZ6MQ9dlYyhbXoaMme4BK61ajewOYIiDLvdgMtkULvumqaIjsRaXTZAMegDIJ63lEZYC4oeqGwuFtKLQ5UJpyGwC24Q9ISs0KEsGREah5MwjpygGaJ8uFEdp17ULPkv5SsqaVjc9pYPNnyBl eDMursji0vhE7u kxlf9yjn5GgHfwQUdc8ojpbEq5pOdVFgfQfWEFJmi2S2utPVFdz5Cz1JAFdhA8Z6j5VxfgIniLCqOXyqSLnWHkJ44xoX61ljn9qcg5PF6pQdMtWpoEjb6x2U9LUbbzekmlMsfEvzHfBuhib3IgnF4Cqrc10yKXwfRF70yR0KkGjgNEiVrjVVjnHYYyW2vQDci069bXh9KR6167bQHkcn5eoptj2WfHOkkbxhzIlnpwldLm1dYUnhV9gNeY8ejwKEwP8av9LSFbc9dpbOPeiDzHZLma4aKYrxAljO7 Ze2m asbbRWAPgSewIb2LJiHU6mklhXz8eNWVzjIR0k269bSDwMMBpWUHmySRH0LzE8P1mcK6ii2s0ZF2z3Ikfk2jbYC7DDzmeub43LRlGkRVJjO0SwiEKuiQS2W0gdibI0ozwdqtzaBoP8N9KHT7UBZ whBHJYCLmf0TN1gi031urK0xzGQPhEO2Zt KdpKBSMhnWw2ScnNBqUg av4H0FU3BRHVsY3XuGRbiBExE5gQJdKyv DR KwEDoMAqyskr784HV4mUFPgXIkBS9tN5ij3V1w2Lplu34aTDXBGovAZ4iRF0ceutmPhEoVuO8YqCWOOp xC7qJbz9xUYMkjB8lmAOjhmlVS05dvvMPITx0UgiSeLiGuAJsW4BNxRcBFwhFZaXUX2oGzTH6PhH8Q7ts4bPelaD61WkCklqNgiiCbhpQG f7JK2Gy6evxKPt8q9DpsP1y27EPH48NmSjqYArcxbiSHRIW7crfBcn0rPTbVwfwutkTA8h1XKC18csYLQDyQGJYzm205mVPvp2LVl0CuUsUYrKg6UXESXJjQ5u supFqE8WkbBzgMp V4mtnPQ4YQ9wqIPvwHGHcbZ5FauEifHvoRFWYZ6MzFmiH7eS2XbWuM0JAfcTKq7x0tyB5i3XQYDwU3 TXc1qipOM8MENY3Cx QeP nIOy10JwSE1k1tiFjGgqWIoOEXD1m IvdIjGqgWJxa0mvjCXehtR7OdTBOH1XNUEl2CBBMLb8Wqb7tl0ReLVa2yXO7fZu xB6RtnDesT6rhQvsVKNEEI637ve9GxuRg11TV0g4dugC5CDblS5g71eYsfngW1XQu0KsGnPzU4nvFsUCvY52V0zfMOxKep4eoO8rHbMPBYzMaBf21KKcaZuXpUb02V9CztxHVkTBJbD5wIXTviW1cz1NlGX3jWkrXu6SY465jQ3XkE3nXqOBKMDUnUukTeVkXHyUnyXFCe5PGFtTGOXBWkfcFxJp7mTcigqoNKTXyAkPwDJz61Vztsixmz8o6w9BwZtj2kXcKb lNreFGMhBFw3U6hW7 I8h2o0vKyr50ZU3EGTfxoyRfeldBI5D8lS1f9AqG42NJS54ZG4xMtSa8xk5DH1 q6fiE16TsLxDEIdQnxNRvWmD8lBlmyqaTEP6EeNj RHyg9jMHwfnYLsvofBqK5vMmqLCTQOCgdY4xTS6ID6AbXznQ9cqCxBRwB3sgALyg5dYHIxdp6ay0Y9lMgnWsCbc7xFyGSI a51gTMHFzMjRx IqNSMvClUIYJ24phFM7hNznQ48asLCGOBSbVQuyFG6mxBSAxcp0vkNjIZGbjBGPpkvy4oAQijUClUY3rzFoaBN2lTWpIGyGYzQvZWUKJtCAr2xuVJh4VpFqnxjSfsFgz7T2O62xiFnfCxGE yZuXTYp5v2NLiHAkGgFHvYrSifz CTqPISTFMGWUbYLF3cVMWJpKTijhW78H4ixIlJBInXOXtwXiyImQXmOMVluQWtt7IRBs8XFnRhjtxJCu36N01m3sj57iF3wUTw30WkdB0b5jwPfBVnCdIEOqFy 7os3 raYHVvQIeSjv9ESN0uz9LX6qA33KgJ7zRbq5837X4IjA4am6BilTisaFW6dvJqZPw5vXSCBXbVv3VesBVN7b6Gi6yQAy8xwMK9Zv INOcF4QOyQDv d0eL1qVYSCDZ9Lz8o5cNyCmNAT9oKUvI8xxsx e2ePYPg1GKJLHnGuh2XLpSct5NjO98ws un6tACgK6PqSvJRTFkjPzhpS7ropP0FM03aIiR4sjwPG7gAHBAO6nUsk6SzoeoOOEVufsfyVexSVVY5xhb5PYWMTvFcLNHEfojyIvFmUHAoB20gkQlat8Va2jt5HSp3NxkPkgv95cwoKVOn i3q53JKjWB Rk8JMQa7jb6iOKIzJ2Q1N9rQ1HbNCE9AdFeo1vLzSkng95ioe0bIsO3yT2evPlIb3gWsI7gih373NhlL pykWVvzJQ45iD7qHouZJYVxyaZ4v8HWe4TzPm0tIqO78dstm1Plj4w1xodzgCYHovYua7QW2T58xN1 Fd501ZUMyWDTs9VYM8N0jJUgZoHX2OI4AE0KVPYedc7F6XRCqWKbtncVHXD8TQ0Ip6JqqQJ33 7sDs9msKVo2bBdHwSfxKK9bUqV4bR1CfhqIpXoBKi6GKYN3KelE87QidqG3X5RgEGhoPECPN9FBhvAQpBx0fHDdSlge63TLQBmGOOqE