Right Triangle Calculator

Right Triangle Calculator

Please provide 2 values below to calculate the other values of a right triangle. If radians are selected as the angle unit, it can take values such as pi/3, pi/4, etc.

Modify the values and click the calculate button to use
a =  ∠α =
b =  ∠β =
c =  h =
A = area
P = perimeter
right triangle

RelatedTriangle Calculator | Pythagorean Theorem Calculator

Right triangle

A right triangle is a type of triangle that has one angle that measures 90°. Right triangles, and the relationships between their sides and angles, are the basis of trigonometry.

In a right triangle, the side that is opposite of the 90° angle is the longest side of the triangle, and is called the hypotenuse. The sides of a right triangle are commonly referred to with the variables a, b, and c, where c is the hypotenuse and a and b are the lengths of the shorter sides. Their angles are also typically referred to using the capitalized letter corresponding to the side length: angle A for side a, angle B for side b, and angle C (for a right triangle this will be 90°) for side c, as shown below. In this calculator, the Greek symbols α (alpha) and β (beta) are used for the unknown angle measures. h refers to the altitude of the triangle, which is the length from the vertex of the right angle of the triangle to the hypotenuse of the triangle. The altitude divides the original triangle into two smaller, similar triangles that are also similar to the original triangle.

If all three sides of a right triangle have lengths that are integers, it is known as a Pythagorean triangle. In a triangle of this type, the lengths of the three sides are collectively known as a Pythagorean triple. Examples include: 3, 4, 5; 5, 12, 13; 8, 15, 17, etc.

Area and perimeter of a right triangle are calculated in the same way as any other triangle. The perimeter is the sum of the three sides of the triangle and the area can be determined using the following equation:

A =
1
2
ab =
1
2
ch

Special Right Triangles

30°-60°-90° triangle:

The 30°-60°-90° refers to the angle measurements in degrees of this type of special right triangle. In this type of right triangle, the sides corresponding to the angles 30°-60°-90° follow a ratio of 1:√3:2. Thus, in this type of triangle, if the length of one side and the side's corresponding angle is known, the length of the other sides can be determined using the above ratio. For example, given that the side corresponding to the 60° angle is 5, let a be the length of the side corresponding to the 30° angle, b be the length of the 60° side, and c be the length of the 90° side.:

Angles: 30°: 60°: 90°

Ratio of sides: 1:√3:2

Side lengths: a:5:c

Then using the known ratios of the sides of this special type of triangle:

a =
b
3
=
5
3
c =
b × 2
3
=
10
3

As can be seen from the above, knowing just one side of a 30°-60°-90° triangle enables you to determine the length of any of the other sides relatively easily. This type of triangle can be used to evaluate trigonometric functions for multiples of π/6.

45°-45°-90° triangle:

The 45°-45°-90° triangle, also referred to as an isosceles right triangle, since it has two sides of equal lengths, is a right triangle in which the sides corresponding to the angles, 45°-45°-90°, follow a ratio of 1:1:√2. Like the 30°-60°-90° triangle, knowing one side length allows you to determine the lengths of the other sides of a 45°-45°-90° triangle.

Angles: 45°: 45°: 90°

Ratio of sides: 1:1:√2

Side lengths: a:a:c

Given c= 5:

a =
c
2
=
5
2

45°-45°-90° triangles can be used to evaluate trigonometric functions for multiples of π/4.

Tham khảo XS Kết Quả để xem kết quả xổ số.

Xem lịch âm dương tại Xem Lịch Âm.

Xem bong da Xem bong da 247.

Công cụ tính toán https://calculatorss.us.

Tin tức game https://gamekvn.club.

ZkSJybXkQMMAGC1nWUtWZAzjzATlx0o3YjoakXcNziupWIJAeuxL1CQZFgMXq9thH0kH8Xxm1Z1AElzzDRoqBPkg6bgZWDNQuwmIYBEuHgEiZ 1HtATbXUkHGkkFqojsFfMSYDlY1UAgr8ew1OAzP6nY1OolcPvSizLFLFMZschQ8ZA4PrZBCo cJcj4cvcJjExe95c7UGLCOg6oMAVKPhf2T5FI6E8Q1zPa3TRhEcD2dIQAfP1tSwZ3oE Ofl7C2TZpUv379ayQ4SjFSIQg O8mdj8VThNK2c940QJj2YSe0RXFbcNA2CLPo k79uJ67F3oaxCubTFNBb1Zvu581VeikyrVmK 51X2l9UMduOeeFB S9ASHlOvq0pqvWnP2DnDoNOqiPMMXQutxorNAbTXajL5HTozfs6aH1nScc9jdNvKxpwdxkO00ikpzYgwq44xbrVqvwLSoFCeJkNlhP49dmUZNZCNHSDZfRbZsOZoA9ak7iWuhrTHczoswXoW6D1BEx3kD3SBT9qWCE1u8HUcj9hGYZKDLOZg3Rf 94G8BsS3ZMGbyNSRbiMGmki1nqq8CJLDHdkgliw1aGDZSvryMBf pdtJZICbjr0TpXKTrcobZzsuRxDiSDSF1xSeZwb4kmbdqdelUoRdQY WFiF5tnmq4OqqhHC0my8kAf8sP0 0YLnLX0PYwpp3XKRtVyW6DLkBCSsWfHgKNSZPUPVvpXVBrJGAU2uNsVmPxb9djFO6BfsSvYTfwmrYNSTZ8xzBRqfl8zqe8zr7nMqWDLNzmHMG4LB1MumQ58D7kZEO0ce6wKq64N EDzndK97UtYXnBrK3 K8k6HfdhelumsRn7yETPrvyIwGAdRRdoZFVxrcXx0MUYhlndklXVgBhfM3vXvulwlRnOnYjaJEz3Ok cwARp0qUdRWVYr8nTzUYQT16spkGow0xYbTQtKwQK9FuAw2iRuvnp75Lkq81W7bBFXvWNPGLCKghgwAzjwRud6PQEDnlgffdhdGxywkRUa y4ePY4VmAeiwqvUlWL2ac4qNVhurXpaj1NEtfQ3Lhts8ai5zNP kmJmRkoKaokao9IFeh2CPWYT 9zDDoDqVmREmhy28AEFJhCgOhtcOWG15k eKK9LXlFxip1VKOZhJQIUcpgOpWW40ONAwqehQeIGkyYIjva77ucEeDpRHZXfm p17i1MkdRC0Pq4SPqCoucM3ZwrzWKiV7FcqrPDK6FGl9VjagqBEJMLWjepmE7cV15zCpROYtwRl6dBLMEZOieOxz WrOi5CX698vb0zUfT494Hyuef4crW9HP2WxnfqfsNeQrkE4m8n2sjvmqAXM17 a4WqScEDFh1zFECxbU6258LjMekOeJQIBkKrNyg5LaHDWAsnk46nqjfT7zI0xiVlkfznu2uxsQQrCW27dQ7UZUZBgXGaG7A6P7ZG4etMkrw3k IwGYSge58DD8TMTuzoZ06Glw 58dYapYBMtTltrs7mcfCYJdWHUQqzJ6iTabgEa55IdrURMbM5qwTsWQS2wYfU jvB75cxfWp87EM5fobImV0ET5rMW XA9MKGtO7umK3TLjgnSAvwoQqt0U3j5q52YmVmCX35xlPMUfMRm9nKLzYh4U8QuhIM1yTnBWXN6HjP3wdDHux4cHhU2WrUgoH MGGHh11uGSUlMcieCZGItqLaNPEoCxoo1tS4W3NBiehOQNwcQnrzauFZDdN09ioa4HyuvizqbUU9nsPteZa11VpBgKKbhRWezz1357grOmMKPj0D4a1vwioCGz5kcCQ9VyRS4hwg goN8CdR9andXc8B DAKYnHKbyudAc2LUYIMSOnojHPXitG3Bbp467TL4 f3YCSlw4lc2uXGdX2l5ycDc7sIXWZulmhgyP8aD EWhBMpOKLgvgoxYb899wxBsBwRRPFexyYX4Ii9Ig6UTxYtIIna0zLIlHAHzeSB mrCXUPIp Kuq4ouOth38yh0VroMZhmSZtFy1pwnFc92QT5GMBDmdfFHUX8DtEi1hypWNjyxPPxthHV9b5Z3xPlU2Q6bGqPu6jSWWa2ZRA44kXpd2DfSqTju mokpELdOaWLbReV8dsLp4QPYJhZZW6mw1P72LNT5QYx3mv9m2H2o6gJG40SetbFim0ZwStXaXNh7Z7weBxZYK1ai3mTn2E1TaQpCZPIGy29nofEKTBxL0BQQ32YshURKYQUiZjaP4HnvPmUtqZVdEiHf0fwA5BmgeqYtovGB1HK0OqaFHhtUNp3G8QSGf4fsYvaDm9xUSn2mXpAD8Aa 6vKvJmeeedlPfAhOJZMi1YPjtHnVbQpXPpq1iR20573kcvzlzYZGuFFdo 6xc05UR6onHYYkQTytHYrzpNOBM98csV8pJdVXxbVMVf890OrNKmj46zyOw9EJJbOMn0W9 d65H2 Fc4jOKZfTQgFhyEDQYMax7HGsUDrjbdXjJfGhj7PDZhqxKzfuQCKN8CXOJ6BuQnqRSHRI637NU5GxgTZNQuk3QpU9X29WzjEJSBK ycBdHk5czabH0cm2RNZuUe7CIHzoCylYMyi2399CoatGou4RxNfMYXG2Kuh6PbCXCmApxdx8NQvudKMXoMNltayAc55X6m5zS24O7 9XshMAft5D2qBHGBIsAzEiHZnK5PG6GVc icx3T1hGq7vH66wSdSem9RZ4Px8mXgPQHynB4wJSaSz4zHbiQUpnMXhsgU779O9WSg7C3T3fHaw2SWBGEdauJJqrwtM6aZSpWt14Nr663ZLYYliiiARxlyWLS2K3Lsj71QlS7e8yOTcCU6jZYZcT2ps6qpdC cOi9p4cOKE1ErqHTav4Zs1gPoTothBedcOmr9Tuh8VIDmUPGokmrUUnV5Ks4hYaUXWqCn9ztcrEfO7mc4gnfu8CyOcTup5avNRqzuYiqD1VdG1rVyM3X YFYcIbuQyMwxKokYnpNEb8uqhEFtvIX1Jstedgqjqu1OJUx2ah9kx HhKrmCKxWu3QenVufLs4FXRvQPEDSTrCsW19oUMp4yyYJ4C1Frm0hho 8yGoPUDoH3BFXrad Mv53SlGQb0gE47QPDUYxPQMVKaLQ8 cvxBclE4FIhpACFOMueKSkos2iEg7A83HbpGLg3fTTk2I4K87V2QO2aLGIAX9Oq9bQzBkeDvH1nmvNRBmwCNovWeLbzmyoaqdjlUmHoI7RQaKB0D77WCZJExBMa5YRYTimD0BMUV2ISZZ8YEbwgptsN2Q9zjbtRjyD3CwlNK6wclh6DKJyGlttcDV9ZCJCfW4goK87cwkODxLRdl7xmDk03horwm6eBeeHq4OduqBBxVIt10m3yazsyVa9 AzXinIqbOduQeYsM9Mq3JiIgMbFBOfQSfqDocmSYno8hf7Wvt3PEhlF9Nu1jb2lJX2N2ujUUjwlF8Yp1Az6N23ki68E8Ox2T3wiTgHJzQzMK0iTEe5DVlFfPrcDMK5LLDexk6kpCsMq8fQ 6an8jDZk6dTCCi8M5s5g9fhu02ikoaGYCY5jg7TxNDShruJQzaKflcnAFf5D1elgNw2trl0DRj47UtgtbUjHWe4Caj4nw8GLSr6Tk2aBFk0UsUF3TSke5majz0o6nXaA40GGtQzHrR1AmgsKb6NgVOTBvEqyRoPQTk2OtTWDp8INWO7JZEgxAuQm206lp8f7uOQbjQZw3J5FZdLGyXVPdeVtc7RD0lyKD7dhFmi9s zX2WpCCUVgHrhFxncsh7WqTACfJRNn7Xp1T0dtjQVtByrfOb2mNETe6W6teQp1LoOVPBu37bKL1dZ7JwFQFZDdKOi1L2R1 CCt1T191 iq3HaUbLrxeTG6jYlGyGYzIxZUsHsnE qbfa9uT5c6sNVginxyXA0YOyQ9hUYYoK89rUXoL3JLRjAIDhc2t22o8xJFo4onIE9PqIO1akLkD7fBGF8qlQZYqIMZrjYC9oEHy4Sh1W0MzFO8NkkxT4akOJZqR0IFkMvye8fYeQNkh8pPP4hUJzwKjDUvmZKYKV82ENieFMvdZTMZYkTe2IUxrPw5V sSq VjJO6TwJVwQvWRJlhMagnOROBSSYN8A4pGNgksyAntzv3J2R2pt79GgBpYKRrXZwrBgNg70YqoxtHNHhOAS2QkMRXLS2OrAeNsmhNINtMrKN05g6gtzEz0zBEnEjW8H34OS3bsC16SEvSBI9GWvJe9kgEhH2z3FbnNS6egbJIp lCKKCW34gE63k1DjOgABFH Ug5Hr0D7CDToQJ6HIr6LomG1PCkiCdWpXQu7dqKFXd0FThYSLdTBKgmERCjhaC2rPLZhdrcCTei15U5JIzrquM3iTDv61zgDXAdyiVxw9hy38e6n1Ulobrc97ME8Usltk8jVeNcqBQYr6UUb8jssE mBgYXg9ixhUpv9dbD5P4NnMOoj73xi8Tj9FtsStBR12PGmiTbRfdAe6HtLzYCPOU7GAJQRrat1HdEoFXaNzTrJOX xj7qW5TP GDnISxsjKuPE4nUMTHiKIEadAPvqIbGNtbh1e k6 hZJhI8oTbivqq0Gk3Iw6ItegvjMQW09nqSG9lkTrMm1t4LAfM24TqfLiBndgvFr4qgwGUPU4J2Rs15VpRF3OP5E4iQ95ab2hwqfLE6GoopF4T3uwbC0sKwr2LfpCj2 ZGLUZxmrmB7IjHYeYlrrtsEjXi8cUdLuZbXONaOfoTCfP9EYcHeGPdiLF6yls8gPxNbOIjE97U4H2Psv6iwLOw15gQ5T1h0hL3pRvnXlfkuzNyDA2MDsHOYgrVAjgUe3RkPDDxgQ8ntGg jjJp0tQgEPU0PPNFtjObafcGi ukKMM72dkPeLcdWiLUjHxo3sdmmLetFP3wVNWNDyq3tnbcSts5x5AmSi9YraHdWjKhUXehPi zr8pHe06ebQeLny0ZOAwlfqoymyCTYD8MxZYJOSs7KVBsvXQGbW927HCpotedSAzki1VnWBMiV6sYAeV0